Polynomial Constraints for
Sets with Cardinality Bounds

Bruno Marnette!, Viktor Kuncak?, and Martin Rinard?

1 ENS de Cachan, France
bruno@marnette.fr
2 MIT CSAIL, Cambridge, USA

{vkuncak,rinard}@csail.mit.edu

Abstract. Logics that can reason about sets and their cardinality bounds
are useful in program analysis, program verification, databases, and knowl-
edge bases. This paper presents a class of constraints on sets and their
cardinalities for which the satisfiability and the entailment problems are
computable in polynomial time. Our class of constraints, based on tree-
shaped formulas, is unique in being simultaneously tractable and able to
express 1) that a set is a union of other sets, 2) that sets are disjoint, and
3) that a set has cardinality within a given range. As the main result we
present a polynomial-time algorithm for checking entailment of our
constraints.

1 Introduction

Hierarchical representations of sets of entities are ubiquitous in computer science,
arising in programming languages, program analysis, software engineering and
knowledge bases. When considering a class of constraints, we are interested in
two main questions:

- satisfiability: is a set of constraints consistent (satisfiable)?

- entailment: does one set of constraints imply another set of constraints?

Note that a solution to the second problem is also a solution to the first prob-
lem: checking whether a set of constraints implies (entails) a fixed contradictory
constraint solves the satisfiability problem.

In object-oriented programming and software modelling, set hierarchies model
classification of entities into classes and are an important component of object
models represented using notations such as UML [II] and Alloy [I4]. The entail-
ment problem for set hierarchies arises when checking, for example, that one UML
diagram is a refinement of another diagram. Satisfiability checking can detect con-
tradictory constraints that indicate an error in the model or system requirements.

Set hierarchies are also essential in knowledge representation [26]. Entailment
checking allows one to check that the classification in a particular knowledge-base
is a consequence of the classification in a more general ontology.

Recently, researchers have considered the (typestate) generalization of static
class hierarchies in object-oriented languages to dynamically changing hierar-
chies of sets of objects [9[17]. Using the ideas of [20], we can statically approxi-
mate dynamically changing set hierarchy at each program point by propagating

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 258 2007.
© Springer-Verlag Berlin Heidelberg 2007

Polynomial Constraints for Sets with Cardinality Bounds 259

constraints between sets of objects using a data-flow analysis. A modular ap-
proach to such analysis needs to check that 1) each procedure precondition is
satisfied at each procedure call site, and 2) the postcondition holds at the end
of each procedure. When the propagated information encodes a set hierarchy,
these two checks require deciding the entailment of such hierarchies.

Sets with cardinality constraints. One often wishes to express constraints
not only on sets but also on certain distinguished elements of these sets. A
simple and unified way to reason about elements is to represent them as sets of
cardinality one. Similarly, it is often desirable to state that a set is non-empty
or, more generally, that the number of its elements is within given bounds. This
motivates the use of cardinality constraints on sets that participate in hierarchies.

We have previously considered expressive logics that can express such con-
straints by combining the Boolean Algebra of sets with a cardinality operator
and Presburger Arithmetic [I8], [I6, Chapter 7]. However, the NP-hardness of
these constraints potentially limits their practical use, which motivated us to
find constraints that have polynomial-time algorithms. The result is the class
presented in this paper, for which we construct a polynomial-time algorithm for
entailment (and therefore satisfiability). This class can express a combination
of constraints that, to the best of our knowledge, cannot be represented using
existing polynomial-time formalisms (see Section [G]).

Our result. We call our notion of set hierarchy itree, standing for inclusion tree,
because the edges in the hierarchy represent set inclusion B C A and because
the inclusion edges in an itree form an inverted tree. Moreover, an itree can
specify that a set is covered by some of its subsets (A = BUC U D), or/and
that these subsets are pairwise disjoint (BNC = CND = BN D = (). An
itree can also specify multiple orthogonal divisions of one set into subsets, such
as A= BUCAA=DUEADNE = (. Finally, an itree can specify constant
cardinality constraints on sets, such as 1 < |A4| < 10000. Our algorithm checks
entailment of conjunctions of such constraints.

The key idea of our polynomial-time algorithm is to define a notion of normal
form where each tree node satisfies certain local constraints. We show that this
normal form can be enforced in polynomial time using a set of rewrite rules. We
then give polynomial-time conditions for checking whether a normalized itree
implies a given constraint on variables. This yields an algorithm for checking
whether an itree implies a conjunction of such constraints, and we show that an
itree can always be represented as a conjunction of quantifier-free constraints.
We therefore obtain a polynomial entailment test for itree constraints.

Contributions. The contributions of our paper include the following:

— We introduce itree constraints for expressing hierarchies of sets, and permit-
ting a simple form of existential quantification over sets (Section [Z2).

— We show that generalizing the definition of itrees to permit acyclic graphs
yields constraints whose satisfiability is NP-hard (Section [Z3]).

— We give a polynomial-time algorithm for checking the satisfiability of itrees
by proving sufficient conditions for the existence of their models (Section B]).

260 B. Marnette, V. Kuncak, and M. Rinard

— We give a polynomial-time algorithm for checking whether an itree entails a
given cardinality, inclusion or disjointness constraint (Section H).

— We show that the quantifiers in an itree can be eliminated, which, with the
previous result, gives polynomial-time entailment for itrees (Section ().

A preliminary version of the current polynomial-time results (including proofs)
appears in the technical report [22], using the same ideas but slightly differ-
ent definitions. Due to space limitations we here present only proof outlines,
describing the main ideas and revealing the underlying algorithms.

2 Constraints on Sets and Their Graphical
Representation

The constraints that we consider in this paper are expressible using existentially
quantified conjunctions of boolean algebra formulas whose variables range over
sets of uninterpreted objects. We call these formulas Conjunctive constraints on
Sets with Cardinalities and denote them CSC.

Definition 1. CSC formulas are given by the following syntax:

¢ n=3v,...,un. PPN APy,
P .= S1§SQ‘S1052:@ ‘ lvI<k ‘ v >k
S:=s|v]|SHUSy

Variables in CSC formulas denote sets and can be free set variables (denoted s,
', 8;) or bound set variables (denoted v, v/,1;). Sets in CSC formulas are denoted
by variables or unions of variables. Cardinality constraints apply only to bound
variables.

Lemma 1. Satisfiability of CSC formulas is NP-hard.

Lemma [Tl holds because CSC can express boolean algebra constraints on subsets
of a fixed set variable U. Namely, union together with disjointness from U can
define set complement; union and complement then allow encoding arbitrary
propositional operations.

2.1 Graph Representation IGRAPH for CSC

As a first step towards identifying polynomial constraints, we introduce a rep-
resentation of CSC by igraphs (standing for inclusion graphs). In the following
definition of igraphs, the nodes VN are bound set variables v and the edges ~~
represent the subset inclusion of sets. Nodes are tagged with cardinality con-
straints and with mode symbols establishing additional constraints between a
node and its direct sons. If v is tagged with the mode symbol O, the sons of v
are pairwise disjoint. If v is tagged with the mode symbol B, the sons {v1,...,v,}
of v cover entirely v, that is v C U;y;. If v is tagged with the mode symbol ¢,
then v is equal to each of its sons. When a set v participates in several atomic

Polynomial Constraints for Sets with Cardinality Bounds 261

formulas, we can use the 4 mode to introduce synonyms for v. Finally, a mapping
o establishes equalities between free set variables s € SN and bound variables
v € VN. It also enables the encoding of set emptiness using a special symbol (7.

Definition 2 (IGRAPH). An igraph G € IGRAPH is either the false igraph L
or a tuple (SN, VN, ~», Clnf, CSup, M,) such that

SN and VN are two disjoint sets of set variables

(VN,~~) s a directed graph

CInf : VN —» N (N={0,1,2,...})

CSup : VN — N U {oo} (VE eN. k < o0)

M:VN— P({¢,m,0})

o:SN—VNU{0;}
The set SN corresponds to the free variables s of G. The elements of VN cor-
respond to the bound variables v and are also called nodes by graph analogy.
P({¢,m, 0}) denotes the set of subsets of {¢, W, O}. We write v ~» v/ when

(v,v') €~. We define the set of sons of v € VN by Sons(v) = {V/|v/ ~ v} and
the incoming degree of v by d(v) = |Sons(v)].

Definition 3 (IGRAPH semantics). The semantics Sem(_L) of the false igraph
L1 is by definition the formula false. With each igraph G #1; we associate a
quantifier-free CSC formula Semo(G) as follows:

NV Cv | v, V'eVN A V~sv}

Nv'=v | v,/eVN A Vv A 4EM(v)}

Semo(G) N\ { AMrEUSons(v) [veVN A meM(v)}

ANVW'=0 | veVN A v/, V"€Sons(v) AV/#V" NOEM(v)}
A{CInf(v)<|v|<CSup(v) | vEVN}

The semantics Sem(G) of G is then:

0, if o(s)
v, if o(s)

Or
v

Sem(G) = v, .. Vs Semo(G) A /\ {j

seSN

Figure [gives an example of an igraph G (represented graphically) with its
semantics Sem(G). Given two igraphs G and G’ we write G | G’ iff Sem(G)
entails Sem(G’) and we write G = G’ when both G = G’ and G’ = G. We say
that G is satisfiable iff Sem(G) is satisfiable. We also use the symbols = and = to
compare igraphs and CSC formulas, identifying igraphs G with their semantics
Sem(G). To avoid confusion between the syntax and the semantics of formulas
we use square brackets around formulas. Thus, in the following sections, [v = V/]
denotes an equality between two sets while v =1/ only states that v and v/ are
the same variable symbol (or the same node).

262 B. Marnette, V. Kuncak, and M. Rinard

Sem(G) =
v, va, v3, va, Vs, Vs,
SMEDIA, V0 Vcontent , Vfiley Vtype; Vsize-
0 90 Veontent © V0 A Vfile C VO
141 g Vcontent \ V2 g Vcontent/\
\/ Vtype C vgile A3 C Vtype/\
Vcontent flle Vg g Vtype N Usize g Vsile \
Vs g Usize /\ Vg g Vsize
/ \ / \ V0 = Vcontent = Vfile /\
Vfile = Vtype = Vsize N\
SV|DE07 5MOV|E7 V1 SMmusIC, V2 Vtype Z/slze _
[25 OO] Veontent = V1 U V2 /A
Vsize =V5 U g N\
AN S
SMP3, V3 SAVI, V4 SSMALL, V5 SBIG, V6 vs Nve=0 A
[0..50] [0..15] [to]< 90 A |v1]>5 A
|v2|>25 A

@IaSCENSORED |l/5|§ 50 A |l/()|§15 A

SMEDIA =0 /A SMOVIE =V1/\
SVIDEO = V1 A\ Smusic = V2
SmMp3=v3 A Savi =Va/\
SSMALL = V5 A SBIG =V6/\
scensorep =0

Fig. 1. An example of itree (a particular case of igraph) and its semantics

By construction, the semantics of an igraph is expressible by a CSC formula.
The following lemma shows that the converse holds as well.

Lemma 2. Foreach ¢ € CSC we can compute in linear time an equivalent igraph.

As a consequence, the satisfiability of igraphs is also NP-hard.

2.2 Definition of Itrees

We can now define our subclass of tree-shaped igraphs. We call this subclass
itrees. Polynomial-time algorithms for satisfiability and entailment of itrees are
the subject of this paper.

Definition 4 (ITREE). A generalized itree (gitree) T is either the false igraph
Ly or an igraph G € IGRAPH such that (VN,~) is a tree, oriented from the
leaves to the root.

An itree is a generalized itree such that, for each v € VN

o t(v)=0 = CInf(r) =0ACSup(v) =00 (QE)

Thanks to the tree-shape condition, itrees (and even generalized itrees) satisfy
some important properties that are not true for general (or acyclic) igraphs. For
example, it follows from Lemma [I0 of Section that the semantics ¢ of an
itree always satisfies, for all set variables s1, sq, s3, the following property:

Polynomial Constraints for Sets with Cardinality Bounds 263

pE=[s1 CsaNs1 Cs3] = (¢'=[81=®] V ¢ E[s2 Cs3] V ¢'=[83Q82D

This property allows us to prove, for example, that the CSC formula [A C BAA C
(] is not expressible as a (generalised) itree. Therefore, the class ITREE is a
strict subclass of IGRAPH and is a good candidate for a more efficient fragment
of IGRAPH.

The QE condition (standing for quantifier elimination) in the definition of
ITREE ensures that the semantics of itrees can in fact be expressed using a
quantifier-free CSC formula, as proved in Section Bl Note that a sufficient con-
dition for QE is that o=!(v) # () for each v € VN.

Because we can check whether a graph is a tree by depth-first traversal of the
graph, we have the following result.

Lemma 3. Deciding whether a given igraph G € IGRAPH is an itree (G €
ITREE) can be done in linear time.

2.3 Hardness of Acyclic Igraphs

We have observed that satisfiability of igraphs is NP-hard. In contrast, we prove
in the rest of this paper that itrees have polynomial-time satisfiability and entail-
ment problems. A natural question to ask is whether we could obtain polynomial-
time algorithms for igraphs where inclusions are acyclic but not tree-like. The
following lemma (see also [22, Section 4, Lemma 4]) suggests a negative answer
to this question.

Lemma 4. Let IDAG denote the class of igraphs for which (VN,~) is a directed
acyclic graph (DAG). For each igraph in IGRAPH we can compute in polynomial
time an equivalent igraph in IDAG. Therefore, satisfiability in IDAG is NP-hard.

The essence of the proof of Lemma[lis that we can collapse (in polynomial time)
cycles in an igraph to obtain an equivalent acyclic igraph. In addition to NP-
hardness of the class of acyclic igraphs, we can prove NP-hardness for several
subclasses of IDAG, using the construction in [22] Section 5, Theorem 2]. We
therefore believe that considering tree-like restrictions on igraphs is a reasonable
approach to identifying polynomial constraints.

3 Deciding Satisfiability of Generalized Itrees in
Polynomial Time

This section gives a linear-time algorithm for satisfiability of generalized itrees.
This result is a first step to an algorithm for checking entailment, which we
describe in Section Bl building on the results in this section. Moreover, the sat-
isfiability algorithm is of interest in itself.

We proceed by first showing (Lemma []) that the bottom-up propagation of
constraints (rewriting rules R1 and R2) allows transforming in linear time any
gitree T into an equivalent gitree R3(T) such that either a) RY(T) =L;, in
which case T is clearly unsatisfiable, or b) Ri(T) satisfies two properties C;

264 B. Marnette, V. Kuncak, and M. Rinard

and Cy. We then show (Lemma [B) that any gitree for which C; and Cs hold
is satisfiable. As a result, we can decide in linear time whether T is satisfiable
by first computing R}(T) and then returning satisfiable if and only if RS (T) is
different from 1 ;.

Lemma 5. For each gitree T we can compute in linear time an equivalent gitree
R(T) such that either RY(T) =L or Ry(T) satisfies (for each node v) both:

M(V) € {@,{‘},{O},{-},{O,-}} (Cl(l’))
and BUInf(v) < CiInf(r) < CSup(v) < BUSup(v) (Ca(v))
where, for Sons(v)={v1,...,vpn},
lef [Y. Clnf(v;), if O € M(v)
BUInf(v) Y {maxi Clnf(v), otherwise
det min; CSup(v;), if # € M(v)
BUSup(v) = ¢ >, CSup(v;), if me M(v)
00, otherwise

Proof. Such a form R} (T) can be obtained from T in two steps. The first steps
consists in simplifying the mode combinations by applying the following rewrit-
ing rule Ry to every node (in any order).

if apply

d(v) =0 M(v) := (M(v) — {4})

d) <1 M= (M) - {O})

d0)>1 M) = (M(v) - {m}) (R (v))
¢ M(v)

d(v) =2 M(v) := (M(v) — {O})

{#,0} C M(v) ¥v/€Sons(v), CSup(v'):=0

The second step consists in applying the rule Ry below to every node, proceeding
from the leaves towards the root, in order to 1) refine the cardinality bounds and
2) recognize the contradictory bounds such that Clnf() > CSup(v).

Clnf(v) := Max(ClInf(v), BUInf(v))
CSup(v) := Min(CSup(v),BUSup(v)) (Ra(v))
If Clnf(v) > CSup(v) then T :=1;

We say that C; holds for T (i.e. “T satisfies C;”) iff C;(v) holds for each node
vofT.

Lemma 6. Every gitree T #11 for which both C1 and Cy hold is satisfiable.

Proof. We first note that a gitree T such that T" #.1; is satisfiable if and only
if there exists a model for Semo(T'). Indeed, a model (A, : VN — P(A)) for
Semg(T') can be turned into a model (A, &’ : SN — P(A)) for Sem(T) by taking
o/(s) = 0 when o(s) = 0; and o/ (s) = a(o(s)) when o(s) € VN.

Polynomial Constraints for Sets with Cardinality Bounds 265

V1,81 V1, S1 V1, 81 Vi, 81
[2..4] [2..4] [2..4] [3 2]
" [] R 141 R (VZ)

1 ¢ ¢
f \ Ri(vs) f \ Ra(vs) 1/2’ \ Ra(v1) sz \ Ra(v1)

2 V3 V3 = V3 =

[0.-4] [2(.).4] [0 4] [2 4] [0...2] (3.4] [0.2] [3.4] J—I
I/T4 VT5 VT4 I/L 7/T4 IL VT4 V[

[0..2] [3..00] [0..2] [3..00] [0..2] [3..00] [0..2] [3..00]

Fig. 2. Example of R1 and Rz derivation

When T satisfies both Cy and Cy we can build a model for Semo(7') in two
steps. We first choose (in linear time) relevant cardinalities ¢(v) € N for the
nodes v, proceeding from the root to the leaves. More precisely, we take ¥ (v) =
Clnf(v) for the root v of T' and define recursively the values 1 (v;) for the sons v;

of a node v, for a chosen ordering of Sons(v) = {v1,...,v,}, and by induction
oni=1.n:
Clnf(v;) if M(v)=10
Clnf(1;) if M(v) = {0}
()) it M(v) = {#}
min(CSup(v;), ¥ (v)) if M(v)={m}
min(CSup(v;), ¥ (v) Z{‘lw(m ") ZL>‘2C|nf(1/Z 1)) if M(v) ={o,m}

The conditions C; and Cy guarantee that this cardinality choice satisfies the
following property HY for every node v such that Sons(v) = {v1,...,v,}:
Cinf(v) < (v) < CSup(v)
Ni ¥(vi) <)
$eM) = A\owi) =v) o (H' ()
OeM)= >, v) <)
e M) = >, vw)=9()

When a cardinality choice satisfying HY (v) for all nodes v of T is chosen, the
second step consists in building for every node v, taken from the leaves to the
root, a model for the formula Semo(T|,) where T, denotes the sub-itree T'|,
of T of root v. The role played by H¥(v) in this construction is the following:
the property 1 (v;) < ¢ (v) ensures that the son v; of v is small enough to fit in
v; when M(v) = {4}, the property ¢(v;) = ¥ (v) ensures that the sons v; of v
have the right cardinality to be made equal to v; when O € M(v) the property
>, ¥(v;i) < (v) ensures that the disjoint union of the sons of v can fit in v; when
B € M(v), the property > . 1 (v;) > 1(v) ensures that the sons of v contain
enough elements to cover entirely v; the property Clnf(v) < ¢(v) < CSup(v)
ensures that the cardinality constraints are not violated.

Corollary 1. A gitree T is satisfiable iff R5(T) #1;.

Corollary 2. We can decide the satisfiability of a gitree in linear time.

266 B. Marnette, V. Kuncak, and M. Rinard

4 Entailment of Quantifier-Free Formulas

The goal of this section is to show that for every gitree T' (and, in particular, for ev-
ery itree T € ITREE), and every formula ¢ from a quantifier-free fragment QFCSC
of CSC defined below, we can decide whether T entails ¢ in polynomial time.

Definition 5 (QFCSC). ¢ :=P A... AP,

P:=5CS8[S5NS=01] IsI<k | Isl>k

S = s ‘ S1 U Sy
Because QFCSC formulas are conjunctions of atomic formulas, we can decide
whether T entails a formula @ = P; A ... A P, by checking whether T' = P; for
all ¢ = 1..n. For deciding T' = P we start by applying additional rewriting rules
that enforce stronger properties on gitrees than in the previous section. For each
kind of atomic proposition P (cardinality constraint, inclusion, or disjointness)
we then define conditions on normalized gitrees that 1) characterize the property
T E P, and 2) are computable in polynomial time.

4.1 Checking Cardinality Constraints

Analogously to the definition of BUInf and BUSup (in Lemma [B]) we next define
for every node v of a gitree T a lower bound TDInf(v) and an upper bound
TDSup(v) for the cardinality of v, this time corresponding to top-down reasoning.

Given a node v such that v = Root(T) or v ~» v/ and Sons(v') = {v,v1,...,vpn}
we define
0, if v = Root(T")
. 0, it M(v') € {0, {m}}
TDInf(v) < Clnf ('), it M(v') — {4}
Cinf(v")=>", CSup(v;), if M(v') € {{O},{0,m}}
. 00, if v = Root(T")
TDSup(v) e/ CSup('), it M(v') € {0,{¢},{O}}

CSup(v')—=>", Clnf(v;), it M(v') € {{m},{O,m}}

Lemma 7. For each satisfiable gitree T we can compute in linear time an equiv-
alent gitree R% (T) satisfying C1, Co, and, for each v € VN,

TDInf(v) < CInf(v) A CSup(v) < TDSup(v) (C5(v))

Proof. Such a gitree Ré(T) can be obtained by applying the following rule R
to R% (T') using a top-down strategy

Clnf(v) := Max(CInf(v), TDInf(v))
CSup(v) := Min(CSup(v), TDSup(v)) (Rs(v))

Lemma 8 (Checking cardinality constraints). For each gitree T' satisfying
C1,C5 and Cs, each s € SN, and each a,b € N we have

either o(s)=0;r A a=0
or a<Clnf(o(s)) <CSup(o(s))<b

We can therefore decide whether T'|=[a<|s|<b] in linear time.

TEa<l|s|<) — {

Polynomial Constraints for Sets with Cardinality Bounds 267

Proof. For each T #.1 1 satisfying C1, Ca, Cs, for each v € VN and for each k €
[CInf(v), CSup(v)], the gitree T},|—j obtained from T by applying Clnf(v) := k
and CSup(v) := k satisfies R} (T\y|—x) # L1. Therefore, by Corollary [l there
exists a model (A, a) of Semq(T) such that |a(v)| = k.

When T satisfies C1,Cy,C3 we can then check that the cardinality bounds
CInf and CSup are optimal. That is, for every node v of such a gitree we have
Clnf(v) = min{|a(v)|, (4, @) = Semo(T")} and CSup(v) = max{|a(v)], (4,) E
Semo(T")}. The result follows directly from this observation.

4.2 Checking Inclusion and Disjointness Constraints

Now that we have optimal cardinality bounds, it is natural to look at the in-
fluence of cardinality constraints on other types of constraints. This approach
allows us to enforce an additional property C4 on gitrees using a rewriting sys-
tem R4. Finally, we show how to take advantage of Cy4 to decide which inclusion
constraints (Lemma [I0) or which pairwise disjointness (Lemma [I1]) hold in a
gitree T'.

Lemma 9. For each satisfiable gitree T we can compute in linear time an equiv-
alent gitree Ri(T) satisfying C1,Ca,Cs3, and, for each v € VN,

CSup(v) >0
d(v) =1= M(v) € {{#},{O}}
M(v) = {m} = Cinf(v) < ¥ CSup(v') 0 (Ca(v))

M(v) = {O} = CSup(v) > z Clnf(v)

Proof. Such a gitree R3(T) can be obtained by applying with a bottom-up strat-
egy the following rule R4 to R%(T)

if apply

d(v) =1 M(v) := {0}

M(v) =0

M(v) = {O} M(v) := {m, O}

CSup(v)< & Clnf(v/)

M(v) = {m} M(v) ;= {m,O} ,
Clnf(v)> ¥ CSup(v/) (Ra(v))
dv) =1 M(v) := {4}

Hc M)

CSup(v) =0 VN := VN — {v}

d(v) =0 Vs € o~ (v)

o(s):=0;

268 B. Marnette, V. Kuncak, and M. Rinard

53] 53] 53] 5.3

Rs(v2 || HO

1A RSEM% 1A) 1A R4EV3; 1A
1%) V3 Ra(vs V2 V3 Ra(vs 2 Vs R e 2 v3
0..3] [2..2 3..3] 2.2 3..3] 2.2 3..3] [2..2
[][/O\] — [H/o\] [][T]:> [][T]
2.4] [0,.00] 2.2] 0.0 [2.] 2.2]
Or,s3 0r,ss3 Or,s3, 82 01, s3, 82

Fig. 3. Example of R3 and R4 derivations

Lemma 10 (Checking inclusion constraints). For each gitree T and each
X C VN we define a unary predicate Zx on VN as the least fized point of

v)y<=rveX

(v) < 4 €M) A (3 € Sons(v) Ix(v))
(v)<=me M(V) (Vv € Sons(v) Zx(v))
W) <=v -~V ANIx(V)

A

Then, if T satisfies Cy,Co,Cs,C4, then for all subsets S, S’ C SN, for
X"'={o(s) | s€ S ANo(s) € VN} we have:

TE[US)C(US) <« VsesS (o(s)=0;VIx(o(s))

Proof. The result is a consequence of the following observation: for each 1" sat-
isfying C4, Cs, Cs3, Cy, for each v € VN and each X C VN we have:

Semo(T) E [v C (UX)] < ZIx(v)

The proof of this claim relies on a refinement of the algorithm of model con-
struction used in the proof of Lemma

Lemma 11 (Checking disjointness constraints). For each gitree T we de-
fine the binary predicates D and D* on VN xVN by

Dv,v') < v#V AW € VN, {v,v'} CSons(v) A O € M(v")
D*(v,v') <= Juo, 1y € VN, v ~* g AV ~* Y[A D(VO,VO)

Then, if C1,Cs,C3,Cy, for all subsets S, 58" of SN we have

TEUSINUS) =0 = (s, € (5xs) {7 o) 2w ol =

Proof. The result is a consequence of the following observation, which again
relies on a refinement of the algorithm of model construction: when T satisfies
C4,Cs,C5,Cy then for all v,/ € VN we have Semo(T) = [vnNv = 0] —
D*(v, V).

Polynomial Constraints for Sets with Cardinality Bounds 269

We conclude this section by combining Lemmas RII0, and [IT] to prove the fol-
lowing theorem.

Theorem 1. We can decide whether a gitree entails a QFCSC formula in poly-
nomial time.

5 Testing Entailment of Itrees in Polynomial-Time

The test of entailment between two arbitrary gitrees (T E=T") is complicated by
the existential quantifiers in the semantics of T which prevent us from decom-
posing Sem(7”) into a conjunction of independent atomic formulas. However,
if we can express a gitree T’ as a QFCSC formula, the previous section yields
a polynomial-time algorithm for checking whether a gitree entails T”. In this
section we show that the condition

o t(v)=0 = Clnf(r) =0ACSup(v) =0 (QE)

in the definition of itrees ensures that we can indeed compute a QFCSC formula
associated with the itree, which motivates the definition of itrees as a subclass
of gitrees.

As a first step, the following lemma gives a sufficient condition for a node of
an itree (that is, a bound variable) to be expressible as a union of some free
variables.

Lemma 12. Given an itree T we define the unary predicate Det on VN as the
least fized point of

Det(v) < o 1(v)#£10

Det(v) <« ®We M(v) AVY € Sons(v). Det(v')
Det(v) <« M(v) = {#} AT € Sons(v). Det(v')
Det(v) <« . v~ AM() = {4} ADet())

Then for each node v we have: Det(v) = (35, CSN. T = [v = (US,)])
Moreover, the predicate Det and a mapping v — S, are computable in polynomial
time.

When Det(v) holds for all nodes v of a gitree T, it is clear that we can transform
the formula ¢ = Sem(T) into an equivalent formula ¢’ such that no quantified
variable appears inside inclusion constraints or disjointness constraints. However,
it is not sufficient to check that Det(r) holds for all nodes v to ensure that
T € QFCSC. Indeed, QFCSC only allows expressing cardinality constraints on
free set variables and not on arbitrary union of set variables. It is for this reason
that we are naturally interested in the class ITREE of gitrees for which non trivial
cardinality constraints can only be enforced to nodes v for which there exists
s € SN such that o(s) = v.

Lemma 13. For each itree T € ITREE we can compute in polynomial time an
equivalent itree R'*(T) satisfying Det(v) for all nodes v € VN.

270 B. Marnette, V. Kuncak, and M. Rinard

if apply
vV VN := VN — {v}
d(v) =0 M) := M(v') — {m}
o) =0
v = Root(T) VN := VN — {1}
d(v) =0
o (v)=10
M(v) € {0.{O}} M(v):=M(v)U {H} (R'(v))
vV M) := M(v') — {m}
M) # {4}
o () =0
M) = {4} M) =
Vv € Sons(v') Vv € Sons(v')
M(IV() f {@é{o}} M(v) := M(v) U {B}

Fig. 4. Rewriting rule R/

Proof. Given an itree T we can first compute an itree T} equivalent to 7" and
satisfying the condition Cy relative to modes (see Lemma [H). Because R does
not preserve the QE condition, we compute 737 in three steps: 1) discard the
cardinality constraints of T' by applying CInf(r) := 0 and CSup(v) := oo to every
node; 2) apply R1, R2, R3, R4; and 3) recover the initial cardinality constraints
on the nodes that remain in the tree. Step 2) makes some subtrees of T empty
and changes M, CSup, CInf for existing nodes, but never introduces new nodes or
causes 0~ '(v) =) to hold for additional nodes that remain in the tree. Thus,
QE holds after step 3). We can compute the final itree R'*(T'), equivalent to T
and 77, by applying the rewriting rule R’ of Figure @ to T using a bottom-up
strategy.

Lemma 14 (ITREE C QFCSC). For each itree T € ITREE we can compute in
polynomial time an equivalent formula of QFCSC.

Given a mapping v — S, from Lemma [[2] this QFCSC formula can be com-
puted from Sem(R'*(T)) by first substituting each v with US, in the formula
Sem(R'*(T)) and then eliminating the quantifiers.

FigureBlgives an example of an application of R’ to an itree and indicates which
substitution can finally be applied to obtain a quantifier-free formula. Finally, com-
bining Lemma [I4] and Theorem[I], we obtain the main theorem of this paper.

Theorem 2. We can decide entailment of itrees in polynomial time.

6 Related Work

We are not aware of any previously known constraints on sets with cardinal-
ity constraints that have polynomial-time entailment while supporting all the
constraints present in the ITREE class.

Polynomial Constraints for Sets with Cardinality Bounds 271

V1, S1 Vi, 81
[2..00] [2..00]

¢ ¢ [2;.00] then apply
[N R N\ R SN e
Vo vy — Vo Vs S 1] vy =

V1,81

v — SoUs3

O | | O ol N V3 — S84
82’ \83 / \ 82’ \83 [ng \83 T to Sem(T)
i :o] [1..4001 [1..f>o]

Fig. 5. Use of R’ on an itree and quantifier elimination

Set algebras with cardinalities. Quantified formulas of boolean algebra are
complete for the class of alternating exponential time with a linear number of
alternations [I5], and even a small number of alternations leads to exponential
complexity [I3]. Cardinality constraints naturally arise in quantifier elimination
for boolean algebras [21]. The quantifier-free case of Boolean Algebra with Pres-
burger Arithmetic is described in [5, Section 11}, [28] with an non-deterministic
exponential time decision procedure, which is also achieved as a special case
of [I8,[19,24], [10, Section 8, Page 90]. Recently, [I6, Section 7.9] gave a non-
deterministic polynomial-time algorithm for quantifier-free Boolean Algebra with
Presburger Arithmetic. All these constraints are NP-hard.

Description logics. Description logics [3] can reason about sets (concepts) and

relations (roles). However, polynomial-time description logics such as the ones
described in 8] Section 7] and [2], [3, Section 3.9.2] do not support set unions; the
presence of union is generally considered to lead to intractability. Note also that
the subsumption in the context of description logic typically refers to testing
A C B for two defined concepts A and B, as opposed to testing whether a
conjunction of constraints on sets implies another constraint on sets, as in our
case. Furthermore, cardinality constraints in description logics typically apply
to a relation and are used to designate a new set, as opposed to imposing a
constraint on an existing set.

Horn clause fragments. Polynomial-time fragments of first-order logic Horn

clauses such as [23,12] can in principle encode some relationships on sets by
representing them as predicates, but they do not support cardinality constraints.

Constraint satisfaction problems. Constraint satisfaction problems (CSP)
[7] also identify the important idea of propagating constraints along tree-like
structures. For example, the Yannakakis algorithm has linear time complexity
for the satisfiability of acyclic sets of constraints [27]. However, such algorithms
typically work on concrete domains such as booleans or integers; we are not
aware of their application to constraints that involve set variables along with
their cardinalities. Indeed, an attempt to generalize itrees to acyclic graphs yields
NP-hard constraints. Note that representing the values of set variables explicitly
(as done in many constraint satisfaction problems over finite domains) would

272 B. Marnette, V. Kuncak, and M. Rinard

result in exponentially large models. Like [8 Section 7], our polynomial algorithm
avoids this problem using polynomial representation of models, but, unlike [8]
Section 7], can express conjunctions of constraints of the form A = BUC.

Tree-width. The notion of tree-width [25] can be used as a measure of the “tree-
ness” of a conjunctive formula and often leads to polynomial results on classes
of formulas with bounded tree-width. However, although inclusion constraints in
an itree form a tree and syntactically have bounded tree-width, disjointness and
union constraints introduce dependencies between siblings of a tree. Therefore,
the overall tree-width of an itree formula is not bounded. Similarly, the result [6],
stating that monadic second-order logic queries over graph structures of bounded
tree-width are polynomial, does not seem to simplify the problem of checking en-
tailment (or satisfiability) of itrees. Indeed, there is no natural way of representing,
for example, cardinality bounds on sets in monadic second-order logic.

Constraints in program analysis. Set constraints [I[4] are incomparable to
our constraints. On the one hand, set constraints are interpreted over ground
terms and contain operations that apply a given free function symbol to each
element of the set. On the other hand, unlike our constraints, set constraints do
not support cardinality operators.

References

1. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints.
In Proceedings of Computer Science Logic 1993, 1993.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the £L£ envelope. In Proc. 19th Int.
Joint Conf. on Artificial Intelligence IJCAI-05, 2005.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications. CUP,
2003.

4. L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic
class. In Logic in Computer Science, pages 75-83, 1993.

5. D. Cantone, E. Omodeo, and A. Policriti. Set Theory for Computing. Springer,
2001.

6. B. Courcelle. The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. ITA, 26:257-286, 1992.

7. R. Dechter. Constraint Processing. Morgan-Kaufmann, 2003.

8. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1-58, 1997.

9. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More Dy-
namic Object Re-classification: FickleIl. ACM Trans. Programming Languages and
Systems, 24(2):153-191, 2002.

10. S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57-103, 1959.

11. M. Fowler. UML Distilled (Second Edition). Addison-Wesley, Reading, Mass.,
2000.

12. R. Givan and D. Mcallester. Polynomial-time computation via local inference
relations. ACM Trans. Comput. Logic, 3(4):521-541, 2002.

13

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Polynomial Constraints for Sets with Cardinality Bounds 273

E. Gradel. Domino games with an application to the complexity of boolean algebras
with bounded quantifier alternations. In STACS, pages 98-107, 1988.

D. Jackson. Software Abstractions: Logic, Language, & Analysis. MIT Press, 2006.
D. Kozen. Complexity of boolean algebras. Theoretical Computer Science, 10:
221-247, 1980.

V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology, February 2007.

V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Annual ACM Symp. on
Principles of Programming Languages (POPL), 2002.

V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra with Pres-
burger Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1.

V. Kuncak and M. Rinard. The first-order theory of sets with cardinality con-
straints is decidable. Technical Report 958, MIT CSAIL, July 2004.

P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data
structure consistency. In 6th Int. Conf. Verification, Model Checking and Abstract
Interpretation, 2005.

L. Loewenheim. Uber Mogligkeiten im Relativkalkiil. Math. Annalen, 76:228-251,
1915.

B. Marnette, V. Kuncak, and M. Rinard. On algorithms and complexity for sets
with cardinality constraints. Technical report, MIT CSAIL, August 2005.

F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly rec-
ognizable relations, and Spi. In SAS, pages 20-35, 2002.

P. Revesz. Quantifier-elimination for the first-order theory of boolean algebras with
linear cardinality constraints. In Proc. Advances in Databases and Information
Systems (ADBIS’04), 2004.

N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. J. Algorithms, 7(3):309-322, 1986.

J. G. Schmolze and T. A. Lipkis. Classification in the KL-ONE knowledge repre-
sentation system. In IJCAI pages 330-332, 1983.

M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82-94,
1981.

C. G. Zarba. Combining sets with cardinals. J. of Automated Reasoning, 34(1),
2005.

http://dx.doi.org/10.1007/s10817-006-9042-1

	Introduction
	Constraints on Sets and Their Graphical Representation
	Graph Representation IGRAPH for CSC
	Definition of Itrees
	Hardness of Acyclic Igraphs

	Deciding Satisfiability of Generalized Itrees in Polynomial Time
	Entailment of Quantifier-Free Formulas
	Checking Cardinality Constraints
	Checking Inclusion and Disjointness Constraints

	Testing Entailment of Itrees in Polynomial-Time
	Related Work

