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Abstract   Vertebrate cells are equipped with specialized receptors that sense the presence 
of viral nucleic acids and other conserved molecular signatures of infecting viruses. 
These sensing receptors are collectively called pattern recognition receptors (PRRs) and 
trigger the production of type I (α/β) interferons (IFNs). IFNs are secreted and establish 
a local and systemic antiviral state in responsive cells. Viruses, in turn, have evolved mul-
tiple strategies to escape the IFN system. They try to avoid PRR activation, inhibit IFN 
synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, 
or disturb the action of IFN-induced antiviral proteins. Here, we summarize current 
knowledge in light of most recent findings on the intricate interactions of viruses with 
the IFN system.    
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   1
Introduction: First Inklings of a Viral IFN Antagonist 

 The type I IFN system provides a powerful and universal intracellular defense mech-
anism against viruses. Knockout mice that are defective in IFN signaling (Muller et 
al. 1994) quickly succumb to viral infections of all sorts (Bouloy et al. 2001; Bray 
2001; Grieder and Vogel 1999; Hwang et al. 1995; Muller et al. 1994; Ryman et al. 
2000; van den Broek et al. 1995). Likewise, humans with genetic defects in inter-
feron signaling die of viral disease at an early age (Dupuis et al. 2003). 

 IFNs-α/β are synthesized by virus-infected tissue and specialized immune 
cells. After secretion into the extracellular space, these cytokines circulate in the 
body and cause susceptible cells to express potent antiviral mechanisms, thus 
limiting viral spread. Pathogenic viruses, however, have learned to manipulate 
the IFN system for their own sake. They have evolved efficient escape strategies 
allowing them to suppress IFN production, to modulate IFN signaling, and to 
block the action of antiviral effector proteins. This facet of the virus life cycle is 
only now being fully appreciated. Nevertheless, the first inklings of an anti-IFN 
activity were noticed early on, soon after the discovery of interferons by Isaacs 
and Lindenmann in 1957 (Isaacs and Lindenmann 1957). Lindenmann himself 
made the surprising observation that infection of cells with a live virus inhibited 
the subsequent induction of IFN by an inactivated virus. This phenomenon was 
called inverse interference and was presumably the first description of a viral 
IFN-suppressive function (Lindenmann 1960). Since then, great progress has 
been made in our understanding of how cells recognize viral intruders and how 
viruses manage to survive in the face of the powerful IFN system (for reviews see 
Garcia-Sastre and Biron 2006; Goodbourn et al. 2000; Haller et al. 2006). 

   2
Host Cell Recognition of Invading Viruses: 
An Enigma of Self–Nonself Discrimination 

 It has become increasingly clear that conserved molecular signatures of viruses 
serve as danger signals that are recognized by specialized receptors of the 
host cell. These receptors are collectively called pattern recognition receptors 
(PRRs) because they recognize a diverse range of conserved pathogen-associ-
ated molecular patterns (PAMPs) found in infectious disease agents. The main 
PAMP of viruses appear to be nucleic acids, such as double-stranded RNA 
(dsRNA). The cellular PRRs designed to sense viruses can be divided into the 
extracellular/endosomal toll-like receptors (TLRs) (Akira and Takeda 2004; 
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Bowie and Haga 2005) and the intracellular receptors RIG-I, MDA-5, and PKR 
(Meylan et al. 2006). Signaling through these cellular sensors activates tran-
scription of the IFN genes (Fig.  1 ). RIG-I and MDA-5 act trough the adaptor 
protein IPS-1/MAVS and the kinases TBK-1 and IKK-ε to activate the tran-
scription factor IRF-3. A parallel pathway involves the dsRNA-binding kinase 
PKR, the TRAF adaptor molecules and the NF-κB kinase IKKα/β.
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Fig. 1  Viral inhibition of IFN production. Intracellular recognition of 5′-triphos-
phorylated ssRNA or dsRNA by the intracellular receptors RIG-I, MDA-5, and 
PKR leads to activation of the transcription factors IRF-3 and NF-κB via several 
intermediate signaling factors. The kinases TBK-1 and IKKε phosphorylate and 
activate IRF-3. NF-κB is mainly activated by the PKR pathway. Examples of viral 
IFN antagonists interfering with different steps in the IFN induction pathways are 
shown (see text for details) 
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 Until very recently, it was assumed that the only molecule that clearly distin-
guishes viruses from their host (i.e., self vs nonself) is dsRNA, which would act 
as a danger signal capable of activating the IFN system. This concept was sup-
ported by data showing that many RNA and DNA viruses express proteins that 
bind this key molecule to avoid both IFN induction and activation of dsRNA-
dependent antiviral enzymes (Jacobs et al. 1998; Langland et al. 2006). Good 
examples are the NS1 protein of influenza A virus (Garcia-Sastre 2001 1998; Lu 
et al. 1995; Min and Krug 2006), the E3L protein of poxviruses (Hornemann 
et al. 2003; Xiang et al. 2002), the VP35 protein of Ebola virus (Cardenas et 
al. 2006; Hartman et al. 2006), the sigma3 protein of reoviruses (Jacobs and 
Langland 1998), and the US11 protein of herpes simplex virus (Mohr 2004; 
Poppers et al. 2000). It came therefore as a surprise when it was realized that 
some viruses do not produce detectable amounts of dsRNA at all (Weber et al. 
2006). This unexpected finding indicated that cells must be able to sense other 
viral molecules important for IFN induction. Indeed, the cytoplasmic recep-
tor RIG-I was subsequently found to bind to the 5′ end of certain viral ssRNA 
genomes provided they carried a 5′triphosphate group (Hornung et al. 2006; 
Pichlmair et al. 2006). Such 5′ triphosphate moieties are usually not present on 
host RNA species in the cytoplasm and appear to provide an ideal recognition 
pattern for nonself. In line with this, it was shown that the NS1 of influenza 
A virus can bind ssRNA as well, and is able to form complexes with RIG-I 
(Mibayashi et al. 2006; Pichlmair et al. 2006). 

   3
Viral Subversion of Host Cell Sensors and IFN Triggering: 
New Approaches 

 To subvert innate immunity, many viruses interfere with one or several steps in 
the IFN induction pathway. Figure 1 shows examples of viral antagonists that 
work at different levels of the signaling pathway. As mentioned above, the dsRNA-
binding NS1 protein of influenza A virus binds to both dsRNA and ssRNA pre-
sumably by recognizing inter- or intramolecular dsRNA regions. Importantly, 
NS1 also associates with RIG-I in infected cells and seems to impair its signaling 
function (Mibayashi et al. 2006; Pichlmair et al. 2006). In contrast, the V protein 
of paramyxovirus SV5 has no apparent RNA-binding activity. It inhibits IFN 
induction by targeting the RIG-I-related RNA sensor MDA-5 (Andrejeva et al. 
2004; Childs et al. 2006). Next in line is the adaptor protein IPS-1/MAVS, which 
connects the RNA sensors RIG-I and MDA5 with the IRF-3 kinases TBK-1/IKK-
ε. It is specifically cleaved by the NS3-4A protease of hepatitis C virus (HCV) 
and additional flaviviruses (Chen et al. 2007; Lin et al. 2006; Meylan et al. 2005) 
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(see also chapter by M. Gale, this volume). Activation of IRF-3 by TBK-1 is pre-
vented by the phosphoprotein P of rabies virus (Brzozka et al. 2005) and the G1 
glycoprotein of the hantavirus NY-1 (Alff et al. 2006). IRF-3 itself is degraded 
by the NPro proteins of pestiviruses such as classical swine fever virus and of 
bovine viral diarrhea virus (Bauhofer et al. 2005; La Rocca et al. 2005; Rug-
gli et al. 2005) via the proteasomal pathway (Bauhofer et al. 2007; Hilton et 
al. 2006). Also, the E6 protein of human papilloma virus 16 binds and inacti-
vates IRF-3 (Ronco et al. 1998). A sophisticated strategy to block IRF-3 is used 
by certain herpesviruses. Human herpes virus 8 (HHV-8), the causative agent 
of Kaposi sarcoma, expresses several IRF homologs, termed vIRFs, which exert 
a dominant-negative effect (Burysek et al. 1999a, 1999b; Fuld et al. 2006; Li et al. 
1998; Lubyova et al. 2004; Lubyova and Pitha 2000; Zimring et al. 1998). 

 While these IFN subversion strategies show a degree of specificity and suggest 
an intimate co-evolution of viruses and their immunocompetent hosts, other 
and more basic mechanisms are also exploited by diverse viruses. For example, 
viruses with a lytic life cycle can afford to target the basic cellular transcrip-
tion machinery and suppress IFN gene expression through a general shutoff of 
host gene transcription. For example, the nonstructural NSs proteins of bunya-
viruses interfere with the basic cellular transcription machinery (Billecocq et al. 
2004; Le May et al. 2004; Thomas et al. 2004). Although this strategy appears to 
be nonspecific, in vivo experiments with Rift Valley Fever virus (RVFV), Punta 
Toro virus, and Bunyamwera virus clearly demonstrated that the biological pur-
pose of this broad-band shut-off is to inhibit IFN synthesis (Bouloy et al. 2001; 
Perrone et al. 2007; Weber et al. 2002). The matrix (M) protein of vesicular sto-
matitis virus (VSV) is also a potent host cell shutoff factor that inhibits basal 
transcription (Yuan et al. 1998), impairs nuclear-cytoplasmic transport of RNAs 
and proteins (Her et al. 1997), and inactivates translation factors (Connor and 
Lyles 2002). As in the case of bunyavirus NSs, the biological significance of 
M-mediated shutoff is to suppress IFN induction upon VSV infection (Ferran and 
Lucas-Lenard 1997; Stojdl et al. 2003). Likewise, proteinases of picornaviruses 
(e.g., foot and mouth disease virus, Theiler’s virus, poliovirus) and pestiviruses 
(e.g., Classical Swine fever virus) cause a shutoff of the host cell metabolism to 
interfere with the IFN response (de Los Santos et al. 2006; Delhaye et al. 2004; 
Lyles 2000; Ruggli et al. 2003, 2005; van Pesch et al. 2001). 

 Finally, some viruses seem to use a stealth approach: they attempt to go unde-
tected by the sensing machinery of the cell by either disguising or invading and 
replicating in hidden cellular compartments. SARS coronavirus and other mem-
bers of the coronavirus family do not induce IFN in certain cell types (Cervantes-
Barragan et al. 2006; Spiegel et al. 2005; Zhou and Perlman 2007) and are suspected 
to use such trickery (Stertz et al. 2007). In addition, SARS coronavirus expresses 
several proteins inhibiting IRF-3 and STAT1 (Kopecky-Bromberg et al. 2006). 
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   4
Viral Downregulation of IFN Signaling: A Top-Down Strategy 

 IFN-β and the various IFN-α subspecies bind to and activate a common type I 
IFN receptor (IFNAR), which signals to the nucleus through the so-called JAK-
STAT pathway. This pathway is well characterized (Levy and Darnell 2002) and 
will not be described here in detail. It should be noted, however, that IFN sig-
naling is highly regulated by cellular factors to avoid overstimulation of the sys-
tem and keep a physiological balance. Negative feedback regulation is mainly 
mediated by IFN-induced members of the suppressor of the cytokine signaling 
protein (SOCS) family and the protein inhibitor of the activated STAT (PIAS) 
family. Essentially, SOCS members inhibit JAK tyrosine kinase activity, while 
PIAS members work as small ubiquitin-like modifier (SUMO) E3 ligases and 
inhibit transcriptional activity of activated STAT in the nucleus. 

 It has become increasingly clear that the IFN signal transduction pathway 
is also targeted by numerous viruses (Fig.  2 ). Different approaches are used by 
different viruses according to their genetic capabilities. 

 A seemingly simple and highly preventive strategy is used by vaccinia and 
other poxviruses. They express soluble IFN-binding proteins to neutralize 
secreted IFN molecules (Alcami and Smith 1995; Alcami et al. 2000; Puehler 
et al. 1998; Symons et al. 1995). These so-called viroceptors prevent the estab-
lishment of an antiviral state as well as the autocrine IFN amplification loop, 
which normally leads to increased IFN production. 

 Most viruses cannot afford the luxury of encoding viroceptors. Instead they 
have evolved multifunctional proteins that specifically target select compo-
nents of the IFN signaling cascade. In addition, some viruses exploit the cel-
lular feedback loop to achieve the same result. A large number of viral proteins 
with anti-IFN properties have been described in the past few years, and we can 
discuss here only a few examples. 

 Members of the paramyxovirus family express up to three IFN-antagonistic 
proteins from the P gene (named P, C, and V) that interfere with JAK-STAT 
function. Depending on viral origin, these IFN antagonists act either by inhib-
iting the JAK kinases or by binding the STAT proteins, thereby sequestering 
them in high molecular mass complexes or inducing their proteasomal deg-
radation (Andrejeva et al. 2002; Garcin et al. 2002; Gotoh et al. 2003; Nanda 
and Baron 2006; Palosaari et al. 2003; Parisien et al. 2001; Park et al. 2003; 
Rodriguez et al. 2003; Shaw et al. 2004, 2005; Takeuchi et al. 2001; Ulane et al. 
2003; Yokota et al. 2003). The P protein of rabies virus (a rhabdovirus) binds to 
tyrosine-phosphorylated STAT1 and STAT2 and retains the activated transcrip-
tion factors in the cytoplasm, thereby preventing STAT-dependent expression of 
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IFN-regulated genes (Brzozka et al. 2006). Interestingly, the paramyxoviral V 
protein as well as the rabies virus P protein have a dual anti-IFN function: 
they block both IFN induction (see above) and STAT signaling. Ebola virus, 
by contrast, uses a different protein, VP24, to block nuclear import of STAT by 
interacting with the transporter protein karyopherin alpha1 (Reid et al. 2006). 
STAT signaling is also disturbed by viruses causing persistent infections, such 
as HCV (François et al. 2000; Heim et al. 1999), herpes simplex virus (HSV) 
(Chee and Roizman 2004; Yokota et al. 2004), HHV-8 (Fuld et al. 2006), or 
cytomegalovirus (Khan et al. 2004; Zimmermann et al. 2005). 

 As mentioned above, some viruses exploit the cellular feedback loop to 
inhibit IFN signaling. HSV type 1 (HSV-1) induces SOCS-3 to downregulate 
JAK and STAT phosphorylation (Yokota et al. 2004). The core protein of HCV 
also appears to activate SOCS-3 (Bode et al. 2003), while the virulence factor 
NSs of RVFV activates SOCS-1 to suppress IFN action (M. Bouloy, personal 
communication). Again, NSs seems to have a dual function since it also inhibits 
IFN production by blocking IFN gene transcription (Billecocq et al. 2004). 
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Fig. 2  Viral inhibition of IFN action. IFN-α and IFN-β bind to the type I IFN recep-
tor ( IFNAR ) and activate the expression of numerous IFN-stimulated genes (ISGs) 
via the JAK/STAT pathway. Most viral antagonists described so far interfere on the 
level of either the JAK/TYK kinases or the STATs. Some also inhibit the activation 
and/or function of IFN-induced effector proteins (see text for details) 
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   5
Viral Inhibition of IFN Effector Proteins: A Testimony of Importance 

 An efficient way to escape the IFN response is to directly inhibit the specific 
antiviral proteins that mediate the antiviral state. The targeting of IFN-induced 
proteins by viral counterplayers is a telling case for the importance of these 
effector molecules in antiviral defense and virus–host evolution. 

 To date, the best studied antiviral pathways are the protein kinase R (PKR) 
system (Garcia et al. 2006; Williams 1999), the 2-5 OAS/RNaseL system (Silverman
1994), and the Mx system (Haller and Kochs 2002). Their importance for host 
survival following viral infections has been amply demonstrated (Arnheiter 
et al. 1996; Hefti et al. 1999; Zhou et al. 1999). Additional proteins with known 
 antiviral activities are P56 (Guo et al. 2000; Hui et al. 2003), ISG20 (Espert et al. 
2003), promyelocytic leukemia protein (PML) (Regad et al. 2001), guanylate-
binding protein 1 (GBP-1) (Anderson et al. 1999), and RNA-specific adenosine 
deaminase 1 (ADAR1) (Samuel 2001). Mx protein expression is tightly con-
trolled by type I IFNs, making Mx gene expression a useful marker for IFN 
action in clinical settings (Antonelli et al. 1999; Roers et al. 1994). In contrast, 
PKR and 2-5 OAS are constitutively expressed in a latent, inactive form in 
normal cells. Their expression is transcriptionally upregulated in IFN-treated 
cells. Importantly, these two enzymes need to be activated by viral dsRNA. This 
requirement makes them vulnerable to IFN antagonists found in many viruses. 
Indeed, viruses endowed with the capacity to sequester dsRNA by virtue of 
viral RNA-binding proteins are capable of preventing activation of PKR or the 
2-5 OAS/RNaseL system (Antonelli et al. 1999; Roers et al. 1994; Weber et al. 
2004). An alternative strategy used by several viruses is to encode small RNAs 
that compete with dsRNA for binding to PKR, thereby preventing activation. 
This is the case for adenoviruses (Mathews and Shenk 1991), HCV (Vyas 
et al. 2003), Epstein-Barr virus (EBV) (Elia et al. 1996), and HIV-1 (Gunnery 
et al. 1990). Some viruses express proteins that either directly bind to or oth-
erwise inactivate PKR. For example, the γ34.5 protein of HSV-1 triggers the 
dephosphorylation of eIF-2α, thus reverting the translational block established 
by PKR (He et al. 1997). The E2 protein of HCV acts as pseudosubstrate for 
PKR (Taylor et al. 1999), as does the Tat protein of HIV-1 (Roy et al. 1990) 
or the K3L protein of vaccinia virus (Davies et al. 1992). Interestingly, FLUAV 
exploits a cellular pathway to block PKR in that it activates p58 IPK , a cellular 
inhibitor of PKR (Lee et al. 1990) and NS1 to block the 2-5 OAS/RNaseL sys-
tem (Li et al. 2006; Min and Krug 2006). Poliovirus induces the degradation of 
PKR (Black et al. 1993). Many viruses also block the RNaseL pathway, either 
by expressing dsRNA-binding proteins (see above), or by other, more direct 
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means. Encephalomyocarditis virus as well as HIV-1 induce the synthesis of 
RLI, a cellular RNaseL inhibitor (Martinand et al. 1998, 1999). Infection with 
HSV-1 and HSV-2 activates the synthesis of 2′-5′-oligoadenylate derivatives, 
which bind and prevent RNaseL activation (Cayley et al. 1984). The antiviral 
effect of IFN is inhibited in cells infected with RSV (Atreya and Kulkarni 1999; 
Young et al. 2000), an effect most probably mediated by the viral NS1 and the 
NS2 proteins (Schlender et al. 2000; Spann et al. 2004; Wright et al. 2006). 

 Certain viruses induce the disruption of PML nuclear bodies (also called 
ND10) by proteasome-dependent degradation of PML and Sp100 (Moller and 
Schmitz 2003). In HSV-1 infected cells, viral ICP0 accumulates in ND10 and 
induces the degradation of PML and Sp100, an activity that requires the E3 
ligase activity of ICP0 (Boutell et al. 2002; Van Sant et al. 2001). Similar disrup-
tions of ND10 were observed in cells infected with CMV, EBV, HPV, and adeno-
viruses (Muller and Dejean 1999). It is conceivable that viruses disassemble 
these nuclear structures to get rid of antiviral components, but sufficient data 
supporting this view are not yet available. 

   6
The IFN Response Circuit: Inducing and Suppressing Amplification Loops 

 When considering the IFN-inducing and -suppressing activities of infecting 
viruses, it is important to keep in mind that the IFN response is generated in a 
cascade-like manner. As shown in Fig.  3 , viral replication and genome amplifi-
cation leads to accumulation of viral nucleic acids and other components that 
are sensed as danger signals or PAMPs. They activate the IFN induction path-
way (left part of Fig. 3) via cellular sensors (RIG-I, MDA-5), adaptors (IPS-1/
MAVS), protein kinases (TBK-1, IKK-ε), and transcription factors of the IFN 
regulatory factor (IRF) family (Honda and Taniguchi 2006). IFN gene expres-
sion depends on the basic cellular transcription machinery composed of the 
cellular RNA polymerase II (RNAPII) and essential co-factors, such as com-
ponents of the transcription factor IIH (TFIIH). Secreted IFNs bind to their 
cognate receptors and activate the JAK-STAT signaling pathway (right part of 
Fig. 3), which induces the antiviral effector molecules. Most components of the 
IFN induction and signaling pathways are themselves IFN-inducible, represent-
ing a positive amplification loop. During viral replication, however, a number 
of viral IFN antagonists are produced (center part of Fig. 3) and interfere with 
the IFN response circuit. It is not unusual that a given virus displays more than 
one IFN-antagonistic protein and targets different parts of the IFN response 
pathway. Also, a single viral protein may inhibit quite different components of 
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the IFN induction and signaling cascade. Thus, viral dsRNA-binding proteins 
have the advantage of blocking both IFN production and action. Besides, the 
dsRNA- binding NS1 protein of influenza A virus has additional functions and 
impairs also the post-transcriptional processing and nuclear export of cellular 
pre-mRNAs (Chen et al. 1999; Fortes et al. 1994; Kim et al. 2002; Li et al. 2001; 
Noah et al. 2003). Since the IFN response is generated in a cascade-like manner, 
viral proteins blocking one component in this circuit also affect distant signal-
ing or effector molecules, thereby amplifying the inhibitory effect. For example, 
JAK-STAT inhibitors suppress not only the production of antiviral proteins, 
but also the expression of RIG-I, MDA-5, IPS-1/MAVS, and IRFs, which are all 
IFN-inducible proteins. As a consequence, a negative amplification loop is pro-
duced, which further helps the virus to suppress the IFN system as a whole. 

Fig. 3  Induction and suppression of the IFN response circuit. Viral gene products 
interfere with the IFN response circuit in a negative amplification loop, resulting 
in a balance between virus-promoting and virus-inhibiting factors. (see text for 
details). (Adapted from Haller et al. 2006, with permission)  
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   7
Concluding Remarks 

 Viruses are able to negatively influence the whole spectrum of the IFN response, 
often affecting different parts of the IFN circuit at the same time. The interplay 
between viruses and the IFN system, as described here, most likely results from 
an evolutionary race between the two genetic systems. The race is ongoing, as 
emerging viruses attempt transmission across species to new hosts. This is best 
illustrated by recent outbreaks of SARS coronavirus or the constant threat of 
avian influenza A viruses to invade the human population. Our present knowl-
edge of the IFN system and viral countermeasures is still limited. Future research 
should provide better insight into the intricate interplay between viruses and 
the innate immune defenses of the host. This knowledge is important not only 
for a better understanding of viral pathogenesis, but also for designing novel 
vaccination strategies and therapeutic approaches.   
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