
Multi-language Synchronization

Robert Ennals and David Gay

Intel Research Berkeley,
2150 Shattuck Avenue, Berkeley,

CA 94704, USA
robert.ennals@intel.com
david.e.gay@intel.com

Abstract. We propose multi-language synchronization, a novel approach
to the problem of migrating code from a legacy language (such as C) to a
new language. We maintain two parallel versions of every source file, one
in the legacy language, and one in the new language. Both of these files
are fully editable, and the two files are kept automatically in sync so that
they have the same semantic meaning and, where possible, have the same
comments and layout.

We propose non-deterministic language translation as a means to im-
plement multi-language synchronization. If a file is modified in language
A, we produce a new version in language B by translating the file into a
non-deterministic description of many ways that it could be encoded in
language B and then choosing the version that is closest to the old file
in language B.

To demonstrate the feasibility of this approach, we have implemented
a translator that can synchronize files written in a straw-man language,
Jekyll, with files written in C. Jekyll is a high level functional program-
ming language that has many of the features found in modern program-
ming languages.

1 Introduction

The programming language community has produced many programming lan-
guages that improve on legacy languages such as C in useful ways. They have
produced languages that are easier to use, easier to understand, safer, more
portable, more reusable, etc. But, despite all these advantages, a large propor-
tion of important software projects continue to use legacy languages.

Why is this? Prior work suggests that one of the principal reasons why pro-
grammers continue to use legacy languages is that they have built up such a
strong ecosystem around them that the switching costs associated with moving
to a new language are prohibitive [28,17]. In particular:

– Much software is already written in legacy languages.
– Many libraries are written in legacy languages.
– Many programmers only understand legacy languages.
– Many tools only understand legacy languages.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 475–489, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

476 R. Ennals and D. Gay

Fig. 1. JT keeps the Jekyll and C versions of a file synchronized

– Developers are wary of trusting a language that might not be maintained in
10 years time.

– For existing projects, developers are unwilling to port large code bases to
new languages, both because of the effort involved and the risk of introducing
new bugs.

Historically, one way that new languages have achieved success is by having
some degree of compatibility with an existing language, allowing them to exploit
its ecosystem (e.g. C++ [27] and Objective C [24], which are supersets of C). In
this paper, we propose a novel way for a new language to exploit the ecosystem of
legacy languages such as C. Our approach is to maintain two parallel versions of
each source file, one in the legacy language and one in the new language. Both of
these files are human readable, un-annotated, and fully editable. A synchronizer
program propagates updates between the two files, ensuring that they remain
semantically equivalent, and, as much as possible, have the same comments and
layout (Figure 1). We call this technique multi-language synchronization.

The hope is that, by providing an editable version of a file in the legacy lan-
guage, it becomes easier for a project to adopt a new language, since greater
use can be made of the ecosystem of the legacy language. In particular, pro-
grammers who do not know the new language can edit the legacy file, legacy
language tools can be applied to the legacy file, legacy programs can transition
to a new language without having to abandon the legacy language, and if the
new language ceases to be maintained development can fall back to the legacy
language. When legacy programmers and new-language programmers work on
the same program, edits made by one group can be seen as minimal edits by the
other group - preserving language-specific structure and layout.

While the task of translating between two languages without losing language-
specific information might seem daunting, we show that it can be done using
non-deterministic language translation. To translate a file from language A to
language B, we produce a description of many encodings of the file in language B,
and then select the version that is closest to the old file in language B (Section 3).

To demonstrate the feasibility of multi-language synchronization, we have im-
plemented a translator, JT, which can synchronize files written in C with files
written in a new language, called Jekyll. The design of Jekyll is not a goal in
itself; rather it is intended to show that multi-language translation is possible
between two fairly different languages: Jekyll is a modern functional program-
ming language which has many of the features present in languages such as

Multi-language Synchronization 477

Haskell [25], ML [21], and Cyclone [15], including generic types, lambda expres-
sions, pattern matching, algebraic datatypes, and type classes. Jekyll also has all
of the features of C, although potentially unsafe features such as pointer arith-
metic require use of a explicit unsafe keyword in order to avoid a warning (in
common with C# [5]). A more complete description of Jekyll can be found in a
companion tech report [8]; JT is available on SourceForge at:

http://sourceforge.net/projects/jekyllc

The main contributions of this paper are the concept of multi-language syn-
chronization, presented in more detail in Section 2, and the algorithms and
techniques that make multi-language synchronization possible (Section 3). In
Section 4 we present a preliminary evaluation of multi-language synchronization
based on our experiences with JT. This evaluation shows that multi-language
synchronization does work in practice. In the future, we hope to conduct a full
evaluation based on a realistic successor to C used on a large-scale software
project, as part of the Ivy project [2]. We discuss related work in Section 5 and
conclude in Section 6.

2 Multi-language Synchronization

We start by outlining the basic model for, and usability requirements on, multi-
language synchronization (Section 2.1), followed by a discussion of the require-
ments on the languages being translated (Section 2.2), For concreteness, in this
section and the rest of the paper, we discuss multi-language synchronization in
terms of C, Jekyll and JT. However, except when referring to language-specific
features, our comments apply to multi-language synchronization in general.

2.1 Model and Usability Requirements

Our basic model for multi-language synchronization, shown earlier in Figure 1, is
that at all times each source file S exists in C (SC) and Jekyll forms (SJ). After
a programmer edits the C file XC, the system regenerates (“synchronizes”) the
corresponding Jekyll file XJ, based on the new contents of the C file and the
old contents of the Jekyll file; edits to Jekyll files are handled in an analogous
fashion. This regeneration is expected to happen frequently (e.g., after every
successful build or before every commit to a source-code control system).

It is of course also possible to translate a C file to Jekyll without any previous
Jekyll version (e.g., when importing an existing project). However, the presence
of a previous version allows for a better translation preserving the use of Jekyll-
specific features not explicitly present in the C version of the source code, as
discussed in Section 3 and shown in the examples of Section 4.

Multi-language synchronization is an inexact science. A C file generated from
a Jekyll file is typically not as readable as a C file written by a C programmer,
and there are limits on the degree to which a C programmer can edit C code
that represents a higher-level Jekyll feature before JT is unable to produce a
good corresponding update to the Jekyll file.

http://sourceforge.net/projects/jekyllc

478 R. Ennals and D. Gay

The goal however is not to be perfect, but to be good enough to be useful. In
particular, the translation should be good enough that a C programmer unfamil-
iar with Jekyll would find it easier to edit the C file than to edit the Jekyll file,
and a developer would find it easier to use an existing C tool on the C file than
to work without that tool using the Jekyll file. More generally, the translation
has the following goals:

– Semantics are preserved: C code translated into Jekyll has unchanged
behavior, and vice-versa.

– Edits are translated naturally: The result of making a change to a C
file and then translating it to Jekyll is close to the result of translating the
original C file to Jekyll and logically making the same change, and vice-versa.

– C programmers can understand C code produced by JT: Gener-
ated C code is readable, fully commented, and does not contain additional
annotations.

– JT can understand code produced by C programmers: JT is suf-
ficiently tolerant of edits to C code encoding Jekyll features that it can
produce reasonable Jekyll updates for a large proportion of C updates.

– No special infrastructure needed: JT works from the text files contain-
ing the C and Jekyll source code. It does not require, for example, that all
code modifications be performed by a special editor. We do however use, as
outlined above, the previous version of the target of the translation.

Note that some of these goals may be in conflict: for instance, as we discuss
in more detail in Section 3.7, the desire to produce a translation from C which
preserves the use of some Jekyll feature — in support of the natural edit trans-
lation goal — may lead JT to change the semantics during translation. Such
behavior is acceptable in a translator as long as it always warns the programmer
in an appropriate way, and only does it in well-justified cases (e.g., JT believes
the code it was translating was buggy).

2.2 Language Requirements

We do not believe that multi-language synchronization between arbitrary pairs
of languages is practical. We do believe the following properties of Jekyll and C
(especially the first two) are what makes JT practical, and suggest that these
should serve as guidelines in the design of other multi-language translation sys-
tems:

– All C features can be translated reasonably easily into Jekyll. In
particular, Jekyll supports all unsafe features of C (although their use is
discouraged, and warnings are produced unless the unsafe keyword is used).

– All Jekyll features can be translated into reasonably readable C. In
particular, Jekyll does not support lazy evaluation or tail recursion elimina-
tion, and several features (e.g., the implementation of closures) are designed
with a C encoding in mind.

– Jekyll uses the same data-layout as C. This is particularly important
in a language such as C where low-level features expose the data layout.

Multi-language Synchronization 479

3 Non-deterministic Language Translation

One approach to maintaining two consistent versions of the same file in different
languages would be to apply the actions performed on one file (e.g., rename this
function, insert this code) to the other, in a fashion similar to database view up-
dates [14,6]. However, this approach is not practical as editors do not record such
information, and deducing what actions have been performed can be difficult.

Instead, our approach to implementing multi-language synchronization is non-
deterministic language translation. A modified C file can be encoded into Jekyll
in many different ways. Rather than picking one of these encodings, JT translates
a C file into a non-deterministic description of many of the ways that the file
might be encoded as Jekyll. JT then resolves this non-determinism by attempting
to choose the Jekyll file that is the closest textual match to the previous Jekyll
version of the file (Figure 2). Similarly, there are many different ways that a
Jekyll file might be translated to C. JT attempts to choose the decoding that
most closely resembles the previous C file.

This non-deterministic approach avoids the need for JT to enforce any canon-
ical encoding of Jekyll into C, and thus allows JT to be reasonably tolerant of
edits to C code while still ensuring that round-tripping through Jekyll is lossless.
The non-deterministic approach also allows the implementation to be simple and
elegant. The translator need merely describe the various ways in which C and
Jekyll can be encoded into each other, and the details of how to choose the
correct encoding are left to a generic matching algorithm. There is no need for
special-purpose code to recognize particular kinds of updates or preserve partic-
ular kinds of information, and new encodings and new language features can be
added easily.

Figure 2 illustrates the structure of the translation system used by JT. In the
following sections, we will discuss this translation process in more detail.

3.1 Non-deterministic Abstract Syntax Trees (ASTs)

When an AST is translated from one language into another, some of the nodes
in the target syntax tree may be special choice nodes that represent a non-
deterministic choice of encoding/decoding. A choice node takes three arguments:

Fig. 2. The structure of the JT translation system (other direction is the same)

480 R. Ennals and D. Gay

– The decision variable v (true or false).
– The options at and af are the different nodes that the choice node can

resolve to. If v is true then the node resolves to at, otherwise it resolves to
af . Although only two options are specified, an arbitrarily long list of options
can be encoded using several nested choice nodes.
Different alternatives will often have substantial similarities. To avoid blow-
up in the size of our AST, different choices can share sub-nodes.

Decision variables allow specification of dependencies between choices made
in different parts of the tree. This is useful since a single encoding/decoding
decision may have effects in a number of places throughout the file. For example
a C function that is never called directly and has its address taken once could be
decoded either as a Jekyll function or as a lambda expression. Since a decision
needs to be made, a decision variable is allocated. This variable will be true if
the function is a lambda expression and false if the C function is just a Jekyll
function. This decision variable is then used to parameterize each point in the
AST at which this decision would cause the Jekyll program to be different,
including the function definition and the function use.

The af option is the default option, and is the option that the select closest
stage (Figure 2) will choose if neither of the two options is a close match to the
previous file. The default option should always be the most conservative choice.
For example, when decoding C as Jekyll, the default is to produce Jekyll code
that is identical to the original C code. Amongst other things, the default option
will typically be used when new code is added to a file, or no current version
exists in the other language.

The transform phase (Figure 2) is written directly as ML code. A series of
functions use pattern matching to find AST features of interest and then trans-
late them into the equivalent features in the other language, using choice nodes
when there are several ways that the feature can be translated. Unlike some
other bi-directional translation systems [10,16], the two translation directions
are written separately, rather than being generated from a common description.
We leave a combined approach for future work.

3.2 Encoding Arbitrary Elements

Sometimes, when translating C to Jekyll, it is necessary to encode something
like “an arbitrary type” or “an arbitrary name”. For example, when translating
a C type to a Jekyll type, the Jekyll type may have arbitrary additional type
parameters that were not present in the C type.

Given the data type given in Section 3.1 it is not obvious how to encode
something like “an arbitrary type” or “an arbitrary expression”. If we were to
encode all possible types or expressions using choice nodes then we would have
to build an infinite tree, significantly complicating the design of the translation
system.

To avoid this problem, the core translation system mines the previous version
of the file for instances of particular syntax elements. If the translate stage wants

Multi-language Synchronization 481

to encode “an arbitrary type” then rather than describing all types possible in
the language, it lists all the types present in the previous version.1

At first it might seem that this technique would artificially restrict the choice
of types and prevent the select closest stage from selecting the encoding that most
closely matches the previous version. However, since the select closest stage aims
to minimize the textual distance from the previous version, it will always choose
types that appear in the previous version in preference to types that do not.
Thus there is no need to list types that do not appear in the previous version,
and no need for JT to support infinite ASTs. This approach would need to be
changed if non-determinism was resolved based on a smarter metric than textual
difference — for example if type correctness was taken into account (Section 3.4).

3.3 Non-deterministic Token Sequences

Rather than resolving non-determinism directly at the AST level, we instead
translate the AST into a non-deterministic token sequence and resolve the
non-determinism at the token level. Alternatively we could resolving the
non-determinism directly at the tree level, however, we leave such approaches
for future work.

This non-deterministic token sequence preserves all of the non-determinism
that was present in the non-deterministic AST, but reduces the abstraction level
down to a sequence of strings, described as follows:

t ← v ? tf : tt non-deterministic choice
| t0 • t1 | “s” | ∅ sequence, literal, empty

The pretty print stage produces a non-deterministic token sequence by ap-
plying a pretty printing function to each node in the non-deterministic AST. A
choice node in the AST is translated into a choice node in the token sequence
with the same decision var and with choices that are produced by pretty printing
the choices from the AST node. All other nodes in the AST are pretty printed by
sequencing literal tokens together with token sequences from subtrees. As with
ASTs, non-deterministic token sequences use sharing to avoid blow-up.

3.4 Distance Between Two Files

The select closest stage resolves a non-deterministic token sequence t into a
deterministic token sequence t′. In so doing it attempts to minimize the distance
between t′ and previous tokens from the previous version of the file (Figure 2).

The distance metric we have chosen is the number of distinct spans needed
to construct the target file from the previous file, where a span is defined to be
either a single token, or a consecutive sequence of tokens from the previous file.
For example, the distance from “int x = 3; int j” to “int j = 3; int z”
is 3, since the new string can be constructed from the following three spans:
1 The actual implementation is a little cleverer than this, leaving some of the list

expansion until match time.

482 R. Ennals and D. Gay

(i) “int j”, (ii) “= 3; int”, (iii) “z”. We believe this metric fits a programmers
intuitive model of what it means for files to be similar.

This metric is different from the edit distance. Edit distance only considers
insertion, deletion, and substitution of a single character; it does not consider
copyings and reorderings of large blocks of text. If the order of two functions
was swapped, then the edit distance would be twice the number of characters in
the smaller of the two functions, while the number of spans would be 2.

It is likely that better results could be achieved with a smarter metric. For
example a metric that favored Jekyll files that type checked (in the style of
Mycroft’s type-based decompilation [22]), or a metric that biased against using
the same span more than once. We leave such ideas for future work.

3.5 Optimal Translation Is NP-Hard

Ideally, we would like the select closest stage to guarantee that it resolves a non-
deterministic token sequence to the token sequence that is closest to the previous
token sequence — we refer to this problem as optimal matching. Unfortunately,
optimal matching turns out to be NP-hard. This result is not surprising, given
a similar result is known for synchronizing database views [3].

We can demonstrate that optimal matching is NP-hard by showing that it
takes only a polynomial number of steps to translate any problem in 3-SAT
(known to be NP-hard) into an optimal-matching problem. The encoding [[A]] of
a 3-SAT expression A as a non-deterministic token sequence is quite simple:

[[v]] = v ? “true” : “false” [[¬v]] = v ? “false” : “true”
[[A ∧ A′]] = [[A]] • [[A′]] [[A ∨ A′]] = x ? [[A]] : [[A′]] where x is fresh

The previous file is an infinite sequence of “true” tokens. Provided the 3-SAT
formula A has more than one disjunction2, the formula is satisfiable if and only
if the optimal matching of [[A]] has distance of 1 (a single span of “true” tokens).

Fortunately, like many NP-hard problems, we have found that it is possible
to produce an approximate algorithm that behaves well in practice. Our current
algorithm is a simple greedy search that walks sequentially through the token
sequence, choosing variable assignments such as to maximize the length of the
longest matching span3. While the worst case performance of this algorithm is
still exponential, we have found that this algorithm runs in reasonable time and
produces good results on reasonable-size source files (Section 4). This is partly
an artifact of the kind of non-deterministic ASTs produced by JT, in which the
options at a choice node tend to be quite different, and partly a result of the
structure of C and Jekyll programs, which tend to have fairly little textual self-
similarity. This algorithm is only a first stab — we believe it should be possible
to produce an algorithm with a non-exponential upper bound that works even
better.

2 Since a single “false” token would also have distance 1.
3 See our tech report [8] for details.

Multi-language Synchronization 483

3.6 Synchronizing Comments and Whitespace

It is important that any comments present in one view of a file be also present in
the other file. Similarly it is important that synchronization not make gratuitous
changes to the whitespace of a file. JT divides whitespace into common and
private whitespace. Common whitespace is considered to be part of the program
representation and is carried across during translation. The other whitespace is
considered private and is inferred non-deterministically to match the previous
version of the target file.

The rules for distinguishing common and private whitespace are language-
specific. The intention is that common whitespace be used in places where com-
ments are typically placed, and private whitespace be used in cases where there
is no obvious corresponding location in the other language, or where the correct
whitespace is likely to be language-specific. A warning is generated if comments
are found in private whitespace.

3.7 Checking Correctness

Sometimes a C programmer will edit C code implementing a Jekyll feature such
that it is no longer a valid implementation of that Jekyll feature. For example JT
requires that if a C function is implementing a Jekyll lambda expression then the
first argument of that function must be the lambda expression’s environment.
If a C programmer changes the argument order then the function will no longer
be a correctly encoded lambda expression. While we could just translate the C
code to equivalent low-level Jekyll code, ignoring the Jekyll feature, it is likely
that this result is not what the programmer intended.

To deal with such cases, Jekyll will attempt to decode any code as a Jekyll
feature if it looks like the code intended to encode a Jekyll feature, even if
the code does not encode that feature correctly. Once JT has translated a C
file to a Jekyll file, it checks that the Jekyll file can be translated back to the
original C file. If it cannot then the programmer is warned that the result of the
transformation may be incorrect, and is encouraged to look at the differences
between their file and the correctly encoded C file.

4 Evaluating JT

In this section, we present a preliminary evaluation of JT. We start by showing
JT’s behavior on simple snippets of code (Section 4.1), then evaluate its use on
edits of source files from the GNU C Compiler [26] (Section 4.2). We conclude
with a discussion of the limitations of our prototype (Section 4.3).

4.1 Feature Translation

We show here how JT handles the translation between two higher-level Jekyll
features not found in C: generic types and closures. The output code is a very

484 R. Ennals and D. Gay

slightly cleaned-up version of the results of the JT tool, and is similar to real
examples we encountered when modifying GCC (Section 4.2).

Jekyll has generic types similar to those found in ML [21], Haskell [25], and
Cyclone [15]. Type variables are written as %a, rather than the more conventional
’a, to allow Jekyll files to be easily processed using the standard C preprocessor.
When generic types are translated into C, all generic type information is thrown
away. When translating back to Jekyll this information is reconstructed from
the previous file (Section 3.2). For example:

Jekyll
struct<%a> Node{
%a *element;
List<%a> tail;

};
%a* get_element(Node<%a>* x){
return x->element;

}

C
struct Node{
void *element;
List tail;

};
void* get_element(Node* x){
return x->element;

}

When translating from C to Jekyll, type parameters are chosen based purely
on textual similarity to the previous version, without regard to the meaning
of the program. This can chose incorrect type parameters if C edits introduce
previously unmentioned types that should have parameters, or make complex
changes to functions that use the same type constructor with multiple types.
It is likely that better choices would be made if JT prioritized files that type
checked.

Jekyll supports closures and lambda expressions, as found in functional pro-
gramming languages such as ML. Closures are written with syntax similar to
Smalltalk [13], with arguments separated from their body by a colon. A lambda
expression is translated into a function with an environment argument.4

By default, Jekyll uses ff, fe and ft prefixes for lambda functions, closure
environment types, and closure values, however the programmer is free to change
these names to whatever they prefer, since JT allows arbitrary names to be used
(Section 3.2).

Jekyll
int dbl(int z){
return twice(3,
{x: ret x+z;});

}

C
struct fe_dbl{
int *z;

};
int ff_dbl(struct fe_dbl *_env, int x){
return x+*(_env->z);

}
int dbl(int z){
struct fe_dbl ft = {&z};
return twice(3,(void*)&ff_dbl,&ft);

}
4 Free variables are passed by reference since they may be modified. In this case JT

could have passed z by value since ff dbl does not modify it.

Multi-language Synchronization 485

4.2 Edit Translation

To demonstrate the behavior of edits, we took the hashtab.c, hashtab.h, and
ssa.c files from the SPEC2006 version of GCC (3,070 lines total), and performed
a sequence of edits on them. For each edit, we note the language the edit was
made in (L), what the edit was and the effect it had in the other language, and
the number of lines that changed in C and Jekyll, as measured by diff5 (DC and
DJ respectively). All file versions are available in the Jekyll source distribution.

L Description DC DJ
C Remove the use of macros that Jekyll does not understand. 55 new

C Convert to Jekyll – Jekyll is a near-superset of C, so only change is
#including ”hashtab.jkh” in place of "hashtab.h"

0 2

J Make the hashtable generic and make the visitor callback a closure —
leaves the C file largely unchanged. Most differences due to callback
arguments changing order, GCC source using PTR in place of void*,
Jekyll code replacing a typedef with a literal generic type

18 40

J Update ssa.c to use lambda expressions. Generated C file is correct. 376 358
C Rename generated lambda functions. Jekyll unchanged. 22 0
C Rename functions, reorder functions, and insert and delete code – all

mapping into correct Jekyll updates
42 43

C Reorder arguments to the closure type – No longer recognized as a
closure. Reverts back to being a basic function

2 2

4.3 Where It Works, and Where It Doesn’t Work

JT has two significant limitations. First, it does not support the C preprocessor
very well. Jekyll currently uses an ad-hoc series of annotations that tell JT how
to treat particular macros (e.g., treat like a function of this type, or ignore). We
believe that the results of the Macroscope project [18] could be used to design a
better approach.

Secondly, as we saw in the last edit in Section 4.2, JT does not cope well with
some kinds of edits. In particular:

– Breaking encoding rules: Some encodings of Jekyll features into C have rules
that must be followed. For example closures must take their environment as
their first argument and features that expand to several statements require
that those statements not be re-ordered. If C edits break these rules then the
translation will either revert to the raw C, or generate non-equivalent Jekyll
code (Section 3.7). In some cases these rules could be relaxed (e.g., reordering
non-side-effecting statements), but in other cases they are necessary in order
to allow meaningful translation.

– Moving Between files: JT only looks at the current file. If code is moved
between files then the translation will revert to the defaults.

5 Less accurate than our distance metric, but something people are familiar with.

486 R. Ennals and D. Gay

– Large updates: If an update has caused many separate changes to a file then
JT will find it harder to find the correct decoding, since the new version will
correlate less well with the old version. Synchronizing often is a good idea.

However our limited personal experience is that many kinds of update work
well. In particular, any C update that does not affect code implementing a Jekyll
feature is highly likely to work correctly, since the translate stage will find few
things that look like Jekyll features and the select-closest phase will be unlikely
to find close matches to Jekyll features. Similarly, we have found that simple
transformations such as renaming variables, reordering definitions, and adding
and deleting code work reliably. Ideally, a synchronizer would be used with an
interactive tool that allowed the user to pick the correct translation in cases
where the correct result is unclear.

5 Related Work

Much previous work has looked at connections between different languages: bidi-
rectional translation between different data formats, languages that are designed
to extend C, languages that are translatable to C, and tools that preserve pro-
gram formatting while editing. As far as we are aware, no previous work has
performed bi-directional synchronization between programming languages.

5.1 Bidirectional Translation

The Harmony project [9] uses a set of tree-based combinators [10] to transform
data structures between different data representations, with the aim of allowing
easy synchronization of data between different programs and devices. BiXJ [16]
uses a similar set of combinators for XML transformation. Like JT, Harmony
and BiXJ use information from the previous file during translation. Unlike JT,
they do all matching on local subtrees rather than doing a global analysis based
on textual comparisons. While this approach works well for the domain that
these tools are designed for, it is not clear whether this approach would perform
well in the domain of programming language translation, where transformations
are complex and edits can move expressions to arbitrary positions in a program.

XSugar [1] provides bi-directional translation between XML documents and
alternative syntaxes. Unlike JT, XSugar only preserves information that is present
in both representations and otherwise normalizes documents to a canonical form.

Meertens [20] applies the concept of bi-directional translation to the world
of user interfaces. The idea here is that a user interface provides a view onto
some underlying data, and constraints are established that ensure that the user
interface remains an accurate representation of the data, even when the data
or the user interface is manipulated. This approach is constraint based, and it
is not clear whether it could be applied to something as complex as translating
between programming languages.

In the database community, there has been a lot of work on “the view update
problem”, in which one tries to translate an update to a view into an appropriate

Multi-language Synchronization 487

update to the underlying database [14,6]. As with JT, a view update is able to
see the previous version of a database when applying an update to it, and will try
to minimize the extent of the change made. Unlike JT, a view update operation
has the privilege of being able to see the exact update commands used, rather
than simply being presented with a changed file and trying to work out what
was intended.

Martin Fowler proposes the idea of a Language Workbench [11], which is an
IDE in which users write programs using multiple user-defined DSLs. In some
cases it may be possible to represent the same AST using different DSLs (e.g.,
graphical and Java representations of a GUI). As with database view updates,
the IDE translates operations rather than programs.

5.2 Inter-language Translation

Many people have implemented language translators that translate one language
into another. For example FOR C [4] translates FORTRAN to C, and p2c [12]
translates Pascal to C. While the resulting program is human-readable, there is
no means to keep the files in sync if they are modified.

5.3 Languages That Extend Other Languages

Many languages have extended C with new features. Cyclone [15], Vault [7],
C++ [27], Objective C [24] and many others all add useful new features to the
core C language. While existing C code is often valid in these languages, any use
of new features will prevent the program being a valid C program. In principle
it should be possible for us to apply the transformation techniques used by JT
to translate one of these languages to and from C.

Several authors have designed systems that use macros, templates, and nam-
ing conventions to embed extra features into C programs. CCured [23] allows a
programmer to annotate their C programs with safety annotations, which are
used by the CCured compiler, but ignored by a C compiler. FC++ [19] is a
template library that makes it easy to express common functional programming
idioms. These languages benefit from the ability to retain full C/C++ compat-
ibility without translation, but are forced to use non-optimal syntax in order to
do so — as with our encoding of Jekyll into C.

6 Conclusions

While it would be necessary to perform detailed evaluations with real program-
ming teams to determine conclusively that multi-language synchronization works
in practice, our experience so far has been very positive. Those C programmers
that we have shown JT to have been impressed by its ability to cope with
changes to code updates and have claimed that they would be able to edit C
code generated from JT.

As part of the Ivy project [2], which aims to produce a system’s programming
language to replace C, we intend to apply multi-language synchronization to Ivy

488 R. Ennals and D. Gay

and C, and use it to make modifications to large legacy systems. Ultimately, we
aim to convince external developers to use this system.

JT, the Jekyll Translator, is available on SourceForge at: http://
sourceforge.net/projects/jekyllc

Acknowledgements

The design of Jekyll has been influenced by discussions with many people.
Particular thanks must go to Michael Dales, Minos Garofalakis, Simon Pey-
ton Jones, Bill McCloskey, Greg Morrisett, Alan Mycroft, Matthew Parkin-
son, Claus Reinke, Richard Sharp, Simon Thompson, and everyone in the Kent
Theory group, Cambridge Systems Research Group, and Berkeley Ivy group.

References

1. Brabrand, C., Møller, A., and Schwartzbach, M. I. Dual syntax for XML
languages. In Proc. 10th International Workshop on Database Programming Lan-
guages, DBPL ’05 (August 2005), vol. 3774 of LNCS, Springer-Verlag, pp. 27–41.

2. Brewer, E., Condit, J., McClosky, B., and Zhou, F. Thirty years is long
enough: Getting beyond C. In Proceedings of the USENIX workshop on Hot topics
in Operating Systems (2005).

3. Buneman, P., Khanna, S., and Tan, W. C. On propagation of deletions and
annotations through views. In PODS’02 (2002).

4. FOR C: Converts FORTRAN into readable, maintainable C code. http://www.
cobalt-blue.com.

5. C# Language Specification. ECMA, June 2005.
6. Dayal, U., and Bernstein, P. A. On the correct translation of update operations

on relational views. ACM Transactions on Database Systems 8 (Sept. 1982).
7. DeLine, R., and Fahndrich, M. Enforcing high-level protocols in low-level soft-

ware. In Proceedings of the ACM conference on Programming Language Design
and Implementation (2001).

8. Ennals, R. Dr Jekyll and Mr C. Tech. Rep. IR-TR-2005-104, Intel Research,
2005.

9. Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce, B. C., and

Schmitt, A. Exploiting schemas in data synchronization. In Database Program-
ming Languages (DBLP) (2005).

10. Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt,

A. Combinators for bi-directional tree transformations: A linguistic approach to the
view update problem. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’05) (2005).

11. Fowler, M. Language workbenches: The killer-app for domain specific languages.
http://www.martinfowler.com/articles/languageWorkbench.html, June 2005.

12. Gillespie, D. p2c. http://www.synaptics.com/people/daveg/.
13. Goldberg, A., and Robson, D. Smalltalk-80: The Language. Addison-Welsey,

1989.
14. Gottlob, G., Paolini, P., and Zicari, R. Properties and update semantics of

consistent views. ACM Transactions on Database Systems 13 (Dec. 1988).

http://sourceforge.net/projects/jekyllc
http://sourceforge.net/projects/jekyllc
http://www.cobalt-blue.com
http://www.cobalt-blue.com
http://www.martinfowler.com/articles/languageWorkbench.html

Multi-language Synchronization 489

15. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang,

Y. Cyclone: A safe dialect of C. In Proceedings of the USENIX annual technical
conference (2002).

16. Liu, D., Kakehi, K., Hu, Z., Takeichi, M., and Wang, H. A Java library for
bidirectional XML transformation. In JSSST annual conference (2005).

17. Mashey, J. R. Languages, levels, libraries, and longevity. ACM Queue 2, 9 (Dec.
2004).

18. McCloskey, B., and Brewer, E. ASTEC: A new approach to refactoring c. In
Proceedings of the 10th European Software Engineering Conference (Sept. 2005).

19. McNamara, B., and Smaragdakis, Y. Functional programming in C++. In
Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’00) (Sept. 2000).

20. Meertens, L. Designing constraint maintainers for user interaction. http://www.
kestrel.edu/home/people/meertens/, 1998.

21. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of
Standard ML (Revised). The MIT Press, 1997.

22. Mycroft, A. Type-based decompilation. Lecture Notes in Computer Science
1576 (1999).

23. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.

CCured: type-safe retrofitting of legacy software. ACM Transactions on Program-
ming Languages and Systems (2004).

24. The Objective C Programming Language. Apple, Oct. 2005.
25. Peyton Jones, S., Ed. Haskell 98 Language and Libraries. Cambridge University

Press, 2003.
26. Stallman, R. M. Using and Porting GNU CC (Version 2.0). Free Software

Foundation, Feb. 1992.
27. Stroustrup, B. The C++ Programming Language. Addison Wesley, 1997.
28. Wadler, P. Why no-one uses functional languages. SIGPLAN Notices 33 (Aug.

1998).

http://www.kestrel.edu/home/people/meertens/
http://www.kestrel.edu/home/people/meertens/

	Introduction
	Multi-language Synchronization
	Model and Usability Requirements
	Language Requirements

	Non-deterministic Language Translation
	Non-deterministic Abstract Syntax Trees (ASTs)
	Encoding Arbitrary Elements
	Non-deterministic Token Sequences
	Distance Between Two Files
	Optimal Translation Is NP-Hard
	Synchronizing Comments and Whitespace
	Checking Correctness

	Evaluating JT
	Feature Translation
	Edit Translation
	Where It Works, and Where It Doesn't Work

	Related Work
	Bidirectional Translation
	Inter-language Translation
	Languages That Extend Other Languages

	Conclusions

