CC-Pi: A Constraint-Based Language for
Specifying Service Level Agreements*

Maria Grazia Buscemi! and Ugo Montanari’

L IMT Lucca Institute for Advanced Studies, Italy
marzia.buscemi@imtlucca.it
2 Dipartimento di Informatica, University of Pisa, Italy
ugo@di.unipi.it

Abstract. Service Level Agreements are a key issue in Service Oriented Com-
puting. SLA contracts specify client requirements and service guarantees, with
emphasis on Quality of Service (cost, performance, availability, etc.). In this work
we propose a simple model of contracts for QoS and SLAs that also allows to
study mechanisms for resource allocation and for joining different SLA require-
ments. Our language combines two basic programming paradigms: name-passing
calculi and concurrent constraint programming (cc programming). Specifically,
we extend cc programming by adding synchronous communication and by
providing a treatment of names in terms of restriction and structural axioms
closer to nominal calculi than to variables with existential quantification. In the
resulting framework, SLA requirements are constraints that can be generated ei-
ther by a single party or by the synchronisation of two agents. Moreover, re-
stricting the scope of names allows for local stores of constraints, which may
become global as a consequence of synchronisations. Our approach relies on a
system of named constraints that equip classical constraints with a suitable alge-
braic structure providing a richer mechanism of constraint combination. We give
reduction-preserving translations of both cc programming and the calculus of
explicit fusions.

1 Introduction

An important aspect of web services concerns client requirements and service guaran-
tees with emphasis on Quality of Service, such as cost, performance, availability. These
are commonly referred to as Service Level Agreements. SLAs between organisations
are used in several areas of IT services, like hosting and communication services. The
terms and conditions appearing in a SLA contract can be negotiated among the con-
tracting parties prior to service execution.

In this paper we present a simple calculus, called cc-pi calculus, for modeling pro-
cesses able to specify QoS requirements and to conclude SLA contracts. The proposed
language is also equipped with mechanisms for resource allocation and for joining dif-
ferent SLA requirements. Our approach combines basic features of name-passing cal-
culi and of concurrent constraint (cc) programming.

* Research supported by the EU IST-FP6 16004 Integrated Project SENSORIA.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 18-32] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 19

Name-passing calculi, such as the pi-calculus [[7], are a key paradigm of computation
whose interaction mechanism may dynamically change the communication topology.
Since the introduction of name-passing calculi, the notion of names has been recognised
as crucial in theories for concurrency and mobility.

The name-passing calculus we start with is the pi-F calculus [19]. The pi-F cal-
culus is a variant of the pi-calculus [[7], whose synchronisation mechanism is global
and, instead of binding formal names to actual names, it yields explicit fusions, i.e.
simple constraints expressing name equalities. For example, consider two processes
u(v).P and u(x).Q, that are ready to make an output and an input on u, respectively.
The interaction between these processes results in the explicit fusion of v and x. This
fusion will also affect any further process R running in parallel: R|u(v).P|u(x).Q —
R|P|Q]|x = v. The restriction operator (x) can be used to limit the scope of a fusion,
e.g: R|(x)(u(v).Plu(x).Q) — R|(x)(P|Q|x=v).

The cc-pi calculus extends the pi-F calculus by generalising explicit fusions like x =v
to named constraints and by adding primitives for handling such constraints. While the
informal concept of constraint is widely used in a variety of different fields, a very
general, formal notion of constraint system has been introduced in the cc programming
paradigm [L13]. Actually, cc programming is a simple and powerful computing model
based on a shared store of constraints that provides partial information about possible
values that variables can take. Concurrent agents can act on this store by performing
either a tell action (for adding a constraint, if the resulting store is consistent) or
an ask action (for checking if a constraint is entailed by the store). As computation
proceeds, more and more information are accumulated, thus the store is monotonically
refined.

Of the classical cc programming paradigm we keep the ask and tell constructs, but
we extend/modify several other aspects. Maybe the most radical change is to give up
the monotonicity requirement. While non-monotonicity was already present in the so-
called linear cc programming [[14], the introduction in our calculus of a retract con-
struct, whose effect is to erase a previously told constraint, is strongly suggested by the
need of allocating a resource and of deallocating the same resource. Of course mono-
tonicity is the basis of several properties of cc programming, which thus do not hold
in our framework. However whenever retracts are forbidden, or their usage is limited,
some of the useful properties could be reinstated. We also introduce a check operation
for verifying if a constraint is consistent with the store of constraints.

Another important difference with respect to [[15] is that we adopt a different concept
of general, abstract constraint system. While the classical notion is equipped with an
operation of entailment and a predicate of consistency, being based on Dana Scott’s
information systems, we employ constraints forming c-semirings [2]. Roughly, a c-
semiring consists of a set equipped with two binary operations, the sum + and the
product X, such that + is associative, commutative and idempotent, X is associative
and commutative and x distributes over +. A c-semiring is automatically equipped
with a partial ordering a < b, which means that a is more constrained than b, or, more
interestingly, that a entails b, a = b. The sum a + b chooses the worst constraint better
than a and b, while the product a x b combines two constraints. The simplest c-semiring
consists of the booleans with V as 4 and A as x.

20 M.G. Buscemi and U. Montanari

Our c-semirings enjoy two kinds of nice properties. On the one hand they are very
stable, since cartesian products, functional spaces and powerdomains of c-semirings
are c-semirings. On the other hand c-semirings are quite adequate for modeling the so-
called soft constraints, i.e. constraints which do not return only true or false, but more
informative values instead. In fact it is easy to define c-semirings expressing fuzzy, hier-
archical, or probabilistic values. Also, optimization algorithms work on the c-semiring
consisting of the reals plus infinity with the operations of sum as x and min as +. Sev-
eral efficient algorithms defined for ordinary, crisp constraints, like local propagation or
dynamic programming, can be generalized to c-semirings.

The former kind of properties is used in the paper to model networks of constraints
for defining constraint satisfaction problems (CSPs) [[§]]. In fact, a single constraint, or
even a network of constraints, is a function which, given an assignment of the vari-
ables to some domain D, returns a boolean, or rather a value in a generic c-semiring
in the soft case. CSPs are a well-established formalism, especially studied in the ar-
tificial intelligence area, adequate to specify many kinds of real-life problems. In this
paper we do not fully explore the latter aspect of c-semirings. However we consider
it as extremely valuable and we plan to further exploit it in the future. In fact, we be-
lieve that a lot of non-functional requirements of QoS can be adequately modeled using
c-semirings.

The last, important difference with respect to [15] is that we handle variables, or
rather names, in a very different way. In ordinary cc programming, constraints involv-
ing variables are seen as relations, in the style of Tarski’s cylindrical algebras. This
interpretation is particularly visible in the axioms for hiding (written as 3) and variable
equality. Instead, in our named constraints we regard variables as ordinary names in the
pi-calculus style. More precisely, names are introduced, as for pi-calculus agents [9], by
means of permutation algebras. Operations of permutation algebras are permutations of
names. A key concept of permutation algebras is the support of a value, that specifies
the set of names such that the permutations which do not affect them do not modify
the value. Thus, equipping a c-semiring with a permutation algebra structure allows
to characterise the set of relevant, i.e. free, names of a constraint ¢ as the support of
c. Since the treatment of names is the same, we can handle constraints as processes,
making both syntax and semantics of our calculus simpler and more natural.

Besides ask, tell, retract and check there is another way in which agents can in-
teract with the constraints existing in the system. In fact, synchronization of processes
works like a global ask and tell construct. Two agents trying to perform an output
x(y) and an input x’(y') action can synchronize only if the constraint x = x is entailed
by the store. The result of the synchronization is a new constraint y =y which is told
to the store. Fusion y =y’ can modify deeply the store, depending on the actual con-
straint system. For instance it can allow two local constraints to interact, establishing a
SLA between the two partners. However, if the resulting constraint is inconsistent, the
synchronization is forbidden. It can become possible at some later time if some other
agent performs a retract action which makes the store less constrained.

The special role of fusions in the control mechanisms of our calculus requires their
presence in all constraint systems. Thus, we propose named c-semirings with name
fusions, or equalities, as the underlying data model of cc-pi calculus.

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 21

In the paper, we show the generality of our approach by proposing three examples of
named c-semirings, i.e. name equalities, Herbrand constraint systems, and soft CSPs,
and we prove that they are effectively named c-semirings. We also show how our model
can be applied in specifying and monitoring SLAs. Finally, we explore the expressive-
ness of our calculus by giving reduction-preserving translations of Pi-F and cc pro-
gramming into cc-pi.

A motivating example. Consider a service offering computing resources (e.g. units of
CPUs of a given power) and suppose the service provider and a client want to reach a
SLA. The provider Py, with N available resources and the client C,, requiring at least
n resources can be specified in our framework as follows, being max the maximum
number of resources that can be allocated to each client:

Py = (XO) (tell (X() = N).Q(XO))
O(x) = (v) (') (tell (¥ =x—v).tell (v < max).c(v).Q(x')).
Ch = (y)(tell (y > n).c(y).T.retract (y > n).tell (y =0)).

In words, Py first sets the initial number of resources to N and evolves to Q. Process
Q creates a name v representing the resources available to a client and a non-negative
name x’ counting the resources left after concluding a contract with the client; Q then
adds the constraints x' = x — v for setting the value of x’ and v < max for imposing the
bound max on v. Finally, O signs the contract, i.e. it synchronises on a channel ¢ with
a client and, if the synchronisation succeeds, Q becomes ready to accept a new request.
On the other side, C,, initially creates a local name y and places the constraint y > n.
Next, C, tries to synchronise on a public port ¢ with a server. In case of success, Cy
makes some calculation involving the obtained resources, which is modelled as a silent
action T. Then, C,, releases the allocated resources by removing the above constraint on y
(retract (y > n)). Hence, a negotiation between Py and C, begins with the two parties
placing their constraints. Py and C, can then synchronise (thus yielding the fusion of
names v and y), if the resulting constraint system is consistent, i.e. if n < min(N,max),
as shown by the graph representation below.

provider Py

0 = client C,

Related work. Bacciu et al. [1] also propose a framework for specifying client re-
quirements and provider guarantees on the offered services, along with negotiation
mechanisms. Unlike our model, their approach relies on fuzzy sets rather than on c-
semirings. The process calculus introduced in [4] focuses on controlling and coordinat-
ing distributed process interactions respecting QoS parameters expressed as c-semiring
values, but the model does not cover negotiations. The p-calculus [11] is a concur-
rent calculus with first-order constraints and high-order procedural abstraction. Akin to
our approach, the p-calculus is parametric to a certain constraint system. In [18]] the
p-calculus has been encoded into the Fusion Calculus [13]]. Thus, we expect that p can

22 M.G. Buscemi and U. Montanari

also be encoded into cc-pi. The piT-calculus [3] is an extension of the pi-calculus with
constraint agents that can perform tell and ask actions. In contrast to our model, the
constraint systems are first-order theories rather than algebraic structures and they do
not support local stores. However, to our knowledge, none of the above languages has
been applied for specifying SLA contracts. SLAng [[17] and WSLA [6] are XML-based
languages for defining SLAs at a lower level of abstractions. The elements of SLAng
are also constraints on the behaviour of associated services and service clients, but their
are specified in OCL. WSLA provides the ability to create new SLAs as functions over
existing metrics. This is useful to formalise requirements that are expressed in terms of
multiple QoS parameters. The semantics for expressions over metrics is not formally
defined, though.

2 Background

2.1 C-Semirings

We give here the basic definitions and properties concerning c-semirings. We refer to
[2] for a more detailed treatment.

Definition 1 (c-semiring). A constraint semiring (c-semiring) is a tuple (A, +, x,0,1)
such that: (i) A is a set and 0,1 € A; (ii) + is commutative, associative, idempotent, 0 is
its unit element and 1 is its absorbing element; (iii) X is associative, commutative and
distributes over +.

Let us consider the relation < over A such that a < b iff a+ b = b. Then, it is possible
to prove that (see [2]]): (i) < is a partial order; (ii) + and X are monotone on <; (iii)
X is intensive on <: a X b < a,b; (iv) 0 is its minimum and 1 its maximum; (v) (A, <)
is a complete lattice and, for all a,b € A, + is the least upper bound operator, that is,
a+b =lub(a,b). Moreover, if x is idempotent, then: + distributes over x; (A, <) is a
distributive lattice and x is its greatest lower bound. Informally, the relation < gives us
a way to compare semiring values and constraints.

Typical examples are the c-semiring for classical CSPs ({False, True},V, A, False,
True), the c-semiring for fuzzy CSPs ([0, 1], max,min,0, 1), and the c-semiring for prob-
abilistic CSPs ([0, 1],max, -,0,1). Since the Cartesian product of two c-semirings is still
a c-semiring, it is also possible to model multicriteria optimization in this framework.

2.2 Permutation Algebras

We denote by A the infinite, countable, totally ordered set of names and we use x,,z. ..
to denote names. We write X for the tuple of names (x,...,x,). A substitution is a
function ¢ : Al — A[. We denote by [y /x1,- -,y /xn) the substitution that maps x; into
y; fori =1,...,n and which is the identity on the other names. The identity substitution
is denoted by id. A permutation is a bijective name substitution. We let p range over
permutations. The kernel, K(p) of a permutation p is the set of the names that are
changed by the permutation. A permutation algebra is defined by a carrier set and
by a function defining how states are transformed by the finite-kernel permutations.

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 23

An interesting example is given by the permutation algebra for the pi-calculus [9]]. In
that case, the carrier contains all the processes, up to structural congruence, and the
interpretation of a permutation is the associated name substitution.

The carrier of a permutation algebra can be partitioned into orbits, where two ele-
ments are in the same orbit if one can be obtained from the other by applying some
permutation. To every element a a symmetry sym(a) can be associated, i.e. the group of
all permutations p such that a = p(a). The support supp(a) of an element a is the small-
est set of names such that all the permutations that do not modify them are in sym(a).
Intuitively, the names in supp(a) are the free names of a, the permutations which do
not modify them are obviously not influent on a. Indeed, the permutations exchanging
names in supp(a) with names not in supp(a) are renamings of the free names and do
not belong to sym(a), while the permutations in sym(a) which modify only names in
the support are genuine self-transformations of the element. A permutation algebra is
finite-support if each element of its carrier has finite support.

3 Named Constraints

In this section, we propose a definition of named constraints that relies on the notion
of named c-semirings. Essentially, a named c-semiring is a c-semiring enriched with a
notion of name fusions, a permutation algebra A and a hiding operator (vx.). In par-
ticular, A allows to characterise the finite set of relevant names of each element of the
c-semiring as the support supp(c) of ¢ in A, and vx. ¢ makes a name x local in ¢, in the
style of process calculi. A named constraint is an element of a named c-semiring with
an associated support.

Definition 2. We define (name) fusions as total equivalence relations on N with only
finitely many non-singular equivalence classes. By x=y we denote the fusion with a
unique non-singular equivalence class containing x and y.

Definition 3. A named c-semiring C = (C,+, X, vx.,p,0,1) is a tuple where: (i) x=y €
C for all x and 'y in N; (ii) (C,+, x,0,1) is a c-semiring; (iii) (C,p) is a finite-support
permutation algebra; (iv) vx. : C — C, for each name x, is a unary operation; (v) for
all c,d € C and for all p the following axioms hold.

(FUSE) x=yxc¢ = x=yX [y/x]¢

(HIDE) vx. 1=1 vx.vy.c=vyvx.c vx.(cxd)=cxvx.difx¢supp(c)
vx.(c+d) =c+vx.d ifx ¢ supp(c) vx.c=vy.[y/x]cify ¢ supp(c)

(PERM) p0=0 pl=1 p(ecxd)=pcxpd p(c+d)=pc+pd
p(vx.c)=vx.(pc)ifx ¢ K(p)

The (Fus) axiom accounts for combining fusions and generic elements of c-semirings:
x=y X c is equivalent to the product x=y x [y/x]c where y is replaced by x in c. The
(HIDE) and (PERM) axioms rule how the v and p operations, respectively, interact with
the operations of the c-semiring. The axioms (HIDE) are inspired by the analogous struc-
tural congruence axioms for restriction in process calculi. Roughly, the c-semiring prod-
uct x corresponds to the parallel composition of processes and constraint hiding is the

24 M.G. Buscemi and U. Montanari

counterpart of restriction on processes. The notion of support supp(c) associated with
permutation algebras recalls the concept of free names in process calculi. According to
the (PERM) axioms, p distributes with respect to x and +, and p is inactive on 0 and 1.
Finally, the order of p and v can be changed if x is not affected by p.

We propose below three examples of named c-semirings aimed at showing the gen-
erality of our approach. Specifically, we consider c-semirings for name equalities, for
Herbrand constraint systems and for soft CSPs. Note that these named c-semirings can
be suitably composed to model more complex constraint systems.

Example I (Name Equalitites). Let R_be the set of all equivalence relation on A. We
define (g as the tuple Cg = (C,+, x,vx.,p,0, 1) such that: (i) C = R; (ii) R + Ry =
R N Ry; (iii) Ry X Ry = (R U Ry)*, i.e. R| X Ry is the reflexive, transitive, and sym-
metric closure of Ry U Ro; (iv) VX.R =R + {(y,2)|y,z #x or y =z =x}, i.e. Vx.R
is obtained from R by replacing the equivalence class of x with the singleton {x}; (v)

PR={(p(x),p(»)) [(x,y) € R} (vi) 0 = (ALx A[) and 1 = {(x,x) [x € A[}.
Proposition 1. Cg is a named c-semiring with idempotent product X.

Example 2 (Herbrand Constraint System). Given a signature X, let =g be an equational
theory on Tx (), plus the additional axioms:

f(tlﬂ“‘Vt}’l):Ef(tiV"'ﬂt}{l) . 1 X=gt Hh=gh
i=1,....n
ti=pt t/x]t1 =E [t/x]t2
and with the restrictions: x #g t(x) and f(t1,...,t,) #E g(f1, ... ,tm), where £(x) is any

term different than x which contains x and f # g. We define Cy as the tuple Cy =
(C,+,%x,vx.,p,0,1) where: (i) C is the set of the above-defined equational theories
plus a bottom element L; (ii) E1 + E» = E| N Ey; (iii) E| X E; is the unification of E|
and E», i.e. it is the smallest equational theory largest than or equal to E; U E», if it
exists, otherwise L; (iv) vx. E = E N E, where t; =g t iff t; = t, or x does not occur
inty,t; (V) pti =pg pt2 iff 11 =g 12; (vi) 0= L and 1 = {(1,1) |t € Te(N))}.

Proposition 2. Cy is a named c-semiring with idempotent product x.

Example 3 (soft CSPs). Given a domain D of interpretation for A, and a c-semiring
S={(A,+, x,0,1), a soft constraint c can be represented as a function c = (N — D) — A
associating to each variable assignment 11 = A\’ — D a value of A. We define Cyof; as the
tuple Cyore = (C,+', X', vx.,p,0’,1’) such that: (i) C is the set of all soft constraints over
A, D and S; (ii) fusions x=y are defined as (x =y)n =1if n(x) =n(y), (x=yM =0
otherwise; (i) (c1 +' c2)n = cin+eon; (iv) (c1 X' ca)n =M x eom; (v) (vx.e)n =
Saep (en[¢/x]), where the assignment 1[¢/x] is defined, as usual, as n[4/x]|(y) = d if
x=y,Mn(y) otherwise; (vi) (pc)n = en with n(x) =n(p(x)); (vii)) 'n=0and I'm =1
for all n.

Proposition 3. Cyf is a named c-semiring with idempotent product X.

Note that the support supp(c) of an element of Cyofe coincides with the support of a
functional constraint ¢ as defined in [3].

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 25
Definition 4 ((named) constraint). Given a named c-semiring with equalities (A,+,

X,p, Vx.,0,1), a (named) constraint ¢ is an element of A.

We define here the notions of consistency and entailment of constraints. They are anal-
ogous to the corresponding definitions given by Saraswat and Rinard [15]. Below we
abbreviate by (x C) the product ¢y X ... x ¢, with C = {cy,...,cn}.

Definition 5. Letr (A,+,x,p,vx.,0,1) be a named c-semiring and C C A be a set of
constraints. C is consistent if (x C) # 0. Moreover, given a constraint ¢ € A, we say
that C entails ¢, written C F ¢, if (xC) < c.

4 The cc-pi Calculus

4.1 Syntax

We assume the countable set of names A and a set of process identifiers, ranged over
by D. We let ¢ range over constraints of an arbitrary named c-semiring C.

Definition 6. The sets of prefixes and cc-pi processes are defined as follows:
PREFIXES T = 1| x(J) | x(5) | tellc | ask ¢ | retract ¢ | check ¢

UNCONSTRAINED U ::= 0| U|U | ¥;m.U; | (x)U | D(5)
PROCESSES

CONSTRAINED P
PROCESSES

Ul|c|PP]|(x)P

The 7 prefix stands for a silent action, the output prefix x(y) for emitting over the port x
the message y and the input prefix x(y) for receiving over x a message and binding it to y.
Prefix tell c generates a constraint ¢ and puts it in parallel with the other constraints, if
the resulting parallel composition of constraints is consistent; tell c is not enabled oth-
erwise. Prefix ask c is enabled if c is entailed by the set of constraints in parallel. Prefix
retract c removes a constraint ¢, if c is present. Prefix check c is enabled if ¢ is con-
sistent with the set of constraints in parallel. Unconstrained processes U are essentially
processes that can only contain constraints ¢ in prefixes tell c, ask ¢, retract ¢, and
check c. As usual, 0 stands for the inert process and U | U for the parallel composition.
Y, ;.U; denotes an external choice in which some guarded unconstrained process U; is

chosen when the corresponding guard m; is enabled. Restriction (x) U makes the name

x local in U. A defining equation for a process identifier D is of the form D(%) Ly

with |¥| = |J|. Constrained processes P are defined like unconstrained processes U but
for the fact that P may have constraints ¢ in parallel with processes. We simply write
processes to refer to constrained processes.

We extend the usual notion of free names of a process by stating that the set of free
names of a constraint c is the support supp(c) defined in the previous section. Formally,
the set fn(P) is inductively defined as follows:

26 M.G. Buscemi and U. Montanari

n(0) =0 fn(t.U) =(U) fn(xF).U) = {x,y}Un(U) fn(x{F).U)={x,y}Un(U)
fn(x. U) supp(c)Ufn(U) if m=tell ¢, ask ¢, retract ¢, check ¢
(&;m.Up) = Uitn(m.U;) fo(D(X)) = tn(U) if D(X)der
(

fn(c) gupp() (P]Q) =(P)Un(Q) fn((x)P)=fn(P)\{x}

We write n(P) for the set of names of a process P and bn(P) = n(P) \ fn(P) for the set
of bound names; the usual notion of o-conversion on bound names holds. By 6 P we
denote the process obtained from P by simultaneously substituting each free occurrence
of zin P by o(z), possibly o-converting bound names.

4.2 Operational Semantics

The reduction semantics, as usual, is given in two steps: the definition of a structural
congruence, which rearranges processes into adjacent positions, and a notion of reduc-
tion relation that captures computations.

Definition 7. We let structural congruence, =, be the least congruence over processes
closed with respect to o-conversion and satisfying the following rules.

(AX-PAR) PO=P P|Q = Q|P (P|Q)|R = P|(QIR)
(AX-RES) ()0 =0 (P = MWP Pl@)Q = (x)(PQ) ifx¢ f(P)
(AX-REC) D(j) = [y/AU if D®H E U

These axioms can be applied for reducing every process P into a normal form
(x1) ... (xn) (C|U), where C is a parallel composition of constraints and U is an uncon-
strained process. Specifically, the axioms are applied from left to right in the following
order: (AX-RES) for moving forward restrictions, and (AX-PAR) for grouping constraints
together, and (AX-REC).

Definition 8. The reduction relation over processes — is the least relation satisfying
the following inference rules. We use the following notations: C stands for the parallel
composition of constraints c1 | ... |c,; C consistent means (c1 X ... x ¢,) #0; C F cif
(c1 X...x¢p) <c¢; C—cstands forci| ... |ciz1|civ1]| --- | en if ¢ = ci for some i, while
C—c = C otherwise.

(TAu) C|t.U — C|U (TELL) C|tell c.U — Clc|U if C|c consistent
(ASK)Claskc.U - C|U ifCtF ¢ (RETRACT)C|retract c.U — (C—¢)|U
(CHECK) C|tell c.U — C|U if C|c consistent

(com) C|x().U+Em.Ui|z(w).V +En}.V; — CU{y=w}|U[V
if [y] = [w|, C|y=w consistent and C - x =z

C|m.U;— P P—P
(sum) (PAR)
C|Ym.Ui— P P|IU—P|U
PP p=p P/—>Q/ Q/EQ
(RES) (STRUCT)

()P — (x)P' P—Q

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 27

The idea behind this reduction relation is to proceed as follows. First, rearranging
processes into the normal form (x1) ... (x,) (C|U) by means of rule (STRUCT). Next,
applying the rules (TELL), (ASK), (RETRACT), and (CHECK) for primitives on con-
straints and the rule (COM) for synchronising processes. Finally, closing with respect to
parallel composition and restriction ((PAR), (RES)). More in detail, rule (TELL) states
that if C| ¢ is consistent then a process can place ¢ in parallel with C, the process is stuck
otherwise. Rules (ASK) and (CHECK) specify that a process starting with an ask c or,
respectively, check c prefix evolves to its continuation if ¢ is entailed by C or, respec-
tively, if ¢ |C is consistent, and that the process is stuck otherwise. By rule (RETRACT)
a process can remove c if ¢ is among the syntactic constraints in C; e.g., the process
x=y|y = z|retract x = z.U does not affect x=y|y = z. In rules (COM), we write
y = w to denote the parallel composition of fusions y; = wy | ..., |y, = w,. Intuitively,
two processes x(y).P and z(w).Q can synchronise if the equality of the names x and z is
entailed by C and if the parallel composition C|y = w is consistent. Note that it is legal
to treat fusions as constraints ¢ over C, because we only consider named c-semiring
with fusions, as noted in § Bl Rule (PAR) allows for closure with respect to uncon-
strained processes in parallel. This rule imposes to take into account all constraints in
parallel when applying the rules for constraints and synchronisation.

The present semantics does not specify how to solve at each step the constraint sys-
tem given by the parallel composition of constraints C. However, in [10] it is shown
how to apply dynamic programming to solve a CSP by solving its subproblems and
then by combining solutions to obtain the solution of the whole problem. A visual rep-
resentation of the problem is given by considering a graph where names are represented
as nodes and constraints as arcs connecting the names involved in each constraint.

Example 4. Let P and Q be the following two processes (we write c(xp,...,x,) for a
constraint ¢ with support supp(c) = {x1,...,x,}):

P = (x)(z)tell c(x).y{x).x(z).0 Q0 = (w)tell ' (w,v).y(w).w(v).0

First, P and Q make their respective tell actions, which necessarily succeed as the
constraint system is initially empty and the constraints ¢ and ¢’ have different support.
The graph representation of the resulting store of constraints is depicted in Fig. (a) be-
low. Next, the two processes try to synchronise on port y and, according to rule (COM),
the synchronisation takes place if the constraint combination ¢ x ¢’ x x = w has a so-
lution (Fig. (b)). Finally, the processes synchronise on port x, which is identified to w,
thus yielding the fusion z = v (Fig. (c)).

C C r=w
O ® =

Ll

(a) (b)

Remark on retract. We have chosen to introduce the retract operation in the cal-
culus in order to model non-monotonic constraint systems. For instance, an agent can

28 M.G. Buscemi and U. Montanari

perform a retract action for removing from a store a constraint that it had previously
placed, thus enabling a tell operation which would be stuck otherwise or for releas-
ing some resources after using them. Nevertheless, we can consider a version of the
cc-pi calculus not including the retract primitive. For this fragment of the calculus
the following additional axioms for relating parallel composition with product and re-
striction with hiding hold: ¢1|c2 = ¢1 X ¢2 and (x) ¢ = vx.c. These axioms cannot be
included in the original cc-pi calculus. In fact, a constraint ¢ can be removed only if c is
syntactically present in the store of constraints, while by applying product or hiding we
generate new syntactic constraints. Note that the axioms for structural congruence in
Def.[7]along with the above ones lead to processes into a normal form (%) (¢|U), where
U does not contain restrictions.

5 Specifying Service Level Agreements

In this section we show how to model within our framework SLA contracts. The idea is
to specify each SLA parameter as a variable and each SLA requirement or guarantee as
a constraint that connects the involved variables. The parties are modelled as commu-
nicating processes. A constraint can be generated either by a single process or by the
synchronisation of two processes that induces the identification of the communicated
values. Note that our constraint-based approach allows to specify not only negotiations
to reach a SLA contract, but also run-time checks that the contracts is not violated by
the involved parties.

Here we consider two examples that show how to apply our approach in modelling
the SLA management system. The first example is centered around the basic mecha-
nism for reaching and validating a contract. The second example extends the example
given in the introduction with three clients. For simplicity, in both examples we take the
constraint system to be a CSP by instantiating cc-pi with the named c-semiring Cyoft,
defined in Example B over the c-semiring S = ({False, True}, Vv, A, False, True). This
choice leads to solutions consisting of the set of tuples of legal domain values. We could
generalise such constraint system with soft constraints by replacing S with an arbitrary
c-semiring.

5.1 A Web Hosting Service

Consider a service that offers different web hosting solutions, varying in cost and in
bandwidth. Let P be the service provider and C be a client. Suppose that P obtains its
bandwidth resources from a third party 7. Before the execution of the service, P and
C want to sign a SLA contract. The success of such an agreement also depends on the
resources provided by T'. This scenario is depicted below.

Client C' Service provider P Third party T

cost > min cost Y Y "
cost’ < max cost bw" < max bw

cost = bw x 25Euros

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 29

The interaction protocol is as follows. Each party imposes its SLA requirements or
guarantees: P specifies the minimum cost min cost for the service and the cost per
unit of bandwidth cost = bw - 25 Euros, C imposes a maximum cost max cost it can
pay for the service, and T fixes the maximum bandwidth max bw that it can supply.
Next, P communicates with C and with T on ports x and y, respectively. If the above
constraints are consistent with each other, i.e. if ¢ = ((min cost < cost < max cost) x
(bw < max bw) x (cost = bw-25 Euros) x (cost = cost') x (bw =bw' = bw")) #0,
P and C can sign this contract ¢, by synchronising on z. Then, the service is executed
and, assuming P provides C with a certain bandwidth act bw and the corresponding
cost, the two parties validate the contract by performing check operations on their
respective parameters. Note that the semantics of check enables this validation while
not modifying the constraints of the contract. The specification of P, C, and T in cc-pi
is as below and the whole system is represented by the parallel composition of the three
parties.

Princost = (bw)(cost)(tell ((cost > min cost) X (cost = bw- 25 Euros)).
x(bw,cost).y(bw).z().PLe; vw)
P, = x(act bw,act bw-25 Euros).check((act bw-25 Euros = cost)x
(act bw =bw)).z()
Cmax cost = (bw')(cost’)(tell (cost’ < max cost).x{(bw' cost').z().C")
C = (U,d)(x(b,c).check((b = bw') x (' = cost’)).z())
Tmaxbw = (bW")(tell (bw” < max bw).y(bw"))

5.2 Resource Allocation

We consider a slightly more complex scenario of the example given in the introduction
with one provider Py and three clients C,;, Cy,, and Cy,;. The graph representation
of the constraint system resulting from the negotiation among the parties is depicted
below. Each node represents a variable, and each constraint is modelled by a hyperedge
connecting the variables involved in the constraint.

provider Py client Cj,,

Suppose that Py has allocated the resources y; and y», with y; > n; fori=1,2,to C,,; and
C,,, respectively. If C,; makes a request y3 > n3 that Py is not able to satisfy because
n1+ny+n3 > N, the synchronisation between Py and C,; cannot take place until some

resources y;, with y; > n3, are released.

30 M.G. Buscemi and U. Montanari
6 Expressiveness Results

Encoding Pi-F calculus. We start by recalling the Pi-F calculus. For better relating the
calculus with cc-pi, we present the Pi-F in the standard pi-calculus fashion rather than
in the ‘commitment’ style [[19].

Definition 9. The syntax of Pi-F processes is the same as the one given in Definition[6]
minus summation, tell, ask, retract, and check and where constraints c are taken
over the named c-semiring of equalities Cg defined in Example[ll The structural con-
gruence = is as in Def.[Qplus the axioms below:

x=x=r0 x=y=py=x x=y|y=z=rx=z|y=2 (x)(x=y)=F 0
x=y|x(z).P =p x=y|y(z).P x=y|x(z).P =p x=y|y(z).P
z=y|x(z).P =F z=y|z(y).P z=y|x(2).P =F z=y[x(y).P

The reduction relation —F between processes is the smallest relation closed with re-
spectto |, (x) and =p , which satisfies:

x(2).P|x(w).Q —r P|Q{z=w} if[z] = |

Note that this syntax rules out processes containing name fusions under prefixes. This
choice follows the analogous restriction applied in cc-pi, which avoids that two pro-
cesses synchronise and, simultaneously, add some constrains to the store, thus possibly
yielding an inconsistency.

Definition 10. The translation || ||r of pi-F processes into cc-pi processes is trivial: it
maps pi-F constructs on their homonymous versions in cc-pi.

Theorem 1. /. If P —p Q then [Pl — [[Q]r. 2. If [P]lr — Q' then P —p Q and
Q' =[Q]F

By exploiting Theorem[I] and similar results proved in [19], it is also possible to give
reduction-preserving translations of pi-calculus and Fusion [13]] in cc-pi.

Encoding cc programming. First, we briefly recall cc programming [[15]]. For the pur-
pose of a more straightforward translation into cc-pi, we present a slightly modified
version of the language. The basic ingredients of the cc programming constraint system
are a set D of primitive constraints or tokens and a reflexive and transitive entailment
relation F. A constraint ¢ in a constraint system (P(D), |-) is an element of P(D)*, i.e.
the closure of the powerset (D) under entailment. The notion of consistency is given
by identifying a set of inconsistent constraints /. The existential operator on constraints
Jxc is formalised in terms of cylindric algebras.

Definition 11. The syntax of cc programming is defined as follows:

PREFIXES T ::= tellc|askc
PROCESSES A ::= success | T.A |A|A | ;m.A; | 3ecA | p(§)

CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements 31

Following standard lines [16/12], we replace the classical hiding operator 3, A with
3y A that represents the evolution of a process of the form 3,A’, where c is the local
constraint produced during the evolution. Moreover, p(¥) is a procedure call, where p
is the name of the procedure and J is the tuple of actual parameters. The meaning of a
process is given with respect to a set of procedure declarations of the form p(%) := A.
An instantiation of p(X) := A is an object of the form p(¥) := [j/X]A. A configuration
is a pair {c,A) with a constraint ¢ representing the store and a process A. The reduction
relation —¢ over configurations is the smallest relation given by the following rules.

(TELL) {c,tell ¢".A) — {(cU')*,A) if (cUc")* consistent

(ASK) {c,ask ¢’ .A) — (c,A) ifct ¢

(e;mi.Aj) = (¢, A") (c,A) = (", A")
(sum) PAR)
(e, Ximi.Ap) — (c",A") (c,A|B) = (c",A"| B)
(c,A) — (', A") {cU3xd,A) — (' U3xd,A")
(PAR') (HIDE)
(c,B[|A) — (c',B|A) (d,3xcA) = (d, 3 0A")

(c,[5/84) = (c,A") and p(3) :=A
(PROC)
(e,p(3)) = (¢, A")

Definition 12. The translation [||r of cc processes in cc-pi is trivial:

[success]lc =0 [askc.A]c=askc.[Alc [tellc.A]c=tellc.[A]c
[A1Blc = [Allc|[Ble [BreAlle = () (c|[Alle) [Emi-Aille = Xl[mi-Aillc
[p(9)]c = Dy(5)

where for each cc procedure declaration p(X) := A we give a defining equation
D, (%) = Q with [A]lc = Q.

Lemma 1. A constraint system (P(D),) can be represented as a named c-semiring
(C,+,%x,vx.,p,0,1) with: (i) C = P(D) U L, where L corresponds to the set I; (ii)
c1+c2=(c1Nep)s (iii) 1 x e = (c1Uca)*; (iv) vx.c = Ixc and pc =pc; (v) 0= L
and 1 =C.

Theorem 2. 1. If {c,A) — (c',A") then c|[A]lc — c'|[A]c. 2. If c|[A]lc — P then
(c,Ay — (', A"y and P =" |[A"]c.

Note that cc programming handles the evolution of local stores of constraints through
the rule (HIDE), while cc-pi (without retract) obtains the same effect by reducing
processes into a normal form in which names are conveniently o-converted. This fact
plays a crucial role in the proof of Theorem[2]

7 Concluding Remarks

This paper is mainly focused on presenting the cc-pi calculus and on showing its
flexibility as a constrained-based model for specifying SLA contracts and resource allo-
cation. We foresee several directions for future work. We plan to consider a distributed

32

Ve

M.G. Buscemi and U. Montanari

rsion of the calculus by equipping, e.g., processes with locations and by limiting the

synchronous behavior of processes and constraints to a single locality. It would also be
interesting to study suitable mechanisms for assuring transactional and security prop-
erties of process executions, e.g. by enforcing that only the process which has told a

CO

nstraint can retract it. We also intend to further study the ability of c-semirings to

model soft constraints to express nonfunctional properties of SLAs.

Acknowledgments. We thank the anonymous referees for helpful comments.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

. A. Bacciu, A. Botta, and H. Melgratti. A fuzzy approach for negotiating quality of services.

In Proc. TGC ’06. To appear.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-

mization. Journal of the ACM, 44(2):201-236, 1997.

. S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming. ACM
Trans. Comput. Logic, 7(3):563-589, 2006.

. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process calculus
for QoS-aware applications. In Proc. COORDINATION 05, volume 3454 of Lect. Notes in
Comput. Sci. Springer, 2005.

. J. F. Diaz, C. Rueda, and F. Valencia. A calculus for concurrent processes with constraints.
CLEI Electronic Journal, 1(2), 1998.

. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Jour. Net. and Sys. Manag., 11(1):57-81, 2003.

. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II. Inform. and
Comput, 100(1):1-40,41-77, 1992.

. U. Montanari. Networks of constraints: fundamental properties and application to picture
processing. Information Science, 7:95-132, 1974.

. U. Montanari and Pistore M. Structured coalgebras and minimal hd-automata for the pi-

calculus. Theoret. Comput. Sci, 340(3):539-576, 2005.

U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artif. Intell., 48(2):143—

170, 1991.

J. Niehren and M. Mueller. Constraints for free in concurrent computation. In Proc.

Asian ’95, volume 1023 of Lect. Notes in Comput. Sci. Springer, 1995.

M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of temporal concurrent

constraint programming languages. In Proc. PPDP’02. ACM, 2002.

J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-

cesses. In Proc. LICS’98. IEEE, Computer Society Press, 1998.

V. Saraswat and P. Lincoln. Higher-order linear concurrent constraint programming, 1992.

Technical Report, Xerox Parc.

V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. POPL’90. ACM

Press, 1990.

V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint

programming. In Proc. POPL’91. ACM Press, 1991.

J. Skene, D. Lamanna, and W. Emmerich. Precise service level agreements. In Proc.

ICSE’04, 2004.

B. Victor and J. Parrow. Constraints as processes. In Proc. CONCUR’96, volume 1119 of

Lect. Notes in Comput. Sci. Springer, 1996.

. L. Wischik and P. Gardner. Explicit fusions. Theoret. Comput. Sci, 340(3):606—630, 2005.

	Introduction
	Background
	C-Semirings
	Permutation Algebras

	Named Constraints
	The cc-pi Calculus
	Syntax
	Operational Semantics

	Specifying Service Level Agreements
	A Web Hosting Service
	Resource Allocation

	Expressiveness Results
	Concluding Remarks

