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Abstract. A semantics to a small fragment of Java capturing the new memory
model (JMM) described in the Language Specification is given by combining op-
erational, denotational and axiomatic techniques in a novel semantic framework.
The operational steps (specified in the form of SOS) construct denotational mod-
els (configuration structures) and are constrained by the axioms of a configuration
theory. The semantics is proven correct with respect to the Language Specifica-
tion and shown to capture many common examples in the JMM literature.

1 Introduction

Two processes P and Q operating in parallel compete for a lock on shared data. The
structure A shown in Fig. 1 models the parallel composition P | Q, where P executes
lock; . . . unlock; and the same does Q. The identifiers lock and lock′ represent events
occurring in computation, namely the execution of a “lock” action respectively by P
and Q. Similarly for unlock and unlock′.

Sets of events, called configurations and depicted here as rounded squares surround-
ing their elements, represent consistent states of computation. The {unlock, lock} config-
uration, for example, represents the state reached by the system after having performed a
lock action first and then an unlock (while Q remains dormant). We know the lock came
first because we see a {lock} subconfiguration but not an {unlock}. Note that there is no
configuration {lock, lock′} and this represents the mutual exclusion of the two processes
from the shared resource.

Structures as those depicted in Fig. 1 are called configuration structures [1], a de-
notational model introduced by Winskel as an alternative presentation of (prime) event
structures [2]. Several closure conditions have been proposed over the years to make
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Fig. 1. Configuration structures
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configuration structures mathematically tractable. In [3] van Glabbeek and Goltz char-
acterise the class of configuration structures where the causal dependency between
events can be faithfully represented by means of partial orders. Such stable structures
are required to be closed under bounded unions and bounded intersections. Stable struc-
tures possess useful semantic properties; e.g., when a state C is part of the “history” of
a state D, then D is reachable from C by a sequence of atomic steps of computation.

Unfortunately, many structures naturally arising in the semantics of concurrent sys-
tems are not stable; A, for instance, is not. More general structures than the stable have
been studied in the literature [4,5,6,7]. The monotone configuration structures of [6],
e.g., (of which A is one) are those where causal dependency is preserved by inclusion
of configurations, indeed a minimal requirement for monotonic reasoning about states
of computation. However, consider an easy program where two threads both assign the
value 42 to x (call a and b these events) while a third thread reads this value from x
(event c). The corresponding structure, B in Fig. 1, is not monotone. So, a (provocative)
question arises: what are algebraically neat event-based models good for?

The present paper advocates the usefulness of event based models by proposing a
new semantic framework which combines denotational, operational and axiomatic tech-
niques to challenge the Java memory model. The current definition of the Java memory
model (JMM) [8] is still much driven by informal examples and, while the key ideas are
understood within the community, there is a lack of rigour for mechanised reasoning.
In our opinion, the reason of this is that, while the Java memory model and its run time
semantics are largely independent, no formal account has been given as yet of their
interplay. The notion of execution, introduced in the language specification as formal
basis to the former, is not clearly related with the latter, in that executions may specify
values being read or written which no single run of the program may be able to produce
collectively. Hence, executions must be validated by a complicated procedure involv-
ing tentative executions, each validating the commitment of certain actions, but each
relying on different assumptions as to the values being read or written by uncommitted
actions. The connection with run time semantics is informally given by the statement
that “executions should obey intra-thread consistency” [9, 4.4, clause 5].

In this paper we change perspective with respect to the language specification and
propose an axiomatisation of the JMM based on the notion of causality, deriving from
denotational semantics, rather than on the happens-before relation, upon which the ab-
stract executions of [8] rely. We propose a formal framework where structural opera-
tional semantics, describing program evaluation, interacts with a configuration theory,
describing the causal interplay of memory and threads.

Configuration theories were proposed in [6] as an axiomatic approach to the seman-
tics of concurrent systems and are further developed here to capture mutual exclusion.

,�
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Fig. 2. Poset sequent for mutual exclusion
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A configuration theory is a set of poset sequents which is closed under deduction. A
poset sequent is made of partially ordered sets (posets) of events, where the order is
interpreted as causal dependency. The sequent depicted in Fig. 2 (where order is repre-
sented by the vertical bars, with time pointing upward) spells roughly: “whenever two
lock actions occur in a computation, they must occur sequentially, and moreover there
must be an unlock action in between.” As one would expect, this sequent is satisfied by
structure A, but not by the structure obtained by adding the configuration {lock, lock′}
to it, which violates mutual exclusion (see discussion in Sect. 3).

After developing the mathematics of configuration theories (Sect. 2 and 3), we present
six poset sequents like the above axiomatising the JMM from the point of view of causal
dependency (Sect. 4). The resulting configuration theory constrains the rules of a struc-
tural operational semantics for the minimal fragment of Java which is relevant for under-
standing the memory model (Sect. 5). Our semantics is then proven correct with respect
to the Java language specification of [8, §17] (Sect. 6).

2 Stable Structures as Traces

A set system consists of a set E and a collection A of subsets of E [5]. If A ∈ A we
write sub(A) the set {B ∈ A | B ⊆ A}. If A, B ∈ sub(C) for some C ∈ A we say
that A and B are bound in A. The sets in a system A are called configurations when
used for modelling a concurrent system, while the elements of the set |A| =

⋃
A are

called events. If B ∈ A and A ∈ sub(B), then A is called a subconfiguration of B.
A labelled configuration structure [5] is a structure C endowed by a labelling function
λ : |C| → Act , where Act is a fixed set of labels called actions.

In [4] several closure conditions on the set of configurations of a structure A are
given in order to get a precise match with general event structures (generalising those
of [2]). They are: finiteness (if an event belongs to a configuration A, then it also belongs
to a finite subconfiguration of A), coincidence-freeness (if two distinct events belong to
a configuration A, then there exists a subconfiguration of A containing exactly one of
them), closure under bounded unions and non-emptiness of A. We call configuration
structures (or just structures), and write them C, D, . . . , the set systems satisfying all
of the above requirements, except closure under bounded unions (this is not standard in
literature). If C ⊆ D, we call C a sub-structure of D, and D an extension of C.

Coincidence-freeness endows each configuration C with a canonical partial order:
a ≤C b iff, for all D ∈ sub(C), b ∈ D implies a ∈ D. This relation is called causal
dependency. Two events a, b ∈ C are said to be concurrent in C, written a �C b, when
neither a ≤C b nor b ≤C a hold.

A structure C is called connected if, for all configurations C �= ∅, there exists a ∈ C
such that C \ {a} ∈ C. Clearly connectedness implies coincidence freeness and more-
over, having assumed C nonempty and finitary, it also implies that ∅ ∈ C (rootedness).
Following [3] we call stable a configuration structure which is connected, closed under
nonempty bounded unions and nonempty bounded intersections. Stability was intro-
duced for event structures in [4]. Stable structures are precisely those where the order on
a configuration determines its subconfigurations (see [3, Prop. 5.4 and Thm 5.2]). Below
we establish a precise correspondence between certain stable configuration structures
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and Mazurkiewicz traces. The result motivates the use of stability as means for abstract-
ing computations over concurrent actions.

Given a string s over a set S, we write |s| the subset of elements of S occurring in s.
A path over a set S is a string s of elements of S, none of which is repeated. If C is a
configuration of a structure C, we call admissible a path s over C such that |u| ∈ C for
all prefixes u of s. We write 
C the smallest equivalence relation on the paths of C such
that uabv 
C ubav if a �C b. A trace in C is an equivalence class of 
C in which all
paths are admissible. The set of all traces [s]�C such that |s| = C is denoted by Tr(C).
Note that the traces of all configurations in an event structure form a Mazurkiewicz
trace language (see [10] for detail), and the construction can be shown to be the object
map of an embedding (a co-reflection) of the category of event structures into that of
trace languages [10, Cor. 39].

Theorem 1. Let C be a configuration in a structure C. There exists a one-to-one cor-
respondence between the traces in Tr(C) and the stable substructures D of C such that
C ∈ D ⊆ sub(C), and moreover no other such substructure of C extends D properly.

Proof. Let [s]� be a trace in Tr(C). We show that the set D of configurations of the
form |r|, where r is a prefix of some path in [s]�, is stable. D is clearly rooted and
connected. It is also closed under bounded unions. In fact, let |u| and |v| be configura-
tions in D, and let r1 and r2 be paths in [s]�, with u a prefix of r1 and v of r2. If v is
empty the result holds trivially. Otherwise, let v = av′. Writing r1 as waw′, a must be
independent of each event in w. Hence, r1 
 aww′, and moreover the latter has a prefix
u1 such that |u1| = |u| ∪ {a}. By iterating the argument, all events in v can be pushed
towards the front of r1 to obtain a path in [s]� with a prefix un such that |un| = |u|∪|v|.
Hence, D is stable, the argument for bounded intersections being similar to the above.
Conversely, let D satisfy the stated conditions. It is easy to show that the set of paths r
in C such that |r| = C and |u| ∈ D, for all prefixes u of r, is a trace in Tr(C). This
construction is inverse to the above. �


In view of the above result, we shall call traces of a configuration C in a structure C all
the stable substructures of C satisfying the conditions of Thm. 1. The following result
is used in Def. 2.

Proposition 1. Let D and E be traces, respectively of D and E, in a structure, and let
D ⊆ E . The inclusion map of D in E, written D ↪→ E, is monotone with respect to the
order induced by D and E .

Proof. Let a ≤D b and suppose a �≤E b. There exists A ∈ E such that b ∈ A �� a. Then
D �� D ∩ A ∈ E . Clearly, {C ∈ E | C ⊆ D} ⊆ sub(D) is a stable substructure of C
which includes D properly (as it contains D ∩ A), and hence D is not maximal, against
the assumptions. �


3 Sequents of Partial Maps

Notation. We write f : A ⇀ B to denote a partial function from A to B, and say that
the expression f(a) denotes (an element of B) when f is defined on a ∈ A. If e1 and
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e2 are expressions as above involving partial functions, we write e1 = e2 when e1 and
e2 denote the same element. When A and B are posets, we call f : A ⇀ B monotone
if, when f(a) and f(b) both denote, a ≤ b implies f(a) ≤ f(b). (A different notion
is usually adopted in domain theory, where the order represents approximation rather
than causal dependency.) For partial maps f and g we write f � g, if f(x) = g(x)
whenever f(x) is defined. We use Γ, Δ, . . . to denote sequences of posets, and write
Γi the i-th component of Γ . The concatenation of two sequences Γ and Δ is written
Γ, Δ. If Γ = A1, . . . , Am and Δ = B1, . . . , Bn are finite sequences of posets, we write
ρ : Γ ⇀ Δ to mean that ρ is an m × n-matrix of monotone injective partial functions
ρij : Ai ⇀ Bj . Given two matrices α and β of the form Γ ⇀ Δ, we write α � β when
αij � βij , for all i and j. Function composition is written in diagrammatical order.

Definition 1. A poset sequent Γ �ρ Δ (or just sequent) consists of two finite sequences
Γ and Δ of posets and a matrix ρ : Γ ⇀ Δ of monotone injective partial functions.

The posets in a sequent are meant to represent fragments of a configuration. The intu-
itive meaning of a sequent Γ �ρ Δ is that whenever a trace interprets all components
of Γ , the interpretation extends along ρ to at least one component of Δ. Of course the
Δi may include events that are not mentioned in Γ , thus specifying what is required to
happen after, or must have happened before, a certain combination (Γ ) of events. We
write just ρ for a sequent Γ �ρ Δ when Γ and Δ are understood or not relevant. On the
other hand, we may omit ρ when obvious from the labelling conventions.

Sequents predicate over traces. Let C be a configuration of a structure C; by a slight
abuse, we speak of a trace C to mean a trace D of C in C. In such a case we intend
C as endowed with the partial order induced by the configurations in D. We call inter-
pretation of a sequence Γ of m posets in a trace C an m × 1-matrix Γ ⇀ C whose
components are total.

Definition 2. A structure C is said to satisfy a sequent Γ �ρ Δ when, for any trace C
in C and interpretation π : Γ → C, there exist a trace D extending C, a component
Δk ∈ Δ and a monotone injective total function q : Δk → D such that ρikq � πiu for
all i, where u : C ↪→ D is the inclusion.

A labelled sequent ρ is one in which the elements of posets are assigned labels from
Act and the maps in ρ preserve them. Definition 2 extends to labelled sequents and
structures by requiring that interpretation maps preserve labels.

A pathological kind of sequent is �, which features empty sequences as antecedent
and succedent, and is decorated by the empty matrix. Under the assumption that struc-
tures are not empty, this sequents denotes the absurd. A sequent of the form � A is
satisfied by structures in which every trace is bound to produce a configuration match-
ing A. Similarly the sequent A � is satisfied by structures in which no configuration
ever matches A.

The formal system of poset sequents introduced in [6] featured inference rules mim-
icking the structural rules of Gentzen’s sequent calculus. The differences with the present
work are in the kind of maps decorating the sequents (total in [6], partial here) and in the
notion of interpretation (quantifying over configurations vs. traces). Partial maps yield
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a stronger system, in which the old rules are derivable. The sequent a � a b, for ex-

ample, is now derivable from
b

a � � ,
a

while it was previously not, although the former

holds in any structure satisfying the latter. The metatheory is also more compact, fea-
turing four rules against ten, and a general cut rule, which was previously split into
left and right rules. On the other hand, interpreting over traces allows us to axioma-
tise mutual exclusion, as with the lock/unlock example, which could not be captured
in the old system. In fact, consider the labelled structure A in Fig. 1, where we as-
sume λ(lock ) = λ(lock ′) and λ(unlock ) = λ(unlock ′), and let A′ be the structure
obtained from A by adding the configuration {lock , lock ′} (no mutual exclusion!). In
both structures the configuration C = {lock , unlock , lock ′, unlock ′} is endowed with
the ordering lock ≤ unlock , lock ′ ≤ unlock ′. Hence, had we defined satisfaction by
quantifying over configurations rather than on traces, the axiom in Fig. 2 would be sat-
isfied by neither structures. However, while A′ only has one trace on C (viz. A′ itself),
featuring the same order as above, A has two: {lock ≤ unlock ≤ lock ′ ≤ unlock ′} and
{lock ′ ≤ unlock ′ ≤ lock ≤ unlock}. Hence, in the current development, A satisfies
the axiom while A′ does not, as expected.

The following lemmas are used to prove the soundness of our inference system of
poset sequents (Fig. 3).

Let Γ = Γ1, . . . , Γn and Δ = Δ1, . . . , Δm be vectors of posets; a covariant map
from Γ to Δ consists of a function f : {1, . . . , n} → {1, . . . , m} on indices, and a
family of (total) monos ψi : Γi � Δf(i). We write (f, ψ) : Γ

>�−→ Δ such a map,
shortening (f, ψ) as f when no confusion arises. A contravariant map (f, ψ) : Γ

<�−→
Δ is defined just as above, except for f : {1, . . . , m} → {1, . . . , n} mapping the indices
of Δ to those of Γ , and the ψi being of the form Γf(i) � Δi. A matrix σ : Γ ⇀ Σ
is called right extension of a matrix ρ : Γ ⇀ Δ when there exists a contravariant
map (f, ψ) : Σ

<�−→ Δ such that σjf(i)ψi � ρji, for all i, j; in such a case we write
σ ∈ rex(ρ).

Lemma 1. Let σ ∈ rex (ρ); if a structure satisfies ρ, then it satisfies σ.

Proof. Let a structure C satisfy ρ : Γ ⇀ Δ, let σ : Γ ⇀ Σ be in rex(ρ) by (f, ψ) :
Σ

<�−→ Δ, and let π : Γ → C ∈ C be an interpretation of Γ in C. Since C satisfies ρ
there exists an inclusion u : C ↪→ D of C in a configuration D and, for some k, a map
q : Δk → D such that ρikq � πiu, for all i. Then, σif(k)ψkq � ρikq � πiu. �


The left composition of a matrix σ : Σ ⇀ Δ with a covariant map (f, ψ) : Γ
>�−→ Σ

is the matrix fσ : Γ ⇀ Δ where (fσ)ij(a) = σf(i)j(ψi(a)). A left Kan extension of
a matrix ρ : Γ ⇀ Δ along a covariant map (f, ψ) : Γ

>�−→ Σ is a matrix ρ̂ : Σ ⇀ Δ
such that ρ � f ρ̂, and moreover ρ̂ � σ holds for all σ : Σ ⇀ Δ such that ρ � fσ. It
is easy to check that, when the ψi are strong, such a ρ̂ exists iff, whenever f(i) = f(j),
ψi(a′) = ψj(a′′) iff ρik(a′) = ρjk(a′′). In such a case ρ̂hk(a) is ρjk(a′) when j and
a′ exist such that h = f(j) and a = ψj(a′); otherwise ρ̂hk(a) is undefined. Note that
the above definition of ρ̂ does correspond to the categorical notion of left Kan extension
[11, 10.3] in a precise sense. A matrix σ : Σ ⇀ Δ is called left extension of a matrix
ρ : Γ ⇀ Δ when ρ has a left Kan extension ρ̂ along some map Γ

>�−→ Σ and σ � ρ̂; in
such a case we write σ ∈ lex (ρ).
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[true]
� ∅

[incl]
A �φ−1 B

(φ : B � A is strong)

Γ �ρ Δ
[sub]

Σ �σ Π
σ ≤ ρ

Γ �τ,ρ A, Δ Σ, A �σ;π Π
[cut]

Γ, Σ �(ρ;∅),(τπ;σ) Δ, Π

Fig. 3. Inference rules

Lemma 2. Let σ ∈ lex (ρ); if a structure satisfies ρ, then it satisfies σ.

Proof. Let structure C satisfy ρ : Γ ⇀ Δ, let ρ̂ be a Kan extension of ρ along (f, ψ) :
Γ

>�−→ Σ, let σ � ρ̂ and let π : Σ → C ∈ C be an interpretation of Σ in C. The
interpretation fπ yields a configuration C ⊆ D ∈ C and a map q : Δk → D such that
ρikq � ψiπf(i)ku, where u : C → D is the inclusion. Then, σ � ρ̂ yields σq � πu. �


Figure 3 shows rule schemes for deriving poset sequents. Rule [sub] makes use of a
preorder ≤ over sequents defined to be the smallest transitive relation where σ ≤ ρ
when σ is either in lex (ρ) or in rex (ρ). In the [cut] rule two operations (comma and
semi-colon) are used to compose matrices. If ρ and σ are matrices of size m × n and
r × n respectively, we write (ρ; σ) for the (m + r) × n matrix obtained by “placing ρ
above σ”: the ij-component of (ρ; σ) is ρij for i ≤ m, while it is σ(i−m)j when i > m.
Similarly, if ρ and σ are of size m × n and m × r, we write (ρ, σ) for the m × (n + r)
matrix obtained by “placing ρ to the left of σ”: the ij-component of (ρ, σ) is ρij for
j ≤ n, while it is σi(j−n) when j > n. Finally, let τ and π be respectively a n × 1
column vector and a 1×m row vector. Then, τπ stands for the n×m matricial product

of the two, where (τπ)ij is the composite map Γi
τi−→ A

πj−→ Πj . By ∅ we mean a
matrix (of suitable size) whose components are the always undefined partial functions.

Definition 3. A configuration theory is a set of sequents which is closed under the rule
schemes of Fig. 3.

Theorem 2. The rules of Fig. 3 are sound.

The proof is almost immediate for all the rules except for [sub], where it follows from
Lemmas 1 and 2. Completeness can also be obtained by adjoining to the rules of Fig. 3
the [extend] rule of [6, 5]. This is however out of the scope of the present paper.

4 A Configuration Theory of Java

We present a configuration theory specifying the rules by which events of a Java com-
putation may depend on each other.

Let Var, Mon and Tid denote disjoint countable sets, respectively of program vari-
ables (ranged over by x, y, . . . ), monitors (m, . . . ) and thread identifiers (θ, ζ, ξ, . . . ).
The actions of the theory of Java are either of the form (H, θ, x, v), where H ∈ {R, W}
and v is a value, or of the form (K, θ, m), with K ∈ {L, U}. Actions (H, θ, x, v), called
memory actions, represent the reading (R) of a value v from the variable x by a thread
θ, or the assignment (W for writing) of v to x by θ, while actions of the form (K, θ, m),
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� ,
b

a a = (ζ, m), b = (θ, m)
a = (θ, x, v), b = (θ, m)
a = (θ, x, v), b = (θ, x, w)1a)

1b)

1c)
a b

a

b
1)

�2)
(W,ζ, x, v)

(R, θ, x, v)
(R, θ, x, v) � ,3) � ∗

(R, θ, x, v)

(W,ζ, x, v)

(R, θ, x, v)

(W,θ, x, v)

(W, θ, x,w)

(R, θ, x, v)

(W,θ, x,w)

andwhere

4) � ∗ Ai = Bi =�
(R, θ, x, v)

. . .
AnA1

(R, θ, x, v)

(W,ξ, x, v)
(U, ζi, mi)

(L, θ, mi)

(W,ζi, x, wi)

(R, θ, x, v)

(W,ζi, x, v)

(W,ζi, x,wi)

B1 , . . . , Bn ,

�5)
(U, θ, m)n

(L, θ, m)n
(U, θ, m)n �6) ∗

(L, θ, m)

(L, ζ, m)n

(L, θ, m)

(U, ζ, m)n

(�) v �= w, wi for all i
(∗) θ �= ζ, ζi for all i

Fig. 4. The configuration theory of Java

called synchronisations, represent the locking (L) or the unlocking (U ) of a monitor m
by θ. When H and K are irrelevant, (H, θ, x, v) and (K, θ, m) are shortened respec-
tively as (θ, x, v) and (θ, m). Other action component may be similarly omitted when
not relevant. Events are labelled by actions. We write e : l to mean that event e has
label l. When no confusion arises, we use actions to denote the events of which they are
labels. We do so in Fig. 4.

Figure 4 shows the axiom schemes of our configuration theory of Java. The ρ in a
sequent Γ �ρ Δ is left implicit by convening that an event e : A in Γi is mapped by ρij

to one with the same label A in Δj , in lack of which ρij(e) is undefined.
Scheme 1 describes how the different kinds of actions are to be ordered in legal pro-

gram executions, according to the Java memory model [8, §17]. All memory actions of
one thread over a same variable must be totally ordered (1a), while all synchronisations
of a thread over a monitor must be ordered with the memory actions of that thread (1b)
and with the synchronisations of other threads over the same monitor (1c).

Schemes 2, 3 and 4 specify how threads are allowed to read values from the shared
memory. Any value being read by a thread θ from a variable x must have been previ-
ously assigned to x by a possibly different thread (2). If θ reads its own assignment,
then it must be the most recent one (3), while, if it is a value assigned by another thread
ζ, it must be the most recent only if θ and ζ synchronised over the same monitor (4).

Schemes 5 and 6 describe synchronisation. By an we mean a poset of n a-labelled

events a1, . . . , an, with the discrete ordering, while
bn

�

an
denotes the poset an∪bn where

ai ≤ bi, for all i. Then, scheme 5 says that any unlock action must be paired with
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a preceding lock by the same thread, while 6 guarantees, in combination with 5, that
locks are granted to one thread at a time.

5 An Event-Based Semantics of Java

The axioms are used to constrain the applicability of the operational rules: semantic
configurations of events, labelled as in Sect. 4, are included as part of the operational
configurations, and each time the semantics reduces a Java term an event is added to
(and causal dependencies recorded in) the current semantic configuration, provided this
complies with the specified theory. Thus, operational semantics builds a denotational
model of the program (see discussion in Sect. 7). However, events may also be added
to the semantic configurations presciently (by rule [pre] in Tab. 1), that is before the
corresponding reduction is performed, and only later fulfilled by the execution engine.
Hence, semantic configurations are also equipped with a fulfilment predicate ( )! on
write events. Intuition is that (W )! holds in η precisely when (W ) has been fulfilled
by program evaluation. More formally: configurations of events are called event spaces
(and ranged over by η, ζ, . . . ) when viewed as part of operational configurations. Math-
ematically an event space is just a poset equipped with a fulfilment predicate and sat-
isfying the axioms of Fig. 4. By that we mean that it does when viewed as the (stable)
structure whose configurations are its downward closed subsets.

By using prescient actions, threads may read values from the shared memory which
have not yet been assigned to the corresponding variable. As predicated in the Java
specification [8], this allows the language implementation to apply compiler optimisa-
tion techniques (such as swapping statements, extracting assignments from the branches
of an if . . . ) without violating the legal executions of a program.

Dependencies. A syntactic dependency set is a set of read events. Given syntactic de-
pendency sets δ1 and δ2, we write δ1δ2 for δ1∪ δ2, while δ e stands for δ ∪{e}. Syntactic
dependencies are attached to statements during evaluation. Intuitively, if x is assigned
the value 7 by a statement x = y + 2, the corresponding write action must depend on
some event labelled by (R, y, 5). When fulfilling the assignment, the operational se-
mantics checks that its syntactic dependencies do correspond to causal dependencies in
the current event space.

An event e is adjoined to an event space η by an operation ⊕. More precisely, let η
and η′ be event spaces; we write η′ ∈ η ⊕ e when:

– |η′| = |η| ∪ {e} and the order in η′ extends that of η conservatively;
– fulfilment in η′ extends that of η conservatively, with e unfulfilled if e : (W );
– if e is labelled by (R, θ, x), then d! holds for all d : (W, θ, x) < e;
– if e : (θ) < d : (θ), then d is an unfulfilled write.

We write η ⊕ e to denote any η′ ∈ η ⊕ e. If no such η′ exists, then η ⊕ e is undefined.
Given an event space η, a dependency set δ and a write action (W, θ, x, v), the expres-
sion η ↓δ (W, θ, x, v) is defined if there exists an unfulfilled event e : (W, θ, x, v) in η
such that d! holds for all d : (W, θ, x) < e, and moreover d′ < e in η for all d′ ∈ δ.
Noting that such an e is necessarily unique, we let η ↓δ (W, θ, x, v), when defined,
denote the event space η with the new fulfilment e!.
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Syntax. We use the following simple fragment of Java.

D-Term ::= D-Stm | D-Expr
D-Stm ::= Stm Dep

D-Expr ::= Expr Dep

Stm ::= ; | Var = D-Expr; | D-Stm D-Stm
| if(D-Expr) D-Stm else D-Stm
| synchronized(Mon) D-Stm
| synchronized(Mon) D-Stm

Expr ::= Lit | Var | Expr Op Expr

Here, Lit is the syntactic domain of literals, which we identify with the domain of
values and where we assume suitable functions op : Lit × Lit → Lit corresponding
to the syntactic binary operators op ∈ Op. Dep stands for the domain of syntactic
dependency sets. A “conventional” Java term like x = 1; is turned into a D-Term
(dependent term) by filling in empty dependency sets, i.e., (x = (1)∅ ;)∅, and we omit
empty dependency sets in our examples.

Operational configurations. An operational configuration represents the state of ex-
ecution of a multi-threaded Java program; therefore, it may include several depen-
dent terms, one for each thread of execution. We call multiterm a partial map from
thread identifiers to dependent terms. We let the metavariable T range over multiterms:
T : Tid ⇀ D-Term. When we assume that θ is not in the domain of T we write T ‖(θ, t)
for the multiterm T ′ such that T ′(θ) = t and T ′(θ′) 
 T (θ′) for θ′ �= θ; where h 
 h′

means that if h is defined so is h′, and vice versa.
An operational configuration is a pair (T, η) consisting of a multiterm T and an event

space η. In writing operational configurations, we generally drop the parentheses and all
parts that are not immediately relevant in the context of discourse; for example, we may
write just “t, η” to mean some configuration (T ‖ (θ, t), η). Operational configurations
are ranged over by γ.

Rule conventions. In writing an axiom γ1 → γ2 we focus only on the relevant parts of
the configurations involved, and understand that whatever is omitted from γ1 remains
unchanged in γ2. For example, we understand that the axiom ; p → p stands for
T ‖ (θ,; p), η → T ‖ (θ, p), η. On the other hand, rules with a premise are read by
assuming that whatever changes occur in the omitted parts of the premise also occur in
the conclusion. For example, we understand that:

e1 → e2

e1 op e → e2 op e
means

T1 ‖ (θ, (e1)δ1), η1 → T2 ‖ (θ, (e2)δ2), η2

T1 ‖ (θ, (e1 op e)δ1), η1 → T2 ‖ (θ, (e2 op e)δ2), η2
.

Operational rules. The operational rules are given in Tab. 1. The metavariables used
(in variously decorated form) in the rule schemes range as follows: u, v ∈ Lit, x ∈ Var,
m ∈ Mon, d, e ∈ Expr, s ∈ Stm, p, q ∈ D-Stm, δ, ε ∈ Dep.

The JMM axioms (Fig. 4) constrain the operational rules. This is because the latter
rely on ⊕ producing a legal event space. For example, an attempt by a thread θ to use
[syn1] for acquiring a lock on m would fail if m is detained by a different thread in the
current state η, because the expression η ⊕ (L, θ, m) would then denote no event space
satisfying the axioms for locks. Similarly, the value v read by θ in x through rule [var]
is forced to comply with the model by the requirement that η ⊕ (R, θ, x, v) be defined.



The Java Memory Model: Operationally, Denotationally, Axiomatically 341

Table 1. Operational rules

[binop1]
d → e

d op e′ → e op e′ [binop2]
d → e

v op d → v op e

[binop3] u op v → op(u, v) [var] θ : x, η → θ : v(R,θ,x,v), η ⊕ (R, θ, x, v)

[assign1]
d → e

x = d; → x = e;
[assign2] θ : x = vε;δ, η → θ : ;δ , η ↓δε (W , θ, x, v)

[if1]
d → e

if ( d) p else q → if ( e) p else q

[if2] (if ( trueε ) p else q)δ → pδε

[if3] (if ( falseε ) p else q)δ → qδε

[if4]
pδ, η → p′

δ, η
′ qδ, η → q′

δ, η
′

(if ( v ) p else q)δ, η → (if ( v ) p′ else q′)δ, η
′

[syn1] θ : synchronized (m) p, η → θ : synchronized (m) p, η ⊕ (L, θ, m)

[syn2]
pδ → qδ

(synchronized (m) p)δ → (synchronized (m) q)δ

[syn3] θ : synchronized (m);, η → θ : ;, η ⊕ (U , θ, m)

[skip] ; p → p [seq]
pδ → p′

δ

(p q)δ → (p′ q)δ

[pre] T, η → T, η ⊕ (W )

Examples. We show that an execution of the sample program in Fig. 5, top-left, started
with all variables initialised to zero can result in r1 and r2 set to 1, as predicated in [9].
Using rule [pre], the operational semantics may first “guess” that x and ywill eventually
be set to 1 and that these settings do not causally depend on any previously read value.
In fact, this will be fulfilled by execution according to the operational semantics, and
thus the Java trace (writing a → b for a ≤ b) in Fig. 5, top-right, can be produced:

r1=x;y=1; ‖ r2=y;x=1;, ∅ [pre]−−→
r1=x;y=1; ‖ r2=y;x=1;, {c′} [assign1, var]−−−−−−−→
r1=1a;y=1; ‖ r2=y;x=1;, {c′ < a} [pre]−−→
r1=1a;y=1; ‖ r2=y;x=1;, {c′ < a < b} [assign2]−−−−→
;y=1; ‖ r2=y;x=1;, {c′ < a < b!} [skip]−−−→
y=1; ‖ r2=y;x=1;, {c′ < a < b!} [pre]−−→
y=1; ‖ r2=y;x=1;, {c′ < a < b!, c} [assign2]−−−−→
; ‖ r2=y;x=1;, {c′ < a < b!, c!} [assign1, var]−−−−−−−→
; ‖ r2= 1a′;x=1;, {c′ < a < b!, c! < a′} [pre]−−→
; ‖ r2= 1a′;x=1;, {c′ < a < b!, c! < a′ < b′} [assign2]−−−−→
; ‖ ;x=1;, {c′ < a < b!, c! < a′ < b′!} [skip]−−−→
; ‖ x=1;, {c′ < a < b!, c! < a′ < b′!} [assign2]−−−−→
; ‖ ;, {c′! < a < b!, c! < a′ < b′!}

where the terms for the threads θ1 and θ2 are shown left and right to ‖.
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Thread θ1 Thread θ2

r1 = x; r2 = y;
y = 1; x = 1;

a : (R, θ1,x, 1)
�

b : (W , θ1,r1, 1)!

c : (W , θ1,y, 1)!

�
a′ : (R, θ2,y, 1)

�
b′ : (W , θ2,r2, 1)!

c′ : (W , θ2,x, 1)!

�

Thread θ1 Thread θ2

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)

y = 1; x = 1;
else
x = 1;

(R, θ1, x, 1)
�

(W , θ1,r1, 1)!
�

(R, θ1,r1, 1)
�

(W , θ1,y, 1)!

�
(R, θ2,y, 1)

�
(W , θ2, r2, 1)!

�
(R, θ2,r2, 1)

(W , θ2, x, 1)

�

Fig. 5. Examples of Java programs and resulting Java configurations

In contrast, in the program

θ1 : r1=x; if(r1==1) y=1; ‖ θ2 : r2=y; if(r2==1) x=1;

the write action for y and x do depend on the values previously read from r1 and
r2, respectively. Consequently, a poset like the one depicted in Fig. 5, bottom-right,
in which (W , θ2,x, 1) does not extend to a fulfilled execution. But, in fact, this Java
configuration with this event being fulfilled is the possible outcome of the program in
Fig. 5, bottom-left, where a single write to x not depending on r2 suffices.

6 Correctness

The JMM [8, §17] is based on a notion of “happens-before”. This notion subsumes on
the one hand the program order po, a thread-wise total order of actions as dictated by
sequentially executing each thread according to the Java language specification; on the
other hand, it is based on the synchronisation order so, the total order of all lock and
unlock actions in a program run. Then the happens-before order hb, which must be a
partial order, is defined to include the transitive closure of po with the synchronises-with
order sw which restricts so to lock and unlock actions on the same monitor.

The action description of the JMM differs from our notion of Java actions with re-
spect to the values, which we included into the actions: In the JMM, two functions V
and W are used where V gives for a write action the value written of this write and W
references for a read action the write seen by this read. The write-seen function must
be compatible with the happens-before order in the sense that no write can be seen by a
read which actually happens after it, and no read can see a write that happened before it
but has been overwritten in the happens-before order. Finally, the JMM requires that all
variables of a program are properly initialised and that these initialisations can be seen
by all threads. For this purpose it strengthens the synchronises-with order to include the
initialising writes and the first action of each thread.
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A (well-formed) execution of a program P with an action set A now, according to
the JMM, is a tuple (P, A, po, so, W, V, sw, hb) fulfilling the description above. It has
to be stressed that the JMM description [8, §17] does not define the connection between
the program P and the actions A and the various orderings and functions. In fact, the
actions actually executed in a program run will, in general, depend on W and V , and
their precise connection would be mutually recursive.

The notion of happens-before alone does not suffice to capture causally legal ex-
ecutions, as it would allow “out-of-thin-air” results to be produced. Thus, the JMM
predicates that an execution X has to be validated by a sequence of other executions
(Xi)i of the same program committing subsequently all actions of X in an increas-
ing sequence (Ci)i. The process of commitments must be such that the happens-before
orders and the value-written functions of X and Xi coincide on already committed ac-
tions in Ci; the writes-seen of Xi, however, need not coincide on Ci, but only on Ci−1,
with the additional requirement that every new read action in Xi has to see a write that
happened-before in Xi and, if it is committed in Ci, then the write-seen must be in
Ci−1. Finally, synchronisation actions immediately following each other in Xi below a
committed action in Ci must persist in the validation process.

In order to prove that our semantics is correct with respect to the JMM, we have to
show that a run of the operational semantics on a multiterm T such that the final Java
trace is fulfilled indeed gives rise to an execution X for T that can be validated by a
sequence (Xi, Ci)i of executions and commitments. We assume in the following that
the operational semantics starts with an initial Java trace ηT that show initialisations for
all variables of P and that ηT will be extended during computation in such a way that
all subsequent events depend on the initialisations.

Let T be a multiterm and let �γ be a computation γ0 → · · · → γn, with γ0 = (T, ηT ),
γi = (Ti, ηi), and ηn totally fulfilled. For the first task, producing an execution, we
observe that the computation �γ induces a total order on the events in ηn by assigning
to each e ∈ |ηn| the index of the computational step in which either it was added, if
e : (R), or e : (L), e : (U ), or it was fulfilled, if e : (W ). We construct an execution

exec(�γ) = (T, |ηn|, po(�γ), so(�γ), W (�γ), V (�γ), sw(�γ), hb(�γ))

as follows: Constraining the total order of events to each thread and to all synchro-
nisation actions, we obtain a program order po(�γ) and a synchronisation order so(�γ),
respectively; this also induces a happens-before order hb(�γ) and a synchronises-with
order sw(�γ). We define the value-written function V (�γ) by setting V (�γ)(e) = v if
e : (W , v) ∈ ηn, and a write-seen function W (�γ) by setting W (�γ)(e) to that e′ ∈ ηn

which satisfies e′ : (W , v) ≤ e : (R, v) in ηn and has the minimum distance of indices
assigned to e and e′.

Lemma 3. exec(�γ) is a well-formed execution of T .

Proof. By construction, hb(�γ) is a partial order. W (�γ) conforms to the requirements of
the JMM as, although there may be several writes of the desired value for a read that
can be seen by the read, there will be at least one valid for W (�γ) by axioms (2–4) on
Java configurations. �
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For the second task, validating an execution exec(�γ), we construct a sequence of execu-
tions and commitments (X(�γ)i, C(�γ)i) inductively as follows: X(�γ)0 and C(�γ)0 are
empty. Assuming X(�γ)k and C(�γ)k to have been defined already for a 0 < k < n, we

let ek+1 be a minimal element of ηn \ Ck. Then there is a computation �γ(k) = γ
(k)
0 →

· · · → γ
(k)
l , with γ

(k)
0 = (T, ηT ), η

(k)
l fulfilled, ηn�C(�γ)k = η

(k)
l , and ek+1 maximal

in η
(k)
l , which uses the [pre] rule only for events in Ck. Indeed, using exec(�γ) as the

guide for executing which statement and action, no rule execution can be prohibited, but
it may produce a different value for the read and write actions. In fact, having chosen
ek+1 to be minimal in ηn \ C(�γ)k all events in the η

(i)
l only depend on actions having

been committed in Ck and thus, in particular, for ek+1 the same value as in η will be
produced. As �γ(k) is a computation, it induces an execution X(�γ)k+1 = exec(�γ(k)) by
Lem. 3; we also set C(�γ)k+1 = C(�γ)k ∪ {ek+1}.

Lemma 4. exec(�γ) is validated by the sequence (X(�γ)i, C(�γ)i)i.

Proof. By construction, the happens-before order of exec(�γ) is preserved on each C(�γ)i

and all read actions either use a happens-before value in X(�γ)i, as the [pre] rule must
not be used for uncommitted actions, or see a happens-before write. �


It is worth noting that we have resolved the dilemma of the mutually dependent defini-
tions of program actions and the values seen and written by these actions in the JMM by
restricting the use of prescient write actions in our construction of a validation sequence.

7 Conclusions and Further Research

We presented a structural operational semantics of a small fragment of Java includ-
ing much of what is needed to understand the JMM. The semantics was proven correct
with respect to the language specification of [8]. The specification of the memory model
(Fig. 4) is separate from the run time semantics (Tab. 1) and yet connected in a single
formal framework which gives unambiguous account of their interplay. We believe this
has been missing in the literature as yet. Moreover, the theoretical foundations of the
proposed framework, combining denotational, operational and axiomatical semantics,
support formal reasoning about programs, specifically for proving correctness of opti-
misation techniques.

There are, e.g., obvious compiler optimisations that the current JMM does not sup-
port. An example is the following program where threads θ1 and θ2 run in parallel:

θ1 : r1=x; r2=y; if(r1==1&&r2==1) z=1;
θ2 : r3=z; if(r3==1) {x=1; y=1;} else {y=1; x=1;}

After reordering the independent statements in the else branch, a compiler may exe-
cute assignments x = 1; and y = 1; early, so that r1, r2, r3 can all be assigned 1.
However, such a behaviour is not legal according to the current JMM, as it violates the
condition that the happens-before orders during validation be consistent with the final
happens-before on the committed actions. In fact, the latter will have the write to x
before the write to y, but during validation the write to y happens before the write to x.
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This is indeed a counterexample to the claim by Manson, Pugh, and Adve [9, Thm. 1]
that in the JMM all independent program statements can be reordered; it seems that
the happens-before order would have to be relaxed, not requiring, e.g., the ordering
of independent program actions. In our framework, such a compiler optimisation can
be included by a simple editing of rule [if4]. The theory of reorderings developed by
Saraswat et al. [12] takes into account also more complicated code rearrangements, but,
like the JMM, is not connected to a language semantics.

On a more theoretical side, we notice that our axiomatisation of the JMM has only
been used to constrain the operational rules by local checks on fragments of a configu-
ration structure, the event spaces. What the whole structure is, which represents the full
program denotationally, can also be made explicit. (The following construction extends
easily to possibly infinite computations, e.g. when including while loops.)

Let η0, . . . , ηn be the sequence of event spaces of a computation �γ. We write η�γ to
denote the last event space ηn in �γ. A computation �γ is called accomplished if all write
actions in η�γ are fulfilled and moreover, if Tn is its last multiterm, then Tn(θ) is ;, when
defined, for all threads θ. We write x to denote a specific occurrence of a variable x in
a program T , and similarly for monitors. Let ET be the set whose elements are either
pairs (x, v), where x is a variable and v a value, or pairs (m, K), where m is a monitor
and K ∈ {L,U }. Viewing the elements of ET as events, we construct a denotational
model of T by assuming that operational semantics adjoins events to the current trace
according to the following protocol:

– [var] adds (x, v) : (R, x, v) if v is the value read at x;
– [pre] adds (x, v) : (W , x, v) if v is the value written in x;
– [syn1] adds (m,L) : (L, m) when evaluating synchronized (m) p;
– [syn3] adds (m,U ) : (U , m) when evaluating synchronized (m);;

Given a program T , we let �T � be the structure whose configurations are sets C ⊆
ET such that there exists an accomplished computation �γ of T and C is a downward
closed subset of η�γ . Note that the causal dependency relation associated with such a C
in �T � is included in, but may not coincide with, the partial order of η�γ restricted to C.

Proposition 2. �T � satisfies the Java axioms.

Proof. Suppose �T � does not satisfy an axiom Γ �ρ Δ. There must exist a trace C in
�T � and an interpretation π : Γ → C violating the conditions of Def. 2. By definition,
|C| is a downward closed subset of some η�γ , and there exists an event space η in �γ
(hence satisfying the axioms) which contains all events in C. By an easy argument, η
satisfies ρ iff so does C, against the assumptions. �


By the arguments developed in Sect. 1, we know that �T � is neither stable nor monotone.
What the algebraic properties of such structures are is still under investigation, and we
believe that such a denotational understanding may provide valuable tools for formal
proofs of program properties.
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