
M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 423–437, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Measuring and Characterizing Crosscutting in
Aspect-Based Programs: Basic Metrics and

Case Studies

Roberto E. Lopez-Herrejon1 and Sven Apel2

1 Computing Laboratory, University of Oxford, England
2 School of Computer Science, University of Magdeburg, Germany

rlopez@comlab.ox.ac.uk, apel@iti.cs.uni-magdeburg.de

Abstract. Aspects are defined as well-modularized crosscutting concerns.
Despite being a core tenet of Aspect Oriented Programming, little research has
been done in characterizing and measuring crosscutting concerns. Some of the
issues that have not been fully explored are: What kinds of crosscutting
concerns exist? What language constructs do they use? And what is the impact
of crosscutting in actual Aspect Oriented programs? In this paper we present
basic code metrics that categorize crosscutting according to the number of
classes crosscut and the language constructs used. We applied the metrics to
four non-trivial open source programs implemented in AspectJ. We found that
for these systems, the number of classes crosscut by advice per crosscutting is
small in relation to the number of classes in the program. We argue why we
believe this result is not atypical for Aspect Oriented programs and draw a
relation to other non-AOP techniques that provide crosscutting.

1 Introduction

Aspects are defined as well-modularized crosscutting concerns, that is, concerns
whose implementation would usually involve (crosscut) multiple traditional modular
units such as classes. Despite the increasing interest and research in Aspect Oriented
Programming (AOP), very little attention has been paid to measuring and
characterizing crosscutting in actual programs [8].

In this paper we present a set of basic code metrics that categorize crosscutting
according to the number of classes crosscut and their language constructs. To
facilitate the description, we present them semi-formally using a functional
programming style. Our metrics rate a crosscutting within a spectrum that goes from
homogeneous to heterogeneous, depending on the number of classes crosscut by
pieces of advice in relation to the number of classes crosscut by all crosscutting
mechanisms of AspectJ. This distinction helps drawing a relation with other
technologies that also provide support for crosscutting [7].

By analysing actual programs and categorizing their crosscutting, our metrics shed
light on the impact of aspects on the overall program structure. We applied our
metrics to four non-trivial AspectJ programs. We found that for these programs, the
number of classes crosscut by advice per crosscutting is small in relation to the

424 R.E. Lopez-Herrejon and S. Apel

number of classes in the program. We argue why we believe this result is not atypical
for Aspect Oriented programs and draw a relation to other non-AOP techniques that
provide crosscutting.

2 Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a novel software development paradigm that
aims at modularizing aspects, which are defined as well-modularized crosscutting
concerns [10][25]. This type of concerns cuts across traditional module boundaries such
as classes and interfaces, and their implementation is scattered and tangled with the
implementation of other concerns. AspectJ is the flagship language of AOP [10]. This is
the implementation language of the case studies we evaluated, thus we use AspectJ to
illustrate and define our metrics. This section explains the basic constructs of the
language. In AspectJ, an application consists of two parts: base code which corresponds
to standard Java classes and interfaces, and aspect code which contains the crosscutting
code. Next we describe the two types of crosscuts that AspectJ provides.

2.1 Static Crosscuts

Static crosscuts affect the static structure of a program [26]. We consider Inter-Type
Declarations (ITDs), also known as introductions, that add fields, methods, and
constructors to existing classes and interfaces1. Let us consider the example in Figure 1a.
It contains an aspect A and three classes X, Y, and Z. The symbols si stand for any statement.
Aspect A has four ITDs that introduce: 1) field q in class X, 2) method n in class Y, 3)
constructor for class Z, and 4) method foo to class X.

aspect A {
double X.q;
void Y.n() { … }
Z.new() { … }
int X.foo() { …}

}

class X {
int p;
void m() { s1; s2; }

}

class Y {
double r;
void m() { s3; s4; }

}

class Z {
byte b;
void m() { s5;s6; }

}

class X {
int p;
void m() { s1; s2; }
double q;
int foo() { …}

}

class Y {
double r;
void m() { s3; s4; }
void n() { … }

}

class Z {
byte b;
void m() { s5;s6; }
Z () { … }

}

(a)

(b)

Fig. 1. Static Crosscut Example

1 AspectJ provides further kinds of static crosscuts which we do not consider for our basic

metrics.

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 425

The process of applying the crosscutting code to the base code is known as
weaving. This is performed with an AspectJ compiler such as ajc with a command as
follows:

ajc A.java X.java Y.java Z.java

The result of weaving is shown in Figure 1b. Class X is augmented with field q and
method foo, class Y has a new method n and class Z has a new constructor. Thus,
aspect A crosscuts all 3 classes in this example as depicted with a dashed line in
Figure 1b2.

2.2 Dynamic Crosscuts

Dynamic crosscuts run additional code when certain events occur during program
execution. The semantics of dynamic crosscuts are commonly described and defined
in terms of an event-based model [27][38]. As a program executes, different events
fire. These events are called join points. Examples of join points are: variable
reference, variable assignment, execution of a method body, method call, etc. A
pointcut is a predicate that selects a set of join points. Advice is code executed
before, after, or around each join point matched by a pointcut.

(a)

(b)

aspect B {
after() : execution (void *.m()) { s7; }

}

class X {
int p;
void m() { s1; s2; s7; }

}

class Y {
double r;
void m() { s3; s4; s7; }

}

class Z {
byte b;
void m() { s5; s6; s7; }

}

Fig. 2. Dynamic Crosscut Example

Let us consider the example in Figure 2a. Aspect B contains a single piece of
advice. This advice captures the execution of methods m, with no arguments and
that return void, of any type (denoted with *). It executes an additional statement,
labelled s7, after the execution of the bodies of method m. The result of weaving
aspect B with classes X, Y, and Z of Figure 1a is shown in Figure 2b, where the
additional statement s7 is added at the end of the method m of the 3 classes. Thus in
this example the advice in aspect B crosscut the 3 classes as depicted with a dashed
line in Figure 2b (underlined and bold).

2 AspectJ generally uses more sophisticated rewrites than those shown in this paper. The

composed code snippets we present simplify illustration and are behaviourally equivalent to
those produced by ajc.

426 R.E. Lopez-Herrejon and S. Apel

3 Basic Crosscutting Metrics

In this section we provide a semi-formal description of our crosscutting metrics. A
goal is to distinguish the contribution to crosscutting stemming from static and
dynamic crosscuts. This on one hand sheds light on how the different language
constructs are used and on the other it helps to relate aspects with other technologies
that can modularize crosscutting concerns.

We describe our using a functional programming style (similar to Haskell [14])
over a simplified abstract program structure. This notation provides a more concise
description than natural language and can serve as a guideline for the implementation
of tools that automatically gather these and related metrics. We start by describing the
abstract structure of our programs, followed by the description of auxiliary functions
used to define our metrics.

3.1 Abstract Program Structure

Aspects do not work in isolation. Their functionality is typically implemented in
conjunction with a set of classes and interfaces [18][29]. Thus we modularize
programs and present our metrics in terms of features [39], sets of aspects, classes,
and interfaces. Defining our metrics in terms of features permits their application to
product line (families of related programs [17]) case studies, an area of increasing
interest for the AOP research community [7].

We define a program P to be a set of features Fi, denoted with the following list:

P=[F1,F2,...,Fn]

Where P is of type program and Fi is of type feature. Figure 3 summarizes the
abstract representation of our programs in the form of a grammar.

A feature F consists of a list of feature elements that can be classes, interfaces or
aspects. A class is a list of class_element which can be of type method,
constructor, field, etc. An interface is a list of interface_element which
can be of type field or method declaration (methoddecl). An aspect is a list of
method (methodITD), constructor (constructorITD), and field (fieldITD) inter-
type declarations, and pieces of advice (advice). These ITDs are denoted as tuples of
class and the corresponding element definition. For example, the tuple for
methodITD is of type (class, method). For pieces of advice we focus only on
the pointcut expression pce and a body. We consider both named and anonymous
pointcuts but we focus only on the pointcut expression formed with poincut
designators and their combinations denoted with operators &&, ||, (), and !.

Finally we define an auxiliary type shadow with a tuple whose elements are a
program_element (elements of classes, interfaces and aspects), a class, and a
pointcut expression pce. A shadow is a place on the source code whose execution
creates join points [32]. We represent a shadow with a tuple of three elements. The
first element of shadow contains the program element that has the shadow (a method
for example for a execution join point), the class that contains the program

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 427

element, and pointcut expression pce that casts the shadow in that program element.
This data structure is not created when programs are originally parsed, instead it is the
result of a weaving mechanism.

In this paper we use only the subset of program structures of AspectJ shown in
Figure 3. However this abstract program representation can be extended, the same is
true for the set of auxiliary functions and metrics we describe in next subsections.

program :: [feature]

feature :: [feature_element]
feature_element :: class | interface | aspect

class :: [class_element]
class_element :: method | constructor | ...

interface :: [interface_element]
interface_element :: methoddecl | field

aspect :: [aspect_element]
aspect_element :: methodITD | constructorITD | fieldITD | advice

methodITD :: (class, method)
constructorITD :: (class, constructor)
fieldITD :: (class, field)

advice :: (pce,body)
pce :: pointcut_expression
shadow :: (program_element, class, pce)
program_element :: class_element | interface_element | aspect_element

Fig. 3. Abstract Program Representation

3.2 Auxiliary Functions

The following functions provide the basic building blocks of the definitions of our
metrics. Note that the names of some of these functions are the plural of the type of
element they return as result.

count. This function returns the number of elements in a list. It has signature (where a
is any type and n is a number):

count :: [a] -> n

loc. This function returns the number of lines of code (LOC). It has signature (where
a is any type and n is a number):

loc :: [a] -> n

union. N-ary and polymorphic disjoint set union. It receives any number of
arguments, unions them and eliminates any repeated elements. We denote its
signature with n entries of type b that when unioned return a list of b elements:

union :: [b1] -> ...-> [bn] -> [b]

sum. Receives as input a list of numbers and performs the summation on them. It has
the following signature where n is a number:

sum :: [n] -> n

428 R.E. Lopez-Herrejon and S. Apel

foreach. Receives as input a list and a function. which applies to all the elements in
the list. It has signature (where a and b are any type):

foreach :: [a] -> a -> b -> [b]

classes. Receives a feature and returns the list of classes in that feature. It has
signature:

classes :: feature -> [class]

interfaces. Receives a feature and returns the list of interfaces in that feature. It has
signature:

interfaces :: feature -> [interface]

aspects. Receives a feature and returns the list of aspects in that feature. It has
signature:

aspects :: feature -> [aspect]

advices. Receives as input a list of aspects and returns the list of pieces of advice
contained in the aspects.

advices :: [aspect] -> [advice]

methodITDs. Receives as input a list of aspects and returns the list of method ITDs
or introductions contained in the aspects.

methodITDs :: [aspect] -> [methodITD]

constructorITDs. Receives as input a list of aspects and returns the list of constructor
ITDs or introductions contained in the aspects.

constructorITDs::[aspect] -> [constructorITD]

ccclasses. This function computes the crosscutting classes from a list of method ITDs,
constructor ITDs or field ITDs, and removes any repeated elements. It has signature
(where symbol | stands for logical or):

ccclasses :: [methodITD | constructorITD | fieldITD] -> [class]

pointcuts. Receives as input a list of aspects and returns a list of pointcut designators
(pce).

pointcuts :: [aspect] ->[pce]

shadows. This function receives as input a list of pointcuts, finds the join point
shadows in a program and returns them in a list:

shadows :: [pce] -> [shadow]

sclasses. This function receives a list of shadows, extracts their classes (second
elements in the shadow tuples), and removes any duplicates.

sclasses :: [shadow] -> [class]

3.3 Program Structure Metrics

The metrics in this section highlight the contribution of aspects to the overall structure
of programs measured in lines of code.

Let P be a program. We define the following metrics:

NOF. Number Of Features. Counts the number of features in a program.
NOF (P) = count (P)

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 429

NOA. Number Of Aspects. Counts the number of aspects in a program.

NOA (P) = sum(foreach (P, λf.(count (aspects (f)))))

The way to understand this definition is as follows. For each feature f in program P
extract its aspects and count them. Sum up all the counts of the aspects in all the
features.

NCI. Number of Classes and Interfaces. Counts the number of classes and interfaces
in a program.

NCI (P) = sum(foreach (P, λf.(count (union (classes (f)) (interfaces(f))))))

BCF. Base Code Fraction. Corresponds to the number of lines of code that come
from standard Java classes and interfaces relative to the lines of code in a program.

BCF(P)= sum(foreach (P, λf.(sum (loc (classes (f)))
 (loc (interfaces (f))))))
 / loc(P)

ACF. Aspects Code Fraction. Corresponds to the number of lines of code that come
from aspects relative to the lines of code in a program.

BCF (P) = sum(foreach (P, λf.(loc (aspects (f))))) / loc(P)

IF. Introductions Fraction. Corresponds to the number of lines of code that come
from introductions or inter-type declarations relative to the lines of code in a program.

IF (P) = sum (foreach (P, λf.(sum (loc (fieldITDs (aspects (f))))
 (loc (methodITDs(aspects (f))))
 (loc (constructorITDs (aspects (f)))))))

 / loc(P)

AF. Advice Fraction. Corresponds to the number of lines of code that come from
pieces of advice relative to the lines of code in a program.

AF (P) = sum (foreach (P, λf.(loc (advices (aspects (f))))))) / loc(P)

3.4 Feature Crosscutting Metrics

In AOP literature, an homogenous concern is one that applies a same piece of advice
to several places; whereas an heterogeneous concern applies different pieces of
advice to different places [7][18]. The metrics in this section adapt these concepts to
features and provide a quantitative criteria to classify features within a spectrum that
goes from homogeneous to heterogeneous according to the number and type of
crosscuts they implement.

Let f be a feature of a program P, we define the following metrics:

FCD. Feature Crosscutting Degree. Corresponds to the number of classes that are
crosscut by all pieces of advice in a feature and those crosscut by the ITDs.

FCD(f,P)= count(union(ccclasses(methodITDs(aspects (f))),
 ccclasses(constructorITDs(aspects (f))),
 ccclasses(fieldITDs(aspects(f))),
 sclasses(shadows(pointcuts(advices(aspects(f))),P))))

430 R.E. Lopez-Herrejon and S. Apel

ACD. Advice Crosscutting Degree. Corresponds to the number of classes that are
crosscut exclusively by the pieces of advice in a feature.

ACD(f,P)= count(sclasses(shadows(pointcuts(advices(aspects(f))),P)))

HQ. We define Homogeneity Quotient as the division of the advice crosscutting
degree (ACD) by the feature crosscutting degree (FCD):

HQ(f,P) = ACD(f,P)/FCD(f,P) if FCD(f,P)!=0
 = 0 otherwise

PHQ. Program Homogeneity Quotient. It corresponds to the summation of the
homogeneity quotients for all the features in a program, divided by the number of
features NOF.

PHQ(P) = sum(foreach(P, λg.HQ(g,P)))/NOF(P)

3.5 Homogeneous vs. Heterogeneous Features

We can categorize features according to their Homogeneity Quotient (HQ) within a
continuum that has at its ends:

• Fully Homogenous Feature: Its pieces of advice crosscut all the classes crosscut
by the feature. That is ACD=FCD and thus HQ=1.

• Fully Heterogeneous Feature: It is either base code (no crosscutting) or all the
crosscutting it does is via ITDs. That is HQ=0.

If the Program Homogeneity Quotient or PHQ tends to value 1 the program is
exploiting the crosscutting capabilities of advice. Also, if PHQ tends to value 0, it can
have two interpretations: 1) majority class crosscuts are due to inter-type declarations,
2) majority of features have no crosscuts at all. Next section we apply our metrics to
four case studies.

4 Case Studies

We applied our set of metrics to four different AspectJ product line systems
developed by us and other researchers. They are:

• ATS. AHEAD Tool Suite is a set of stand alone and language-extensible tools
[3] which implement Feature Oriented Programming (FOP), a technology that
studies feature modularity in program synthesis for product lines [13]. We
performed our study in the AspectJ implementation of five core tools of ATS
[30]. Its code is available upon request.

• FACET. Framework for Aspect Composition for an EvenT channel is an
AspectJ implementation of a CORBA event channel, developed at the
Washington University [24]3. The goal of the FACET project is to investigate
the development of customizable middleware using AOP. Features in FACET
are for example different event types, synchronization, the CORBA core, or
tracing.

3 Source code available at http://www.cs.wustl.edu/~doc/RandD/PCES/facet/

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 431

0.10
0.13

0.08
0.31
0.69

107
55
19

3964

Prevayler

0.00
0.00

0.01
0.01
0.99

351
10
13

22104

AJHotDraw

0.080.12Other Aspect Code
0.060.01AF - Advice Fraction

0.050.19IF - Introductions Fraction
0.190.32ACF - Aspect Code Fraction
0.810.68BCF - Base Code Fraction

181524NCI - Number of Classes & Interfaces
113503NOA - Number Of Aspects
3448NOF - Number Of Features

636456727Program Total Lines Of Code

FACETAHEAD

0.10
0.13

0.08
0.31
0.69

107
55
19

3964

Prevayler

0.00
0.00

0.01
0.01
0.99

351
10
13

22104

AJHotDraw

0.080.12Other Aspect Code
0.060.01AF - Advice Fraction

0.050.19IF - Introductions Fraction
0.190.32ACF - Aspect Code Fraction
0.810.68BCF - Base Code Fraction

181524NCI - Number of Classes & Interfaces
113503NOA - Number Of Aspects
3448NOF - Number Of Features

636456727Program Total Lines Of Code

FACETAHEAD

Fig. 4. Program Structure Metrics Summary

• Prevayler. Prevayler is a Java application that implements transparent
persistence for Java objects. In other words, it is a fully-functional main
memory database system in which a business object may be persisted. Prevayler
was refactored at the Universtiy of Toronto using AspectJ and horizontal
decomposition [21]4. Features are for example persistence, transaction, query,
and replication management.

• AJHotDraw. AJHotDraw is an aspect-oriented refactoring of the JHotDraw
two-dimensional graphics framework. It is an open source software project that
provides numerous features for drawing and manipulating graphical and planar
objects [1].

4.1 Program Structure Metrics

We applied the first set of metrics to our four case studies. We obtained the following
results, summarized in Figure 4:

• ATS. The core tools are formed with 48 features for a total 56727 LOC. To
the best of our knowledge, we are not aware of any product line in AspectJ of
scale comparable to this case study. Base code constitutes 68% of the program
code implemented in 524 standard Java classes and interfaces. Aspect
corresponds to 32% implemented in 503 aspects. Of this percentage, 19%
comes from ITDs, while approximately 1% was contributed by from pieces of
advice. The remaining 12% correspond to other constructs such as package
imports.

• FACET. It consists of 34 features implemented in 6364 LOC. Base code is
81% of total LOC using 181 classes and interfaces. Aspect code is 19% of
which 5% are ITDs, 6% are pieces advice, and the remaining 8% comes from
other aspect constructs such as aspect methods.

• Prevayler. The code base of Prevayler is 3964 LOC modularized into 19
features. Base code is 69% of features LOC and its implemented in 107 classes

4 Source code available at http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/

432 R.E. Lopez-Herrejon and S. Apel

and interfaces. The other 31% of total LOC is aspect code, of which 8% comes
from ITDs, 13% from pieces of advice, and the remaining 10% from other
aspect constructs.

• AJHotDraw. It consists of 13 features for a total of 22104 LOC. It is
implemented with 351 classes and interfaces and only 10 aspects. Not
surprisingly 99% percent of the code is standard Java and only 1% of aspect
code, of which almost all comes from ITDs.

4.2 Feature Crosscutting Metrics

ATS. Figure 5 shows the histogram of the homogeneity quotient of the 48 features of
ATS. As expected, given the program structure metrics of ATS, most features have no
crosscutting, homogeneity quotient of 0. The program homogeneity quotient (PHQ) is
0.03 which indicates a very small use of pieces of advice.

ycneuqerF

0

10

20

30

40

0 0.5 1

HQ Values

HQ Histogram

ycneuqerF

0

10

20

30

40

0 0.5 1

HQ Values

HQ Histogram

Fig. 5. ATS Homogeneity Quotient Histogram

FACET. Figure 6 shows the homogeneity quotient histogram of the 34 features of
FACET. This histogram, as opposed to the one for ATS, has a more balanced
distribution, with a program homogeneity quotient whose value is 0.5098.

However, this number has to be put in context. Out of the 34 features of FACET,
22 use pieces of advice. Almost all features that use advice crosscut between 1 and 4
classes, on average 1.3
classes. The exception is
a tracing feature that
crosscuts all the 181
classes of FACET. Thus,
even though around a half
of the features are homo-
geneous the actual impact
of advice is limited in
terms of the number of
classes they crosscut, and
the percentage of code they
constitute.

HQ Histogram

0

5

10

15

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0

5

10

15

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 6. FACET Homogeneity Quotient Histogram

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 433

Prevayler. Figure 7 shows the homogeneity quotient histogram of the 19 features of
Prevayler. This histogram shows that most of Prevayler’s features are homogeneous
with a program homogeneity quotient of 0.7805. Again this result is put in context.
On average, each feature crosscuts 3.5 classes, a small percentage of the 107 classes
that form Prevayler.

HQ Histogram

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 7. Prevayler Homogeneity Quotient Histogram

AJHotDraw. Figure 8 shows the homogeneity quotient histogram of the 13 features
of AJHotDraw. Given that most of its code is standard Java, its program homogeneity
quotient is close to zero 0.0854. Only three of the thirteen features implement
crosscuttings: one fully homogenous (uses advice and crosscuts 12 classes), one fully
heterogeneous, and one where most crosscutting comes from ITDs (uses advice and
crosscuts one class, HQ is 0.1111).

HQ Histogram

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

HQ Histogram

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1

HQ Values

ycneuqerF

Fig. 8. AJHotDraw Homogeneity Quotient Histogram

434 R.E. Lopez-Herrejon and S. Apel

5 Collaborations and Heterogeneous Features

Aspects are not the only technique that provides support for crosscutting. There are
several techniques categorized as collaboration-based designs that also have
crosscutting capabilities. This line of research is at least a decade old
[23][34][36][37]. A collaboration is a set of objects (hence the crosscutting) and a
protocol that determines how the objects interact. The part of an object that enforces
the protocol in a collaboration is called a role [35][37]. One of their goals is to
provide a more flexible modularity unit to improve reuse in multiple configurations or
compositions for the development of different programs. Thus, collaborations are
mechanisms to implement features for product lines [12].

Collaborations can be implemented using several Object Oriented techniques. The
kinds of program increments these techniques support are ultimately bound by the
Object Oriented ideas they rely upon (i.e. inheritance, polymorphism, encapsulation,
etc.). A technique that implements collaborations is FOP and its implementation in
AHEAD [13]. For example, using FOP the crosscutting implemented in aspect A of
Figure 1a is implemented as follows:

refines class X {
double q;
int foo() {…}

}

refines class Y {
void n() { …}

}

refines classZ {
Z () { …}

}

Fig. 9. Crosscutting Example in FOP

The kinds of crosscutting that AHEAD and other collaboration-based designs
techniques support correspond to AspectJ’s static crosscutting inter-type declarations
that we considered. In other words, the distinctive characteristic of aspects is its
support for dynamic crosscuts implemented with pieces of advice.

We have seen that in the four case studies we analysed, the pieces of advice
crosscut a relatively small number of classes in comparison with the number of
classes in the entire programs. Furthermore, the percentage of lines of code is also
small, ranging from 1% to 13% in our examples, on average 6%. These numbers beg
the questions: Are these results typical? What is the real impact of aspects in software
development if their distinctive trait is advice?

We claim that these results are not atypical. Our experiences and other’s working
with product lines and aspect programs lead us to conjecture that most of the features
or crosscuttings in programs are of heterogeneous nature, and that pieces of advice
crosscut few classes relative to the number of classes that build a system [8][30][18].
Intuitively, the reason behind this conjecture is that large programs are not
synthesized by adding the same piece of code in different places, but rather, adding
different pieces of code in different places [6].

Our response to the second question is that aspects can be extremely useful for
modularizing crosscutting that involves many classes such as logging, however these
types of crosscutting are not pervasive in all software systems and constitute a small
fraction of the overall code.

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 435

6 Related Work

Several metrics have been proposed for aspects. Zhao and Xu describe metrics for
aspect cohesion based on aspect dependencies graphs [41]. Zhao also utilizes a similar
framework to define measurements for aspect coupling [40]. Their metrics are
formally described, however they lack concrete architectural interpretation and, to the
best of our knowledge, have not been applied to actual case studies.

Coupling metrics have been proposed by Ceccato and Tonella [15]. They extend
and adapt to AOP some of Chidamber and Kemerer’s metrics for Object Oriented
systems [16]. This set of metrics is defined informally and it is applied to a tiny case
study (250+ LOC), Hannemann’s implementation of the Observer Pattern [22].
However, its is unclear how these metrics would extrapolate to larger case studies and
their architectural significance.

Bartsch and Harrison evaluate five metrics in Ceccato and Tonella’s work [11].
They argue that only one of the evaluated metrics can be considered well-defined
(lacks any interpretation ambiguities), and none of them are completely valid from a
measurement theory point of view. Along the same lines, Mehner proposes a series of
steps to validate AOP metrics and their application [33].

An extensive study on modularizing design patterns have been performed by
Garcia et al. [20]. They use Hannemann’s implementation of GoF patterns to apply
seven metrics that extend and adapt to AOP Chidamber and Kemerer’s metrics [16].
Their metrics are informally defined and their results are given an interpretation in
terms of improvement of separation of concerns and reuse.

Coupling metrics for AOP certainly depend on the crosscutting capabilities of
aspects. Our metrics focus only on crosscutting relations produced by pointcut
shadows and ITD’s, and do not consider cases such as method calls or field references
which the above coupling metrics account for.

7 Conclusions and Future Work

In this paper we present a semi-formal description of a set of crosscutting metrics.
Our metrics categorize crosscutting within an spectrum from heterogeneous to
homogeneous depending on the number of classes crosscut by pieces of advice in
relation to the number of classes crosscut by all crosscutting mechanisms of AspectJ.
This distinction helps draw a relation with other technologies that also provide
support for crosscutting.

We applied our set of metrics to four case studies. We found that for these
programs, the number of classes crosscut by advice per crosscutting is small in
relation to the number of classes in the program, and that crosscuttings are mostly
heterogeneous. We argued that this finding is not atypical as programs are not
synthesized by adding the same piece of code in different places, but rather, adding
different pieces of code in different places. We are in the process of applying our
metrics to other case studies to provide more empirical arguments to further support
our conjecture.

Earlier work of the first author described a preliminary definition of our metrics
that were applied to a single case study [31]. Work of the second author categorizes

436 R.E. Lopez-Herrejon and S. Apel

crosscuts in two dimensions [7][9]. We plan to integrate these two dimensions into
the set of metrics presented here. We also intend to extend our metrics to address
issues such as cohesion and coupling for features. These extended metrics could help
identify opportunities for feature refactoring.

We collected the Program Structure Metrics with the AJStats tool. This tools is
under development at the University of Magdeburg and it is publicly available [2].
Currently we are collecting the Feature Crosscutting Metrics manually. We are
exploring different possibilities to extend AJStats to collect this set of metrics. Our
goal is to develop tool infrastructure that would allow the implementation of these and
other metrics in a simple and extensible way.

References

1. AJHotDraw project web site http://sourceforge.net/projects/ajhotdraw .
2. AJStats tool project website http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ajstats/ .
3. AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/schwartz
4. Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and Evolving Game

Product Lines. SPLC (2005)
5. Anastasopoulus, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a

Product Line Implementation Technology. ICSR (2004)
6. Apel, S.: The Role of Features and Aspects in Software Development. PhD Dissertation.

School of Computer Science, University of Magdeburg, 2007.
7. Apel, S., Leich,T., Saake. G.: Aspectual Mixin Layers: Aspects and Features in Concert.

ICSE (2006)
8. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. GPCE (2006)
9. Apel, S., Batory, D.: On the Structure of Crosscutting Concerns: Using Aspects or

Collaborations?. AOPLE (2006)
10. AspectJ, http://eclipse.org/aspectj/.
11. Bartsch, M., Harrison, R.: An Evaluation of Coupling Measures for AspectJ. LATE

Workshop AOSD (2006)
12. Batory, D., Cardone, R., Smaragdakis, Y.: Object-Oriented Frameworks and Product-

Lines. SPLC (2000)
13. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE,

June (2004)
14. R. Bird.: Introduction to Functional Programming using Haskell. Prentice Hall (1998)
15. Ceccato, M., Tonella, P.: Measuring the Effects of Software Aspectization. First Workshop

on Aspect Reverse Engineering. Delft, The Netherlands (2004)
16. Chidamber, S., Kemerer, C.: A Metrics Suite for OOD Design. IEEE TSE 20(6) (1994)
17. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-

Wesley (2002)
18. Coyler, A., Clement, A.: Large-scale AOSD for Middleware. AOSD (2004)
19. Coyler, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program Families.

TRCOMP-001-2004, Computing Department, Lancaster University, UK (2004)
20. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:

Modularizing Design Patterns with Aspects: A Quantitative Study. Transactions on
TAOSD I. LNCS 3880 (2006)

21. Godil, I., Jacobsen, H.-A.: Horizontal Decomposition of Prevayler. CASCON (2005)

 Measuring and Characterizing Crosscutting in Aspect-Based Programs 437

22. Hannemann, J.: AspectJ implementation of GoF patterns. http://www.cs.ubc.ca/~jan/
AODPs

23. Holland, I.: Specifying Reusable Components using Contracts. ECOOP (1992)
24. Hunleth, F., Cytron, R.: Footprint and Feature Management Using Aspect-Oriented

Programming Techniques. In Proceedings of the Joint Conference on Languages,
Compilers, and Tools for Embedded Systems & Software and Compilers for Embedded
Systems (LCTES/SCOPES), pages 38~V45 (2002)

25. Kiczales, G., Hilsdale, E., Hugunin, J., Kirsten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. ECOOP (2001)

26. Laddad, R.:. AspectJ in Action. Practical Aspect-Oriented Programming. Manning (2003)
27. Lämmel, R.: Declarative Aspect-Oriented Programming. PEPM (1999)
28. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced

Modularization Techniques. ECOOP (2005)
29. Lopez-Herrejon, R.E., Batory, D., Lengauer, C.: A disciplined approach to aspect

composition. PEPM (2006)
30. Lopez-Herrejon, R.E., Batory, D.: From Crosscutting Concerns to Product Lines: A

Function Composition Approach. Tech. Report UT Austin CS TR-06-24. May (2006)
31. Lopez-Herrejon. R.E.: Towards Crosscutting Metrics for Aspect-Based Features. AOPLE

Workshop at GPCE (2006)
32. Masuhara, H., Kiczales, G.: Modeling Crosscutting Aspect-Oriented Mechanisms. ECOOP

(2003)
33. Mehner, K.: On Using Metrics in the Evaluation of Aspect-Oriented Programs and

Designs. LATE Workshop AOSD (2006)
34. Reenskaug, T., Anderson, E., Berre, A., Hurlen, A., Landmanrk, A., Lehne, O.,

Nordhagen, E., Ness-Ulseth, E., Ofdetal, G., Skaar, A., Stenslet, P.: OORASS : Seamsless
Support for the Creation and Maintenance of Object-Oriented Systems. Journal of Object
Oriented Programming, 5(6): (1992)

35. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM April (2002)

36. Van Hilst, M., Notkin, D.: Using C++ Templates to Implement Role-Based Designs.
JSSST International Symposium on Object Technologies for Advanced Software.
Springer-Verlag (1996)

37. Van Hilst, M., Notkin, D.: Using Role Components to Implement Collaboration-Based
Designs. OOPSLA (1996)

38. Wand, M., Kiczales, G., Dutchyn, C.: A Semantics for Advice and Dynamic Join Points in
Aspect Oriented Programming. TOPLAS (2004)

39. Zave, P.: FAQ Sheet on Feature Interaction. http:// www.research.att.com/~pamela/ faq.html
40. Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. Technical Report SE-142-6.

Information Processing Society of Japan (IPSJ), June (2003)
41. Zhao, J., Xu, B.: Measuring Aspect Cohesion. FASE (2004)

	Introduction
	Aspect Oriented Programming
	Static Crosscuts
	Dynamic Crosscuts

	Basic Crosscutting Metrics
	Abstract Program Structure
	Auxiliary Functions
	Program Structure Metrics
	Feature Crosscutting Metrics
	Homogeneous vs. Heterogeneous Features

	Case Studies
	Program Structure Metrics
	Feature Crosscutting Metrics

	Collaborations and Heterogeneous Features
	Related Work
	Conclusions and Future Work
	References

