
Ensuring Consistency Within Distributed Graph
Transformation Systems

Ulrike Ranger and Thorsten Hermes

RWTH Aachen University
Department of Computer Science 3 (Software Engineering)

Ahornstraße 55, 52074 Aachen, Germany
{ranger,thermes}@i3.informatik.rwth-aachen.de

Abstract. Graph transformation systems can be used for modeling the
structure and the behavior of a software system in a visual way. In our
project, we extend existing graph transformation systems to model and
execute distributed systems. One challenge in this context is the simul-
taneous and correct modification of the local runtime graphs of the par-
ticipating applications by visual distributed graph transformations.

As the execution of these transformations may cause inconsistencies
in the local runtime graphs, we present an approach to avoid inconsis-
tencies: A runtime mechanism translates invalid graph transformations
into valid transformations. This translation is based on predefined rules
describing the substitution of invalid transformation parts. Thus, new
graph transformations are dynamically built at runtime. Furthermore,
the runtime mechanism controls access within a distributed system.

1 Introduction

For the software development process, the use of visual modeling languages be-
comes more and more important. The most famous representative of such a
language is the Unified Modeling Language (UML). By using different diagram
types, like use-case, class and sequence diagrams, the UML supports the different
phases of a software development process. These diagrams are advantageous as
they serve as basic development artifacts and allow the visualization of different
abstraction levels of the software system.

There are several tools enabling the drawing of UML diagrams, e.g. Rational
Rose and Poseidon. They allow the generation of class templates according to
UML class diagrams. Unfortunately, they do not support the generation of source
code for UML behavior diagrams representing modifications on object structures.

Graph transformation systems (GTS) fill this gap, as they support the spec-
ification of static and dynamic software aspects and the generation of source
code from the specification. Graphs are descriptive data structures and math-
ematically founded. A lot of efficient algorithms already exist for solving prob-
lems on graphs. Two representatives of GTS are PROGRES [1] and Fujaba
[2], which have been used to model software system with complex data struc-
tures, e.g. process management systems, authoring tools, and systems for reverse

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 368–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ensuring Consistency Within Distributed Graph Transformation Systems 369

engineering. The structure of the software system is defined by a graph schema.
The dynamic aspects are modeled as graph transformations, allowing the cre-
ation and modification of a runtime graph conforming to the graph schema. Both
schema and transformations can be specified textually as well as visually.

Based on the specification, the GTS generates source code, from which a
visual prototype may be created e.g. using the UPGRADE framework [3]. As
UPGRADE is an extensive framework, the prototype can be configured and
adapted to the user’s need. With this abstraction from the runtime graph and
the graph transformations, the prototype allows the developers to observe the
modeled software system and its behavior from a desired view.

GTS are restricted to the modeling of local systems. Our project aims at
the extension of GTS for the modeling and execution of distributed systems.
In a distributed system, each participating application is based on a separate
specification and stores its own runtime graph. Every application (acting as a
server) defines its interface. It provides graph elements, which can be used in
specifications of other applications (clients). A client can either call pre-defined
transformations contained in interfaces or model new graph transformations vi-
sually, by using interface elements as remote objects. In this paper, we focus
on the visual modeling of distributed transformations, as the textual modeling
is studied in [4]. The execution of visually defined transformations modifies the
client runtime graph as well as the server runtime graphs. Since an interface
does not and even cannot cover all graph constraints of an application’s specifi-
cation, the execution may lead to inconsistencies in the different runtime graphs.
A transformation causing inconsistencies is called an invalid transformation.

In [5] we described the modeling and execution of visual distributed graph
transformations disregarding the mentioned inconsistencies. In this paper, we
present our concepts to avoid the execution of invalid transformations by en-
abling the server to modify these transformations dynamically at runtime. With
the use of queries on the runtime graph and predefined rules describing how
invalid transformation parts are translated into valid parts, valid graph transfor-
mations are built from the invalid transformations. This mechanism can also be
used for introducing access rights.

The paper is structured as follows: In Section 2 we introduce the general struc-
ture of a distributed system and show how such a system can be modeled with a
GTS. We explain these concepts considering an example of a simplified process
management system. Section 3 describes our approach for avoiding inconsisten-
cies within the distributed system, which may be caused by the execution of
invalid distributed graph transformations. We present similar approaches and
compare them to our approach in Section 4. A summary and an outlook to
future work is given in Section 5.

2 Specifying Distributed Systems with GTS

In this section, we introduce how distributed systems can be specified with GTS.
We first describe the general architecture of a distributed system and then show

370 U. Ranger and T. Hermes

Middleware

Legend

Local graph node

Reference graph node
Local graph edge

Runtime graph

Visual prototype

„Refers to“ - relation
Communication

Application 1

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Node of the graph view
Edge of the graph view

Application 3

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Application 2

Transform.: Graph:
addNode()
delNode()
addEdge()
…

Fig. 1. Basic architecture of a distributed system

the modeling of its structure and behavior. The modeling is shown by means of
an abstract graph language resembling the PROGRES language.

2.1 Architecture of a Distributed System

In our approach, a distributed system consists of several applications, which are
all built according to the tool construction process described in section 1:
(1) specifying the desired software application with the graph language of the
GTS, (2) generating appropriate source code from the specification, and (3) cre-
ating a visual prototype. Figure 1 shows the basic architecture of a distributed
system consisting of three applications1. For every application, the visual proto-
type and the runtime graph is depicted. The prototype shows the application’s
state, which is stored in the runtime graph. The user can call graph transforma-
tions modeled within the specification and observe their impacts on the runtime
graph. The graph transformations can vary from simple graph modifications, like
addNode for adding a new node of a certain type, to complex graph modifications,
like produceDoc which will be described in Section 2.3.

The coupled applications perform different tasks and are used separately by
different users. For coupling the applications and exchanging data between them,
they require access to runtime graphs of other applications. For restricting the
access to all data, every application has to specify an interface defining the nodes
1 For sake of simplicity, we assume that all coupled applications have well-defined

tasks and thus are based on different specifications. I.e. every specification is not
executed more than once within a distributed system.

Ensuring Consistency Within Distributed Graph Transformation Systems 371

and edges which may be used by other applications (clients) (see Section 2.2).
Our approach is general enough that an application may act as client and server
simultaneously, but in this paper we restrict the applications to act either as
client or as server. Instead of replicating remote nodes with their data, we use
reference nodes in the client runtime graphs allowing the direct access on remote
server nodes2. Reference nodes do not store any data but the location of the
remote object. They are helper structures supporting the realization of relations
between nodes located in different applications.

The communication between the applications, like propagating modifications
to remote nodes, is done by a middleware. The middleware uses existing tech-
nologies like RMI or CORBA. At the moment, we use a synchronous commu-
nication model, which supports distributed transactions guaranteeing a defined
and consistent state of the entire system. In the following, we will not focus on
its implementation but on modeling a distributed system in a visual way. The
code generation of the GTS is responsible to generate code for the middleware.

2.2 Structure of a Distributed System

In this section, we show how the static structure of a distributed system is mod-
eled with the abstract graph language. For this purpose, we introduce the sim-
plified process management system SPMS as example, which is the first distrib-
uted and extensive system we have modeled with our new concepts. The SPMS
manages the tasks, documents, and resources needed for complex processes, like
the development of a software system. These aspects are modeled and executed
as separate applications, which have to be coupled at runtime to form a com-
prehensive process management system. In Figure 2 the class diagrams of the
applications, the SPMS consists of, are depicted. The class diagrams represent
the graph schemas3 of the applications, in which the classes correspond to node
types and associations between classes correspond to edge types.

The Resource Manager handles all human and computer resources needed for
executing and performing the tasks of complex processes. A resource is mod-
eled by node type R, which has an attribute rName for its name and a boolean
attribute occupied indicating the activity state. Additionally, a resource can be
assessed by using node type A (abbreviation for assessment). In the Document
Manager the documents (modeled by node type D) are managed, which serve
as input for tasks and are produced by tasks. The Document Manager stores all
documents alphabetically ordered in a linear list using edge type nextElem. This
list is needed for giving the local users of the Document Manager a clear overview
of all existing documents. Furthermore, edge type basedOn models dependencies
between documents. In the Task Manager the actual process is designed by divid-
ing and structuring it into several smaller tasks using node type T. These tasks
have to be executed in a specific order determined by edges of type nextTask.

In the SPMS, the Task Manager is used for coupling the applications, although
another application could have also been used. As the applications are developed
2 In contrast to reference nodes, we do not store reference edges as they are of no use.
3 We use directed node- and edge-labeled graphs, in which nodes may be attributed.

372 U. Ranger and T. Hermes

Legend
Self-defined node class

Used node class
Self-defined edge type
Used edge type

<e> Export stereotype

uses

Document Manager
Specification

nextElem

1
1 D

<e>

+ dName
<e> basedOn

1
1

Resource Manager
Specification

assessed
1

A
rating*

R

<e>

+ rName
- occupied

uses

Task Manager
Specification

nextTask
T

**

needs
1

1
*

produces

basedOn
D

dName

writes
*
1

tName
1

R
rName

**

*
input

*

Fig. 2. Static structure of the SPMS

Document Manager

nextElem

Resource Manager

Task Manager

assessed

assessed

nextTask

needsproduces needsproduces

Task:
Requirements

writes

Requirements
Specialist

writes

SW-Architect

Task:
Design

input

basedOn

Document:
Design

nextElembasedOn

Document:
Requirements

Document:
Order

Fig. 3. Sample runtime-graph of the SPMS

separately, the Task Manager does not have any knowledge about the other ap-
plications. Therefore, the Resource Manager and the Document Manager define
interfaces containing the types, which may be used by the Task Manager. The
interfaces are not separated from the implementations, but implicitly defined by
marking the respective visual elements with the <e>-stereotype (including the
public attributes of node types). The interface of the Resource Manager consists
of node type R and its attribute rName. Node type D, its attribute dName and
the edge type basedOn compose the interface of the Document Manager.

Interface elements are read only and thus must not be changed by a client, e.g.
by adding an attribute to a node type. This fact is emphasized in the specification

Ensuring Consistency Within Distributed Graph Transformation Systems 373

by illustrating the used graph elements by striped rectangles and dashed arrows.
To integrate interface elements, the used graph elements and the self-defined
elements can be related by defining edge types between them. For example, if a
resource performs a certain task, this is modeled by an edge type needs in the
Task Manager relating the self-defined node type T and the used node type R
(see Figure 2). In that way, the interrelations between the different applications
can be modeled using local edges.

Figure 3 shows an example of a SPMS runtime graph, which is a possible
instantiation of the model (graph schema) depicted in Figure 2. The Task Man-
ager has several tasks for the development of a software system, which refer to
documents and resources in the other applications.

2.3 Modeling the Behavior

Based on the static structure of the SPMS shown in Figure 2, the behavior of
the distributed system can be specified by graph transformations. In this paper,
we focus on the visual specification of distributed graph transformations.

Basically, a visual graph transformation4 consists of a left-hand side (LHS)
and a right-hand side (RHS). The LHS defines a graph pattern, which is searched
for in the runtime graph. A sub-graph in the runtime graph conforming to the
LHS is called match. If several matches are found, one of them is chosen non-
deterministically. The RHS of the transformation defines the modifications of the
match, e.g. creating nodes. For the definition of visual transformations, graph
languages offer an expressive variety of language constructs. The graph languages
provide also the definition of graph queries, which only search for a match.

One essential advantage of specifying graph transformations visually is the
modeling of the behavior in a declarative way, i.e. the modeling of what the
transformation does instead of how the specified modifications can be achieved.
In distributed graph transformations, the specified behavior lead to the simul-
taneous modification of several runtime graphs belonging to different applica-
tions. Distributed graph transformations are executed as transactions, i.e. either
all modifications or no modification at all are performed, fulfilling the ACID
properties known from databases. As the syntax and semantics of distributed
transformations are described in [5], we only present a simple example here.

Figure 4 shows the distributed graph transformation produceDoc for producing
a new document by a task. This transformation is specified in the Task Manager,
but its execution affects also the state of the Document Manager. A task t and
a document d, representing a remote node in the Document Manager, are given
as input parameters. The LHS consists of these nodes and an edge of type input
incident to them. Furthermore, it contains a resource r referencing a node in the
Resource Manager, which is needed by the task t. On the RHS, all nodes and
edges of the LHS are preserved and additionally a new document nd is created.
For integrating the new document nd in the existing graphs, a writes-edge is
created connecting r and nd showing that nd is written by r. Furthermore, a
4 In some GTS approaches, a visual graph transformation is called a production or

rule.

374 U. Ranger and T. Hermes

Task Manager

Specification
transformation produceDoc(t:T, d:D) =

Runtime-Graph Runtime-Graph

::=

Legend

Edge of a self-
defined edge type

Specification

Runtime-Graph

Node of a self-
defined node class

RA

Resource Manager

Runtime-Graph Runtime-Graph

RS

Document Manager

Node of a used
node class

Edge of a used
edge type

Local edge

Reference node

Local node

needs r

writes

t
produces

nd:DbasedOn

needs r:Rt

input

TD

DR DD

TR RATD

DR

TR

RA

A5

A1

RS

RA

A5

A1

Runtime-Graph Runtime-Graph

DO DO

DD

d
input
d

DR DR

Fig. 4. Transformation for producing a new document

produces-edge incident to task t and the document nd is created. As nd is based
on d, a edge of type basedOn is created connecting both documents.

When executing produceDoc, the runtime graphs of the Task Manager and the
Document Manager are modified, as node and edge types of both are used in
the transformation. These modifications are depicted in the runtime graphs in
Figure 4 affecting local and reference nodes. For example, in the Document Man-
ager a new local node with id DD for the new document nd in the transformation
is created, while in the Task Manager only a reference node pointing to node
DD is created. This behavior is founded in the fact that node type D is specified
in the Document Manager and the Task Manager acts only as client for this
type. Thus, every node of type D logically belongs to the Document Manager
and coupled applications may only have references on these nodes. The resulting
runtime graphs depicted in Figure 4 correspond to the SPMS state shown in
Figure 3 (for lack of space only the initials of nodes are shown in Figure 4).

2.4 Execution of Distributed Transformations

The search of a graph pattern has an exponential worst-case complexity and
becomes even more cost-intensive when concerning different applications. [6]
presents an approach to divide the LHS specified in a client into several sub-
patterns, each affecting exactly one application. The sub-patterns are sent to
the server applications at runtime using GTXL [7], instead of querying the ap-
plications for every single pattern element. The server applications respond with
appropriate matches, thus reducing the communication costs. After determining
the match for the LHS in the client, the modifications are performed according to
the RHS. We use a similar mechanism for them: We divide the distributed graph
transformation of the client into several sub-transformations, each affecting one
application. The sub-transformations are sent to the server applications using
GTXL and are then executed. For example, the transformation on the left in
Figure 5 is a sub-transformation of produceDoc sent to the Document Manager.

Ensuring Consistency Within Distributed Graph Transformation Systems 375

transformation t1 (d:D) =

::=d nd:D
basedOn

d

1 d:D

nd:D

basedOn

GTXL graph t1

<create>

<create>

2

d:D

nd:CreateD

CreateBasedOn

transformation graph t1
3

Fig. 5. Representations of a visual graph transformation

GTXL provides a XML-based format for exchanging graphs and transforma-
tions. The structure of a transformation in GTXL may be regarded as graph, in
which the nodes and edges are marked with stereotypes describing their modifi-
cation. Figure 5 shows an example of a graph transformation 1© and its abstract
graph representation in GTXL 2© (3© will be explained in Section 3).

When executing a sub-transformation, inconsistencies in the runtime graph
of the server application may occur. These can be caused by create operations,
which insert new nodes and edges in the server’s runtime graph, delete opera-
tions, destroying nodes and edges of a server, and attribute operations, which
change the attribute values of server objects. All these operations transform the
server runtime graph without considering its internal constraints. For example,
when executing transformation produceDoc depicted in Figure 4, a new document
is created in the Document Manager. As the Task Manager does not know that
the Document Manger stores all documents in a linear list, he has not specified
the insertion of the new document in the list. This causes local inconsistencies,
because the linear list does not contain all documents of the Document Manager,
but it relies on a consistent list structure. This problem is called graph rewrit-
ing dilemma [8]: The interfaces have to provide node and edge types, which are
visually available in client specifications, but due to data abstraction the inter-
faces do not cover entire graph schemas with all specification constraints. Since
this is an important aspect in software engineering, we present an approach for
preserving information hiding and solving the graph rewriting dilemma.

3 Meta-transformations

In this section, we describe a mechanism to deal with invalid graph transforma-
tions specified in a client application: The server dynamically translates them
into valid graph transformations, which also update the internal data hidden by
the interface. The translation mechanism is invoked by the server application
for every incoming query or transformation received from a client (via GTXL).
This mechanism can also be used for access control (e.g. as described in [9]).

3.1 The Meta-transformation Approach

Since we use graph transformations to describe the applications’s behavior, it is
only natural to use the same approach for ensuring consistency. As illustrated

376 U. Ranger and T. Hermes

in Figure 5, an incoming graph transformation5 can be viewed as a graph. The
server first translates the incoming GTXL graph 2© into a transformation graph
3©. This graph stores the actions to be performed in the type information of each
element instead of stereotypes. It is based on a transformation graph schema
derived from the application schema: For every possible action and type in the
application schema, a combined type is generated, e.g. type CreateD for creating
an instance of type D. Nodes in the transformation graph are called operations.

The transformation graph is then transformed using a pre-defined set of rules,
which we call meta-transformations. These are transformations that operate on
transformations represented by transformation graphs. They are written by the
specifier of the server application without knowledge of the transformations that
might be modeled by clients. Their application is performed at runtime, when
a transformation is received. Each meta-transformation deals with a single as-
pect of consistency or access control, and does not have to match the entire
incoming transformation. Since a big transformation may be matched by mul-
tiple meta-transformations, the specifier defines a total order over the meta-
transformations. Each meta-transformation works on the intermediate result of
previous ones. The final result is a transformation graph that represents a valid
transformation, which is then executed by the application.

We require that either at least the changes specified in the incoming transfor-
mation are performed (minimal semantics), or that no changes are performed at
all. In the later case an error is reported to the client and the distributed transfor-
mation is aborted. This ensures that distributed transformations are predictable
from the client’s perspective. There are two types of meta-transformations:

Simple Meta-Transformations. The only difference to regular graph trans-
formations is that simple meta-transformations are not defined over the applica-
tion’s graph schema, but the graph transformation schema described above. If a
match for a LHS is found in the incoming transformation, the meta-transforma-
tion is applied, either once or to every match, as defined by the specifier.

Complex Meta-Transformations. In order to deal with large incoming trans-
formations and perform sophisticated checks, complex meta-transformations use
the control structures of the graph language to combine queries and simple
meta-transformations (equivalent to PROGRES transactions). For their nota-
tion, we will use the visual flow notation of Fujaba in Section 3.2. Complex
meta-transformations do not have a LHS or RHS, and are invoked for every in-
coming transformation. In addition to queries on the transformation graph, we
provide runtime graph queries (specified using the application’s graph schema).
This allows reactions depending on the current runtime graph, e.g. rejection of
a transformation that attempts to create a document if a document with that
name already exists. The control flow together with the queries can be used to
simulate advanced features like negative application conditions [10].

5 We only discuss graph transformations, but the same mechanism applies to queries.

Ensuring Consistency Within Distributed Graph Transformation Systems 377

3.2 Examples

Maintaining an Ordered List. The Document Manager maintains a linked
list of all stored documents, ordered by their dName attribute. This implemen-
tation detail is hidden, so any document created by the Task Manager will have
to be inserted into this list by the Document Manager itself.

Legend

Query or
left-hand side /
right-hand side of a
meta-transformation

Query on the
runtime graph

metatransformation createNewDoc () =

::=

nextElemd1:D

dName < d.dName

d2:D

dName > d.dName

2

3

CreateNextElem

d

CreateNextElem

mD1:OblD

rId = d1.id

mD2:OblD

rId = d2.id

DeleteNextElem

d

4

d:CreateD

1

success

failure

Special Cases
(e.g. d is the first

document in the list)

…

Fig. 6. Meta-transformation to maintain ordered linked list

The complex meta-transformation in Figure 6 begins with a query on the
transformation graph 1© that is matched when an incoming transformation at-
tempts to create a document. The runtime graph query 2© is then executed to
find two documents between which the new document should be inserted. If a
suitable position is found, the simple meta-transformation 3© is invoked. It mod-
ifies the incoming transformation so that it does not only create the document
d, but also creates appropriate edges to d1 and d2 and deletes the existing edge
between them. Figure 7 shows the effect of createNewDoc() on the transformation
from Figure 5, translated into the standard transformation notation.

We use attributes to relate runtime graph elements with the operations on
them, e.g. to ensure that we create edges to the same documents we found in
the runtime query. The attribute id for documents in the runtime graph is used
to access the internal identifier assigned by the GTS. On the transformation
graph level, operations that affect a specific document store its identifier in the
attribute rId. Using attribute assignments in 4©, we add OblD operations for d1
and d2, meaning the corresponding documents will appear on both LHS and RHS

378 U. Ranger and T. Hermes

transformation t1 (d:D, d1:D, d2:D) =

::=d

d2

nextElem

nextElem

nd:D
basedOn

d

d1

transformation t1 (d:D) =

::=d nd:D
basedOn

d
applying

metatransformation
createNewDoc ()

incoming transformation executed transformation

d2

d1

nextElem

Fig. 7. Result of applying the meta-transformation createNewDoc()

metatransformation deleteDocAllowed () =

1

4

end

for_each

failure
5

success

for_each
end

Legend
Query on the
transformation

Query on the
runtime graph

Loop-construct

Stop-construct

Abort-construct

basedOn
d2:D

d1:D

id=d.rId

d:DeleteDd:DeleteD

1

m:DeleteD

rId=d2.id

3

2

Fig. 8. Meta-transformation preventing deletion of documents that are still referenced

of the transformation. The failure branch for handling special cases is omitted
due to space limitations. Usually, we would perform the initial query 1© inside
a loop (see next example) to deal with incoming transformations creating more
than one document.

Access Control. Documents in the Document Manager must not be deleted
while there are other documents based on them. In this case, we ensure consis-
tency not through translation, but rejection of incoming transformations.

This access control is realized by the complex meta-transformation in Figure 8.
The initial query 1© matches the deletion of a document d in the incoming
transformation. Its enclosing for each loop iterates through all matches for a
document deletion operation. For every such document d1, a runtime graph
query 2© searches for a document d2 based on it. d1 is identified using the rId
from the corresponding deletion command d. Again, the for each loop enclosing
2© ensures that we process all possible matches for d2. We perform a query 3© on
the transformation graph to check whether this document will also be deleted
by the incoming transformation. If not, this would cause an inconsistency, and
thus the failure branch leads to a special symbol 5©, which results in the rejection
of the incoming transformation. If no consistency violation is detected, the loop
ends with 4©, and processing of this meta-transformation is finished.

Ensuring Consistency Within Distributed Graph Transformation Systems 379

3.3 Evaluation

Existing GTS, like PROGRES, address some concerns of meta-transformations
by other mechanisms. We will compare them to our approach and give some
estimates regarding runtime and specification complexity.

Constraints and Repair Actions. Constraints specify invariants on the run-
time graph that are verified after every transformation. If a violation is detected,
processing is halted. This is not acceptable in a distributed system where the
client specifier cannot keep the server graph consistent because of a limited in-
terface. Repair actions [8] are an extension of constraints. Instead of terminating
the application, a transformation may be triggered to return the graph to a con-
sistent state. This is different from the meta-transformation approach, where
inconsistencies are not allowed to occur in the first place. While this approach
allows repair actions to perform iterative graph manipulation, they suffer from
several disadvantages: First, they have less available information, e.g. when delet-
ing a node, a meta-transformation can still evaluate its attributes and incident
edges before the node is deleted. A repair action is invoked after the deletion,
and thus all information about the node is lost. Second, repair actions are not in-
dependent: The specifier of a repair action must assume that every repair action
is the first action performed on a runtime graph with multiple inconsistencies,
making it hard to correctly perform the repairs. Third, constraints and repair
actions require the whole graph to be searched for inconsistency patterns after
every modification, meaning their execution time grows with the graph size.

Runtime Complexity of Meta-Transformations. Meta-transformations
operate on the transformation graph, which typically contains only few ele-
ments. For runtime graph queries, knowledge of the incoming transformation
can be used to avoid global searches on the runtime graph. Only when this is
not possible, these queries exhibit the same complexity as constraints/repair ac-
tions. This means that, except for these worst cases, the runtime complexity of
meta-transformation does not depend on the size of the runtime graph, making
them much more scalable.

Number of Meta-Transformations. To cover all possible operations (cre-
ation, deletion, and, for nodes only, attribute modification), 3 ∗ n + 2 ∗ e meta-
transformations have to be specified, where n is the number of node types and
e the number of edge types in the interface. Operations that require neither
consistency enforcement nor access control may be omitted. We are currently
investigating possibilities to support the specifier in this task.

4 Related Work

The presented meta-transformations may not be confused with the meta trans-
formation rules introduced in [11]. They translate generic graph transformations

380 U. Ranger and T. Hermes

applying type variables into several concrete transformations without type vari-
ables at specification time. At runtime, the concrete transformations are executed
instead of the generic transformations, improving the performance. These rules
can also be used for increasing the maintainability of transformations. In contrast
to meta-transformations, the meta rules of [11] operate on static transformations
known at specification time, and are performed at specification time.

In [12], the GTS Fujaba is extended by defining the life-cycle of software com-
ponents and their interactions. This is modeled by using existing diagrams and
introducing new diagram types in Fujaba, which e.g. offer the specification of de-
ploying components located on different machines. Furthermore, fault tolerance
in case of hardware failures is considered. For the interaction of components,
distributed graph transformations are needed. In contrast to our approach, no
means for modeling the distributed transformations in a visual way is provided,
thus [12] is more related to the textual specification presented in [4]. As only
textual interfaces and calls of remote procedures are used, the graph rewriting
dilemma as presented in Section 2.4 does not arise in [12].

In context of GTS, many projects deal with the integration of different models,
e.g. by using triple graph grammars [13]. Most of these approaches use only one
specification containing the different models and one runtime graph. They focus
on synchronizing the different models instead of modeling distributed systems as
presented in this paper. Furthermore, they do not concentrate on the abstraction
of implementation details, as provided by specification interfaces.

For modeling distributed systems, [14] introduces hierarchically distributed
graph transformations for GTS. Basically, a network graph defines the topology
and the relations between applications of a distributed system. Each applica-
tion is represented as a node in the network graph and in turn stores its runtime
state within a local graph. Instead of using references as described in Section 2.1,
objects are replicated in the applications. Distributed transformations are mod-
eled on the level of the network graph and not on application level, making the
applications passive components within the distributed system. Another differ-
ence between the two approaches is the level of data abstraction: We provide
abstraction on the graph schema level, while [14] offers the more fine-granular
abstraction on object level. Thus, for every object shared by two applications
an explicit relation has to be defined, which leads to the extensive definition of
object relations. However, the approach is only rudimentarily implemented and
does not offer means for solving the graph rewriting dilemma.

5 Conclusion

Our project extends existing GTS by modeling structure and behavior of a dis-
tributed system in a visual way. To achieve information hiding, applications of a
distributed system only exchange interfaces. As a drawback, distributed graph
transformations specified in a client cannot consider all constraints internally
imposed by the servers. Since this may lead to inconsistencies within the runtime

Ensuring Consistency Within Distributed Graph Transformation Systems 381

graphs, we introduce meta-transformations for translating invalid transforma-
tions into valid transformations dynamically.

Meta-transformations are based on existing concepts for visual graph transfor-
mations, but operate on graph transformations themselves instead of modifying
runtime graphs. As incoming transformations are not known at specification
time, the server specifier defines a number of translation rules, which are ap-
plied by a runtime mechanism. This also allows queries on the runtime graph, so
that the local state may be taken into account when performing the translation.
Meta-transformations provide a general mechanism, which can also be used for
realizing access control within a distributed system.

The graph rewriting dilemma [8] has been originally described for local sys-
tems, which are built from different sub-systems using one common graph. Meta-
transformations can be used for ensuring the consistency of all sub-systems in
this local case as well. As all graph transformations which will be performed
on the sub-systems are known at specification time, meta-transformations can
be applied in a pre-processing step just before generating code for the system.
Thus, the runtime infrastructure is not needed for local systems.

We have tested our concepts on a large distributed process management sys-
tem and they have shown to be suitable for solving the graph rewriting dilemma.
As a next step, we will formalize the presented concepts and integrate them into
the existing formalism of PROGRES. Additionally, we are analyzing concepts
for improving the interface mechanism presented in Section 2.2 by introducing
virtual graph views. They define an explicit view on an application instead of
implicitly determine the interface by a proper part of the graph schema. For the
realization, meta-transformations can be used for translating queries conforming
to the virtual graph view into queries conforming to the internal structure.

References

1. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssys-
temen. PhD-Thesis, RWTH Aachen University (1991)

2. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the Unified Modelling Language and Java. In Ehrig,
H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: 6th International Workshop
on Theory and Application of Graph Transformations, TAGT’98. Volume 1764 of
LNCS., Springer-Verlag, Heidelberg, Germany (2000) 296–309

3. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.: UPGRADE: A framework
for building graph-based interactive tools. In Mens, T., Schürr, A., Taentzer, G.,
eds.: 1st International Workshop on Graph-Based Tools, GraBaTs’02. Volume 72
of ENTCS., Elsevier Science Publishers (2002)

4. Böhlen, B., Ranger, U.: Concepts for specifying complex graph transformation sys-
tems. In Ehrig, H., Engels, G., Parisi-Presicce, F., eds.: 2nd International Confer-
ence on Graph Transformations, ICGT’04. Volume 3256 of LNCS., Springer-Verlag,
Heidelberg, Germany (2004) 96–111

5. Ranger, U., Schultchen, E., Mosler, C.: Specifying distributed graph transformation
systems. (2006) , presented at the 3rd International Workshop on Graph-Based
Tools, GraBaTs’06.

382 U. Ranger and T. Hermes

6. Ranger, U., Lüstraeten, M.: Search trees for distributed graph transformation
systems. In Karsai, G., Taentzer, G., eds.: 2nd International Workshop on Graph
and Model Transformation, GraMoT’06. Volume 4 of Electronic Communications
of the EASST., European Association of Software Science and Technology (2006)
(to appear).

7. Taentzer, G.: Towards common exchange formats for graphs and graph trans-
formation systems. In Ehrig, H., Ermel, C., Padberg, J., eds.: 1st International
Workshop on Uniform Approaches to Graphical Process Specification Techniques,
UNIGRA’01. Volume 44(4) of ENTCS., Elsevier Science Publishers (2001)

8. Winter, A.: Visuelles Programmieren mit Graphtransformationen. PhD-Thesis,
RWTH Aachen University (2000)

9. Heckel, R., Ehrig, H., Engels, G., Taentzer, G.: A view-based approach to system
modeling based on open graph transformation systems. In Ehrig, H., Engels, G.,
Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages, and Tools. Volume 2.
World Scientific, Singapore (1999) 639–668

10. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

11. Varró, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.:
7th International Conference on the Unified Modeling Language, UML’04. Volume
3273 of LNCS., Springer-Verlag, Heidelberg, Germany (2004) 290–304

12. Tichy, M.: Durchgängige Unterstützung für Entwurf, Implementierung und Betrieb
von Komponenten in offenen Softwarearchitekturen mittels UML. Diploma Thesis,
University of Paderborn (2002)

13. Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr,
E.W., Schmidt, G., Tinhofer, G., eds.: 20th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG’94. Volume 903 of LNCS., Springer-
Verlag, Heidelberg, Germany (1995) 151–163

14. Fischer, I., Koch, M., Taentzer, G.: Visual design of distributed object systems by
graph transformation. Technical Report 98-15, Tech. University of Berlin (1998)

	Introduction
	Specifying Distributed Systems with GTS
	Architecture of a Distributed System
	Structure of a Distributed System
	Modeling the Behavior
	Execution of Distributed Transformations

	Meta-transformations
	The Meta-transformation Approach
	Examples
	Evaluation

	Related Work
	Conclusion

