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Abstract. The size of a test-suite has a direct impact on the costs
and the effort of software testing. Especially during regression testing,
when software is re-tested after some modifications, the size of the test-
suite is important. Common test-suite reduction techniques select subsets
of test-suites that achieve given test requirements. Unfortunately, not
only the test-suite size but also the fault detection ability is reduced
as a consequence. This paper proposes a novel approach where test-
cases created with model-checker based techniques are transformed such
that redundancy within the test-suite is avoided, and the overall size is
reduced. As test-cases are not simply discarded, the impact on the fault
sensitivity is minimal.

1 Introduction

Software testing is a process that consumes a large part of the effort and resources
involved in software development. Especially during regression testing, when
software is re-tested after some modifications, the size of the test-suite has a
large impact on the total costs. Therefore, the idea of test-suite reduction (also
referred to as test-suite minimization) is to find a minimal subset of the test-suite
that is sufficient to achieve the given test requirements.

Various heuristics have been proposed to approximate a minimal subset of the
test-suite. These techniques can reduce the number of test-cases in a test-suite
significantly. However, experiments have revealed that the quality of the test-
suite suffers from this minimization. Even though the test requirements with
regard to which the minimization was made are still fulfilled by the minimized
test-suite, it has been shown that the overall ability to detect faults is reduced.
In many scenarios, especially in the case of safety related software, such a degra-
dation is unacceptable.

This paper introduces a novel approach to test-suite reduction. This approach
tries to identify those parts of the test-cases that are truly redundant. Redun-
dancy in this context means that there are no faults that can be detected with
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the redundant part of a test-case, and not without. Instead of discarding test-
cases out of a test-suite, the test-cases are transformed such that the redundancy
is avoided. That way, the test-suite is minimized with regard to the number of
test-cases and the total number of states, while neither test coverage nor fault
detection ability suffer from the degradation experienced in previous approaches.

The approach uses the state information that is included in functional tests
created with model-checker based test-case generation approaches. The model-
checker is also used within an optimized version of the approach. An empirical
evaluation shows that the approach is feasible.

This paper is organized as follows: Section [2] first introduces the problem of
test-suite reduction and points out drawbacks of current solutions. Then, the
necessary preliminaries for the remainder of the paper are discussed. Section [3]
presents a new definition of redundancy in the context of test-cases, and shows
how test-suites can be optimized in order to reduce redundancy. Section @ de-
scribes experiments and results with regard to this optimization. Finally, Sec-
tion [0l concludes the paper with a discussion of the results and an outlook.

2 Preliminaries

In this section, test-suite reduction and previous solutions are presented. Then,
the necessary preliminaries for our approach are introduced.

2.1 Test-Suite Reduction

During regression testing the software is re-tested after some modifications. The
costs of running a complete test-suite against the software repeatedly can be
quite high. In general, not all test-cases of a test-suite are necessary to fulfill
some given test requirements. Therefore, the aim of test-suite reduction is to
find a subset of the test-cases that still fulfills the test requirements. The original
test-suite reduction problem is defined by Harrold et al. [1] as follows:

Given: A test-suite T'S, a set of requirements r1, 79, ,,7, that must be satisfied
to provide the desired test coverage of the program, and subsets of TS,
T1,T5,...,T,, one associated with each of the r;s such that any one of the
test-cases t; belonging to T; can be used to test r;.

Problem: Find a representative set of test-cases from T'S that satisfies all r;s.

The requirements r; can represent any test-case requirements, e.g., test cov-
erage. A representative set of test-cases must contain at least one test-case from
each subset T;. The problem of finding the optimal (minimal) subset is NP-hard.
Therefore, several heuristics have been presented [1I213].

Test-suite reduction results in a new test-suite, where only the relevant subset
remains and the other test-cases are discarded. Intuitively, removing any test-
case might reduce the overall ability of the test-suite to detect faults. In fact,
several experiments [AJ5l6] have shown that this is indeed the case, although
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there are other claims [7]. Note that the reduction of fault sensitivity would also
occur when using an optimal instead of a heuristic solution.

In this paper we introduce a new approach to test-suite minimization which
does not have a negative influence on the fault detection ability. However, first
we need to introduce some basic concepts and definitions.

2.2 Model-Checker Based Testing

In this paper we consider test-cases generated with model-checker based meth-
ods. A model-checker is a tool originally intended for formal verification. In
general, a model-checker takes as input a finite-state model of a system and a
temporal logic property and efficiently verifies the complete state space of the
model in order to determine whether the property is fulfilled or not. If the prop-
erty is not fulfilled then a counter-example is returned, which is a sequence of
states beginning in the initial state and leading to the violating state. There are
several different approaches that exploit this counter-example mechanism for
automated test-case generation [RIOTOITTIT2/T3IT4]. Model-checkers use Kripke
structures as model formalism:

Definition 1. Kripke Structure: A Kripke structure K is a tuple K = (.S, sq,
T, L), where S is the set of states, so € S is the initial state, T C S x S is the
transition relation, and L : S — 24T is the labeling function that maps each
state to a set of atomic propositions that hold in this state. AP is the countable
set of atomic propositions.

A model-checker verifies whether a model M satisfies a property P. If M violates
P, denoted as M ¥ P, then the model-checker returns a trace that illustrates
the property violation. The trace is a finite prefix of an execution sequence of
the model (path):

Definition 2. Path: A path p := {so, s1,...} of Kripke structure K is a finite
or infinite sequence such that Vi > 0: (8;,8i+1) € T for K.

Informally, the states of a Kripke structure and its traces consist of value assign-
ments to its input, output and internal variables. Input variables are those that
are provided by the environment to the model, output variables are returned to
the environment by the model, and internal variables are not visible outside of
the model. A trace can be used as a test-case by providing the input variables
to the system under test (SUT), and then comparing whether the outputs pro-
duced by the SUT match those of the trace. Therefore, a trace can be seen as a
test-case:

Definition 3. Test-Case: A test-case t is a finite prefiz of a path p of Kripke
structure K.

The number of transitions a test-case consists of is referred to as its length.
E.g., test-case t := {sg, $1, ..., 8;} has a length of length(t) = i. We consider
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such test-cases where the expected correct output is included. This kind of test-
cases is referred to as passing or positive test-cases. The result of the test-case
generation is a test-suite. The aim of test-suite reduction is to optimize test-suites
with respect to their size and total length:

Definition 4. Test-Suite: A test-suite T'S is a finite set of n test-cases. The
size of T'S is n. The overall length of a test-suite T'S is the sum of the lengths
of its test-cases t;: length(T'S) = Y1, length(t;).

Coverage criteria are used to measure test-suite quality. In the model-based sce-
nario we assumed, we are mainly interested in model-based coverage criteria. A
coverage criterion describes a set of structural items or aspects that a test-suite
should cover. The test coverage is the percentage of items that are actually cov-
ered, i.e., reached during test-case execution. A model-based coverage criterion
can be expressed as a set of properties (trap properties [8]) where a test-case
covers an item if the according property is violated.

Definition 5. Test Coverage: The coverage C of a test-suite T'S with regard to
a coverage criterion represented by a set of properties P is defined as the ratio
of covered properties to the number of properties in total:

1
C= P {z|x € P A covered(z,TS)}|
The predicate covered(a,TS) is true if there exists a test-case t € T'S such that
t covers a, i.e., t ¥ a.

The fault detection ability describes the potential of a test-suite at detecting
faults. The higher this ability, the more faults can be detected. In practice, the
mutant score [I5] is used as an estimate for the fault detection ability. A mutant
results from a single syntactic modification of a model or program. The mutant
score of a test-suite is the ratio of mutants that can be distinguished from the
original to mutants in total. A mutant is detected if the execution leads to
different results than expected.

Definition 6. Test-case execution: A test-case t = {sq, s1,...} for model K is
executed by taking the input variables of each state s;, providing them to the
SUT with a suitable test framework. These values and the produced output values
represent an execution trace tr = {sy, s1,...}. A fault is detected, iff (s}, s, ) €
tr: (s}, si1) € T for K. (si,s:41) is referred to as a step.

3 Test-Suite Redundancy

Previously, redundancy was used to describe test-cases that are not needed in
order to achieve a certain coverage criterion. As the removal of such test-cases
leads to a reduced fault detection ability, they are not really redundant in a
generic way. In contrast, we say a test-case contains redundancy if part of the
test-case does not contribute to the fault detection ability. This section aims to
identify such redundancy, and describes possibilities to reduce it.
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3.1 Identifying Redundancy

Intuitively, identical test-cases are redundant. For any two test-cases t1,ts such
that ¢t; = to, any fault that can be detected by t; is also identified by to and
vice versa, assuming the test-case execution framework assures identical precon-
ditions for both tests. Similarly, the achieved coverage for any coverage criterion
is identical for both t; and to. Clearly, a test-suite does not need both ¢; and t¢5.

The same consideration applies to two test-cases t; and to, where 1 is a prefix
of to. t1 is subsumed by to, therefore any fault that can be detected by t; is also
detected by t2 (but not vice versa). In this case, ¢1 is redundant and is not needed
in any test-suite that contains t2. In model-based testing it is common practice
to discard subsumed and identical test-cases at test-case generation time [12].

This leads to the kind of redundancy which we are interested in: Model-checker
based test-case generation techniques often lead to such test-suites where all test-
cases begin with the same initial state. From this state on different paths are
taken, but many of these paths are equal up to a certain state. Any fault that
occurs within such a sub-path can be detected by any of the test-cases that
begins with this sub-path. Within these test-cases, the sub-path is redundant.

This kind of redundancy can be illustrated by representing a set of test-cases
as a tree. The initial state that all test-cases share is the root-node of this tree.
A sub-path is redundant if it occurs in more than one test-case. In the tree
representation, any node below the root node that has more than one child node
contains redundancy. If there are different initial states, then there is one tree
for each initial state.

Definition 7. Test-Suite Execution Tree: Test test-cases t; = {so, s1,...51} of a
test-suite T'S can be represented as a tree, where the root node equals the initial
state common to all test-cases: root(T'S) = sg. For each successive, distinct state
s; a child node is added to the previous node s;:

sj i (8i,85) €t; — s; € children(s;)

The depth of the tree equals the length of the longest test-case in T'S. children(x)
denotes the set of child nodes of node z. Consider a test-suite consisting of three
test-cases (letters represent distinct states): ”A-B-C”, ”A-C-B”, "A-C-D-E”. The
execution tree representation of these test-cases can be seen in Figure
The rightmost C-state has two children, therefore the sub-path A-C is contained
in two test-cases; it is redundant. The execution tree can be used to measure
redundancy:

Definition 8. Test-Suite Redundancy: The redundancy R of a test-suite T'S is
defined with the help of the execution tree:

1
R(TS)= - > R(z) (1)
z€children(root(TS))

The redundancy of the tree is the ratio of the sum of the redundancy values R
for the children of the root-node and the number of arcs in the tree (n — 1, with
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(a) 17% redundancy (b) No redundancy

Fig. 1. Simple test-suite with redundancy represented as execution tree

n nodes). The redundancy value R is defined recursively as follows:

2 = (Ichildren(z) — 1|) + >_ ccnitaren(z) R(c) if  children(z) # {}
Ri@) = { " : 0 if children(x)= {}( |
2

The example test-suite depicted as tree in Figure has a total of 7 nodes,
where one node besides the root node has more than one child. Therefore, the
redundancy of this tree equals R = ;1) - 37y iaren(root(rsy R(*) = ¢ - (0 +
(1+0) =4 =17T%.

A test-suite contains no redundancy if for each initial state there are no test-
cases with common prefixes, e.g., if there is only one test-case per initial-state.

3.2 Removing Redundancy

Having identified redundancy, the question now is how to reduce it. This section
introduces an approach to solve this problem. It has already been stated that
the removal of test-cases from a test-suite has a negative impact on the fault
detection ability, therefore this is not an option. Instead, the proposed solution
is to transform the test-cases such that the redundant parts can be omitted.

For each test-case t; of test suite T'S a common prefix among the test-cases
is determined. If such a prefix is found, then the test-case is redundant for the
length of the prefix and only interesting after the prefix. If there is another test-
case t; that ends with the same state as the prefix does, then the remainder
of the test-case t; can be appended to t;, and t; can safely be discarded. This
algorithm is shown in Listing [Il It is of interest to find the longest possible
prefixes, therefore the search for prefixes starts with the length of the test-case
under examination and then iteratively reduces the length down to 1. This also
guarantees that duplicate or subsumed test-cases are eliminated.
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The function find test searches for a test-case that ends with the same state as
the currently considered prefix, its worst time complexity therefore is O(|T'S]).
The complexity of has prefizis O(n) as it depends on the prefix length. Append-
ing and deleting test-cases take constant time. These operations are nested in
a loop over |T'S|, which in turn is called for all possible prefix lengths. Finally,
this is done for each test-case in T'S. Therefore, the worst-case complexity of
this algorithm is O(|T'S|* - n - (|T'S| + n)); with realistic test-suite sizes it is still
applicable. The algorithm terminates for every finite test-suite. In the listing,
t[n] denotes the nth state of test-case ¢, and ¢[—1] the last state of .

for each t in TS do
for n := length(t) downto 1 do
for each t2 in TS do
if has prefiz(t2, t, n) and t2 != t then
t3 := find test(TS, t[n])
if t3 != None then
append postfiz(t3, t, n)
delete(TS, t)
break
end if
end if
end for
end for
end for

Listing 1. Test-suite transformation

The algorithm has to make non-deterministic choices when selecting a test-
case as a source for the prefix, when selecting a test-case to look for the common
prefix and when searching for a test-case to append to. These choices have an
influence on how fast a test-suite is processed. In addition, the number of test-
cases remaining in the final reduced test-suite also depends on these choices.
The success of the reduction depends on whether there are suitable test-cases
where parts of other test-cases can be appended. A test-case that is necessary
for removal of a long common prefix might be used to append another test-
case with a shorter common prefix earlier. In that case, the long prefix could
not be removed unless there was another suitable test-case. Determination of
the optimal order would have to take all permutations of the test-suite order
into consideration and is therefore not feasible. In practice, the algorithm is
implemented such that test-cases are selected sequentially in the order in which
they are stored in the test-suite.

Figure illustrates the result of this optimization applied to the Fig-
ure|l(a)l The test-case A-C-B has the common prefix A-C, and there is a test-case
ending in C, therefore the postfix B of A-C-B is appended to A-B-C, resulting in
A-B-C-B.
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This algorithm optimizes the total costs of a test-suite with respect to two
factors: It reduces the total number of test-cases (test-suite size), and it reduces
the overall number of states contained in the test-suite (test-suite length). In
the resulting test-suite individual test-cases can be longer than in the original
test-suite. We assume that the costs of executing two test-cases of length n are
higher than that of executing one test-case of length 2 - n because of setup and
pull-down overhead. Therefore, it is preferable to have fewer but longer test-
cases instead of many small ones. This assumption is for example also made
in [16], where the test-case generation aims to create fewer but longer test-
cases.

While the computational complexity of the algorithm is high, the success
depends on the actual test-suite. A test-suite might contain significant redun-
dancy but have few test-cases that are suitable for appending, in which case not
much optimization can be achieved. In addition, the order in which test-cases
are selected has an influence on the results.

As we assumed a model-checker based test-case generation approach, we can
make use of the model-checker for optimization purposes. If appending is not
possible, then the model-checker can be used to create a ‘glue’-sequence to ap-
pend the postfix to an arbitrary test-case. Of course the model-checker is not
strictly necessary to perform this part; there are other possibilities to find a path
in the model. However, the model-checker is a convenient tool for this task, espe-
cially if it is already used for test-case generation in the first place. Listing [2llists
the extended algorithm. The function choose nondeterministic(TS) chooses one
test-case out of the test-suite 7'S non-deterministically. This choice has an influ-
ence on the length of the resulting glue-sequence. An optimal algorithm would
have to consider the lengths of all such possible glue-sequences, and therefore
calculate all of them. A distance heuristic is conceivable, which estimates the
distance between the final state of a test-case and the state the glue sequence
should lead to. For reasons of simplicity, the prototype implementation used for
experiments in this paper makes a random choice.

The function create sequence calls the model-checker in order to create a suit-
able glue sequence. A sequence from state a to state b can be created by verifying
a property that claims that such a path does not exist. If such a sequence exists,
the counter-example consists of a sequence from the initial state to a, and then
a path from a to b. For example, when using computation tree logic (CTL) [I7],
this query can be stated as: AG a -> ! (EF b).

The presented algorithms reduce both the number of test-cases and the to-
tal test-suite length, while previous methods selected subsets of the test-
suite. Therefore, the effects on the quality of the resulting test-suite are
different.

Each step of a test-case adhering to Definition [3 fully describes the system
state. A model-checker trace consists of the values of all input and output vari-
ables as well as internal variables. A fault is detected if the actual outputs of
the implementation differ from those of the test-case. Therefore, any fault that
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for each t in TS do
for n := length(t) downto 1 do
for each t2 in TS do
if has prefiz(t2, t, n) and t2 != t then
t3 := find test(TS, t[n])
if t3 != None then
append postfiz(t3, t, p)
delete(TS, t)
break
end if
else
t3 = choose nondeterministic(TS)
if t3 = t then
s = create sequence(t3[—1], t[n])
append(t3, s)
append postfiz(t3, t, n)
delete(TS, t)
break
end if
end if
end for
end for
end for

Listing 2. Test-suite transformation with glue sequences

occurs deterministically at a certain state can be detected with a step of a test-
case, no matter when this step is executed. As the test-suite reduction guarantees
that only redundant steps as parts of prefixes are removed, any fault that can be
detected by a test-suite T'S, can also be detected by the test-suite resulting from
reduction of T'S. It is conceivable that there are faults that do not deterministi-
cally occur at certain system states. For example, a fault might only occur after
a certain sequence has been executed, or if a state is executed a certain number
of times. However, we have not found such a fault in our experiments. Further-
more, it is equally possible that the transformation leads to such test-cases that
can detect previously missed non-deterministic faults.

Definition [ allows arbitrary properties for measuring test coverage. Whether
the test-suite reduction has an impact on the test coverage depends on the
actual properties. If the coverage depends on the order of not directly adjacent
steps in the test-case, then splitting a prefix from a test-case and appending the
remainder to another test-case can reduce the coverage. For example, transition
pair coverage [I8] requires all pairs of transitions to be covered. A transition pair
can be split during the transformation. However, the appending can also lead to
transition pairs previously uncovered. In practice, many coverage properties do
not consider the execution order, e.g. transition or full-predicate coverage [18],
or coverage criteria based on the model-checker source file [9].



300 G. Fraser and F. Wotawa

4 Empirical Evaluation

This section presents the results of an empirical evaluation of the concepts de-
scribed in the previous sections. The evaluation aims to determine how much
reduction can be achieved with the presented algorithms, and how they perform
in comparison to other approaches. Furthermore, the effects on coverage and
mutant score are analyzed.

4.1 Experiment Setup

The experiment uses three examples, each consisting of a model and specification
written in the language of the model-checker NuSMV [19]. For each model, 23
different test-suites are created with different methods (various coverage criteria
for coverage based methods, different mutation operators for mutation based
approaches, property based methods). The details of these methods are omitted
for space reasons and because they are not necessary to interpret the results. In
addition, a set of mutant models is created for each model. The use of a model-
checker allows the detection of equivalent mutants, therefore only non-equivalent
mutants are used for the evaluation of a mutant score. Car Control (CA) is a
simplified model of a car control. The Safety Injection System (SIS) example was
introduced in [20] and has since been used frequently for studying automated
test-case generation. Cruise Control (CC) is based on [21]. A set of faulty imple-
mentations for this example was written by Jeff Offutt. The presented algorithms
are implemented with Python, and the symbolic model-checker NuSMYV is used.

4.2 Lossy Minimization with Model-Checkers

For comparison purposes, a traditional minimization approach is applied to the
model-checker scenario, similarly to Heimdahl and Devaraj [6]. Model-based cov-
erage criteria can be expressed as trap properties [8] (Section [Z2]). The test-cases
are converted to models and then the model-checker is challenged with the re-
sulting models and the trap properties. For each trap property that results in a
counter-example it is known that the test-case covers the according item.

A minimized subset of the test-suite achieving a criterion can be determined
by calculating the covered properties for each test-case, and then iteratively se-
lecting the test-case that covers the most yet uncovered properties. We choose
transition coverage as first example coverage criterion. Black [13] proposed a test-
case generation approach based on mutation of the reflected transition relation.
The mutated, reflected properties can be used similarly to trap properties for
test-case generation, to determine a kind of mutant score and also for minimiza-
tion. In order to distinguish this from the mutant score determined by execution
of the test-case against mutant models we dub the former reflection coverage.

4.3 Results

Tables [ B and B list the average values of the minimization of the 23 test-
suites for the three example models. "Redundancy” denotes the algorithm in
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Fig. 2. Comparison of reduction methods, average percentage over all three example
models and 23 test-suites each

Listing [[I and ”"Redundancy+" the extended version of Listing 2l In all cases
the coverage-based reduction techniques result in smaller test-suites than the
direct redundancy based approach. The extended redundancy based approach
comes close to the coverage based approaches with respect to test-suite size. The
test-suite length is reduced proportionally to the test-suite size for coverage based
techniques, while as expected the redundancy based length savings are not as
significant. Again, the extended algorithm achieves better results, showing that
the potential saving in redundancy is bigger than what is added by the glue
sequences. In general, even though the reduction in the total length is smaller
with the redundancy approaches than with the coverage approaches, it is still
significant and shows that the approach is feasible.

The test coverage of coverage minimized test-suites is not changed for the cri-
terion that is used for minimization, while a degradation with the other criterion
is observable. In contrast, the redundancy based approach has no impact on the
coverage of either criterion. The extended redundancy approach even leads to
a minor increase of the coverage, due to the glue sequences. As for the mutant
score, the coverage based approaches lead to a degradation of up to 16%, while
the redundancy approach has no impact on the mutant score, and the extended
redundancy approach again results in a slight increase. Figure 2] sums up the
results of the experiments for all models and test-suites. As these experiments
use only models and mutants of the models, this raises the question whether
the results are different with regard to actual implementations. Therefore, the
Cruise Control test-suites are run against the set of faulty implementations.
Table [ lists the results. They are in accordance with those achieved with model
mutants, which indicates the validity also for implementations.

Figure [l illustrates the effects of the order in which test-cases are selected at
several points in the algorithm as box-plots. The box-plots illustrate minimum,
maximum, median and standard deviation for the achieved reduction with the
23 test-suites per example, each randomly sorted 5 times. Figure shows the
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Table 1. Results in average for Cruise Control example

Method Size Length Redundancy Transition Mutant Score Mutant
Coverage (Reflection) Score
Original 36,55 213,77  44,55% 89,16% 95,93% 87,31%
Transition 6,23 35,6 32,00% 89,16% 94,46% 79,70%
Reflection 6,59 37,36  30,30% 78,67% 95,93% 73,42%
Redundancy 27,91 186,09 36,99% 89,16% 95,93% 87,31%
Redundancy+ 8,95 152,73 4,82% 89,86% 96,44% 89,13%

Table 2. Results in average for SIS example

Method Size Length Redundancy Transition Mutant Score Mutant

Original 21,87 644,04 10,45%
Transition 3,26 84,17  2,51%
Reflection 4,91 126,3  4,53%
Redundancy 14,48 440,39 6,15%
Redundancy+ 5,52 268,78 0,46%

Coverage (Reflection) Score

89,28% 95,15% 78,29%
89,28% 93,42% 68,72%
87,63% 95,15% 72,70%
89,28% 95,15% 78,29%
91,23% 96,19% 81,42%

Table 3. Results in average for Car Control example

Method Size Length Redundancy Transition Mutant Score Mutant
Coverage (Reflection) Score
Original 54,09 1351,91 10,44% 95,78% 96,07% 92,84%
Transition 3,36 71,32 3,06% 96,78% 93,76% 85,09%
Reflection 7,68 152,27 5,30% 95,54% 96,07% 87,62%
Redundancy 25,68 1182,82 4,69% 95,78% 96,07% 92,84%
Redundancy+ 11,36 1058,05 1,17% 99,03% 97,53% 95,16%

effects on the test-suite sizes. As the use of glue sequences makes it possible to
append to any test-case, the order has no effect on the resulting test-suite size in
our experiments, therefore there is no deviation. There is insignificant variation
when not using glue sequences, and also only minor variation in the test-suite
length (Figure . In contrast, the choice of a test-case to append to using
a glue sequence has a visible influence on the resulting test-suite length. This
suggests the use of a distance heuristic instead of the random choice.

Both presented algorithms have high worst-case complexity. However, many
factors contribute to the performance: the test-suite size, the lengths of the

Table 4. Mutant scores for cruise-control implementation mutants

Original|Transition|Reflection

Redundancy|Redundancy-+

75,8%  139,1% 37,2%

75,8%

76,5%
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Fig. 3. Effects of the test-case order, as percentage value of original sizes and lengths.
Minimization using glue sequences is denoted by a '+’ after the example name.
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Fig. 4. Minimization time vs. test-suite size

test-cases, the contained redundancy, the suitability of test-cases for the trans-
formation, the order in which test-cases are selected, the effort of calculating
glue sequences, etc. Figure E] depicts the performance of the minimization for
the three example models for different test-suite sizes executed on a PC with
Intel Core Duo T2400 processor and 1GB RAM. Notably, the computation time
for the car controller example increases more than for the other examples. This
example has a bigger state space, therefore appending is not easily possible.
Figure shows that there is less difference in the increase in computation
time when using glue sequences. The additional computational effort introduced
by the generation of the glue sequences is very small, compared to its effect. How-
ever, performance measurement is difficult, as the redundancy is not constant
along the test-suites used for measurement. In order to examine the scalability
of the approach, minimization was also tested on a complex example with a
significantly bigger test-suite. The example is a windscreen wiper controller pro-
vided by Magna Steyr. For a set of 8000 test-cases, basic minimization takes
35m22s. This example also shows the effects of the model complexity, as the
calculation of glue sequences is costly for this model: Minimization with glue
sequences takes 2h1mb6s. Obviously, the performance is specific to each appli-
cation and test-suite, but it seems to be acceptable in general.
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5 Conclusion

In this paper we have introduced an approach to minimize the size of a test-suite
with regard to the number of test-cases and the total length of all test-cases.
The approach detects redundancy within the test-suite and transforms test-
cases in order to avoid the redundancy. In contrast to previous approaches the
quality of the resulting test-suites does not suffer with regard to test coverage or
fault detection ability from this minimization under certain conditions. In fact,
experiments showed that the resulting test-suites can even be slightly improved.
The experiments also showed that the reduction is significant, although not as
large as with approaches that heuristically discard test-cases.

One drawback of this approach is the run-time complexity of the algorithm.
However, even without further optimizations the approach is applicable to re-
alistic test-suites without problems. The transformation relies on information
that might not be available in all test-suites. Complete state information is nec-
essary, as is provided by model-checker based test-case generation approaches.
There are several possibilities to continue work on this approach:

— It would be desirable to optimize the basic algorithm with regard to its worst
case execution time.

— The non-deterministic choice might not always lead to the best results.
Heuristics for choosing test-cases could lead to better reduction.

— The algorithms presented in this paper sequentially analyze the test-cases
in a test-suite. Therefore, a single run might not immediately eliminate all
the redundancy. It is conceivable to iteratively call the algorithm until the
redundancy is removed completely. This is likely to lead to test-suites of very
small size, where each test-case is very long.

— In this paper, a scenario of model-checker based testing was assumed. It
would be interesting to evaluate the applicability to other settings.

— The presented definition of redundancy only considers common prefixes.
However, common path segments might also exist within test-cases. Con-
sideration of this kind of redundancy might lead to further optimizations.
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