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Abstract. This paper presents a compiler technique that reduces the
energy consumption of the memory subsystem, for an off-chip partitioned
memory architecture having multiple memory banks and various low-
power operating modes for each of these banks. More specifically, we
propose an efficient array allocation scheme to reduce the number of
simultaneously active memory banks, so that the other memory banks
that are inactive can be put to low power modes to reduce the energy. We
model this problem as a graph partitioning problem, and use well known
heuristics to solve the same. We also propose a simple Integer Linear
Programming (ILP) formulation for the above problem. Our approach
achieves, on an average, 20% energy reduction over the base scheme, and
8% to 10% energy reduction over previously suggested methods. Further,
the results obtained using our heuristic are within 1% of optimal results
obtained by using our ILP method.

1 Introduction

The use of portable hand-held devices like PDAs mobile phones, laptops, palm-
tops, etc., is on the increase. Further, portable devices of today are becoming
functionally more and more sophisticated. As the functionalities of these devices
increase, it places a huge demand on the power source. Since most of these devices
rely on internal sources of power, i.e., batteries and are hand-held, it is impor-
tant to make these devices as energy efficient as possible. Reducing the energy
consumption is important as it improves the lifetime, and cost of the battery.
Further, as it reduces the heat dissipated by the system, it increases the relia-
bility of the device.

A majority of embedded applications are data intensive and access a large
number of arrays in deeply nested loops. It has been observed that a major por-
tion of the energy expended by the programs is in the memory subsystem [3].
In light of these observations, this paper presents a technique to minimize the
energy consumed by off chip memory modules, which are divided into banks.
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Each of these banks can operate at various low-power operating modes. In such
an architecture, if the data segments of an application are allocated to memory
banks such that, a majority of the memory banks can be placed in a low-power
mode, for large parts of the duration of execution of a program, it leads to a
reduction in the energy consumed by the memory subsystem. Thus in this paper
we try to present a technique for such a data segment (array) placement for
energy reduction.

Techniques for allocating arrays to memory banks have been proposed earlier.
Earlier approaches [6,7] either model the array allocation problem as a maximum
weight path cover problem or use a set of heuristics and certain subgroup or-
dering. As will be observed in Section 3, neither of these approaches is akin
to the array allocation problem and results in inferior solution. We model this
problem as a graph partitioning problem which is a natural way of formulating
the array allocation problem. The arrays in a single partition are allocated to a
single memory bank. During this partitioning process, we try to minimize the
sum of the weights of the edges that are being cut. We use existing well-known
heuristics to solve the graph partitioning problem. Lastly formulating the array
allocation problem as a graph partitioning problem has also led us to develop
an Integer Linear Programming formulation(ILP) for it.

Initial experiments on array intensive benchmarks show that, on an average
our approach obtains around 21% reduction over energy-unaware allocation and
8% to 10% improvement over the method proposed in [6]. In comparison to the
optimal solution obtained from the ILP formulation, our heuristic approach pro-
duces near optimal allocation in most of the cases and is within 1% of the energy
consumption values obtained by using ILP techniques.

Section 2 presents a brief introduction to partitioned memory architectures
and low-power operating modes. Section 3 motivates the problem addressed and
the issues involved with earlier approaches using an example. In Section 4, we
discuss our problem formulation techniques and heuristics that we have used to
solve them. We present experimental results in Section 5. Section 6 compares
our work with related work. Finally, we conclude the paper in Section 7.

2 Background

In this section we give a brief background about the partitioned memory ar-
chitecture and various low-power operating modes. The memory is divided into
banks and each of these banks can be placed into one of the following low-power
modes, Standby, Napping, Power-Down and Disabled, depending on the access
patterns. A memory bank is in active mode when it is processing read and write
requests [14]. Each low-power operating mode is characterized by the energy
consumed in that mode and the resynchronization time. Resynchronization time
is the time that is needed for the bank to move from the low-power mode it is
currently in to the active mode. The resynchronization times (in cycles), and the
energy consumption (in nJ), of various low power operating modes are: 9000 cy-
cles and 0.00875 nJ for Power-Down mode, 30 cycles and 0.0206 nJ for Napping
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mode, 2 cycles and 0.468 nJ for Stand-By mode and zero cycles and 0.718 nJ
for Active mode respectively. These memory bank energy values and resynchro-
nization times are obtained from the current values of a 2.5V, 1.25nS cycle time,
4MB memory bank [14]. Since resynchronization times are high for those modes
which consume the least energy we must choose a low-power mode carefully.

In our study, initially we assume an oracle memory bank activation, i.e., the
memory bank m that would be required at time t, is transitioned exactly at time
(t − rt), where rt is the resynchronization time from the low-power mode the
bank is currently in, to the active mode. We also study the effects of waking
up the memory bank at time t, when the actual memory request is made. This
incurs a penalty of rt cycles as the memory bank becomes available only at time
(t + rt). We refer to this scheme as on-demand activation.

If a memory bank m is accessed at times t1 and t2, for the purpose of our experi-
ments, the low power mode that the bank can be put into for the duration [t1 − t2]
is calculated as follows. We consider only those low power modes for which the re-
synchronization time is less than (t2 − t1). Let (Epd, Rpd), (Enp, Rnp), (Esb, Rsb)
be the energy consumption and resynchronization times of the memory bank in
Power-Down, Napping, Standby modes and Eact the energy consumption in the
Active mode. If Rsb < (t2−t1), then the energy that would have been expended, if
a bank is in a particular low-powermode Elp is given by min((Epd∗(t2−t1−Rpd)+
Eact ∗Rpd), (Enp ∗(t2 −t1 −Rnp)+Eact ∗Rnp), (Esb ∗(t2 −t1 −Rsb)+Eact ∗Rsb)).
Thus for the duration [t2 − t1] the bank is put into that mode which consumes the
minimum energy. This paper, however, does not deal with how the appropriate
low-power mode is identified and the memory bank is transitioned into that mode.
This requires an estimation of the duration (t2 − t1) which can be obtained either
through compile time analysis or through profile runs.

3 Motivation

3.1 Motivating Example

   L1: f or(i = 0; i < N ; i + +)
          {d[i], a[i]}
   L2: f or(i = 0; i < N ; i + +)
          {a[i], b[i]}
   L3: f or(i = 0; i < N ; i + +)
          {c[i], d[i]}
   L4: f or(i = 0; i < N ; i + +)
          {b[i], c[i]}
   L5: f or(i = 0; i < N ; i + +)
          {b[i], d[i]}

float a[N]; double b[N], c[N]; float d[N];

Fig. 1. Motivating Example

In this section we describe the problem
formulation with the help of the exam-
ple. Consider the example code given in
Figure 1. In loops L1, L2, L3, L4, and L5,
the pairs of arrays accessed are a and d,
a and b, c and d, b and c, and b and d.
Let us assume loops L1, L2, L3, L4 and
L5 take N , 2N , 4N , 8N and N cycles
respectively. Further let us assume that
arrays a and d occupy 1 MB each, while
arrays b and c each occupy 2 MB. Last,
let there be two memory banks in the
architecture, each of size 4MB. For sim-
plicity, in this example, we assume that
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the memory bank can be in either active or power-down mode and the resyn-
chronization time is zero.

In an energy unaware allocation, the arrays are allocated in the order in
which they are declared. In this example, arrays a and b will reside in memory
bank M1, while array c will partially reside in both banks. Array d will reside
in bank M2. For this allocation, since arrays a and d are accessed in loop L1,
both memory banks need to be in the active mode during its execution. Since
2 memory banks are active for N cycles, we say that for 2N bank-cycles1 the
memory is active. Similarly for loops L2, L3, L4, and L5, the memory is active for
2N , 8N , 16N and 2N bank-cycles respectively. Table 1 shows that in the energy
unaware allocation, the memory banks are active for a total of 30N bank-cycles.

Table 1. Memory Banks Active under Various Methods for the Example Code

Loop No. of Arrays Energy-Unaware MWPC Method Graph Partitioning
Exec.Cycles Accessed Banks Bank- Banks Bank- Banks Bank-

Active Cycles Active Cycles Active Cycles
L1 N a, d 1, 2 2N 1, 2 2N 1 N
L2 2N a, b 1 2N 1 2N 1, 2 4N
L3 4N c, d 1, 2 8N 2 4N 1, 2 8N
L4 8N b, c 1, 2 16N 1, 2 16N 2 8N
L5 N b, d 1, 2 2N 1, 2 2N 1, 2 2N

Total 30N 26N 23N

3.2 Problems with Existing Approaches

The Maximum Weight Path Cover (MWPC) method proposed by Delaluz et.al
in [6] uses the Array Relation Graph (ARG). The ARG for our motivating exam-
ple is shown in Figure 2. The maximum weight cover of a graph is a path which
includes all the nodes in the graph (but not necessarily all the edges) such that
the sum of the weights of all edges in the path is the maximum among all covers.

a

b

d c

N

N 8N

2N

4N

Fig. 2. Array Relation Graph and its
Maximum Weight Path Cover

A MWPC for the ARG is a—b—c—d,
which is depicted in the figure using
thick edges. The method proposed in [6]
suggests that the nodes are traversed
in the order in which they appear in
the MWPC and are allocated to vari-
ous memory banks, subject to availabil-
ity of space in each memory bank. We
will assume an array is allocated fully
to a single memory bank, whenever the
size of the array is less than that of any
memory bank. According to the above
1 We introduce the metric bank-cycle (similar to man-months) to collectively represent

the number of memory banks and the cycles for which they remain active.
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MWPC, arrays a and b will be allocated to memory bank M1 and c and d to
memory bank M2. For this allocation, the memory banks that are active in each
loop and the bank-cycles for which the memory is active are shown in Table 1.
We see that memory is active for a total of 26N bank-cycles.

Although the MWPC method correctly identifies that edge (b, c) has a large
weight, the requirement to allocate arrays to memory banks in the order in which
they appear in the MWPC causes the bad decision in this example. Further,
MWPC does not take into account the set of nodes that are already allocated
to a partition. More specifically, if nodes v1, v2, v3 are already allocated, in that
order to partition P1, and in choosing between v4 and v5 that can also be allo-
cated to the same partition P1, it only considers the weight of edges (v3, v4) or
(v3, v5), and not the cumulative benefits due to edges from v1 and v2 to v4 or
v5. This is a basic limitation of formulating the array allocation problem as a
Maximum Weight Path Cover problem.

We now visit the heuristic proposed in [7] and show that it has a few ambi-
guities. The authors propose the use of compiler-directed clustering, where the
objective is to group array variables with similar lifetime access patterns, so that
they can be placed in the same memory module. This method uses three heuris-
tics namely last-use, first-use, and same-use pattern to divide the arrays into
subgroups and then using the fourth heuristic, reorder the array variables across
two neighboring subgroups which have similar access patterns. However the or-
dering of the subgroups in the first 3 steps (sub-grouping steps) is arbitrary and
is not akin to the underlying problem. As a consequence, the heuristic may or
may not result in a good partition depending on the subgroup order generated
by the implementation. Further, the sub-grouping may result in a degenerated
case where each array is in a subgroup by itself. In fact, for our motivating ex-
ample this degenerated situation arises after applying the first-use and last-use
heuristics. This prevents an efficient allocation of arrays to memory banks.

3.3 Overview of Our Approach

From the discussion in the previous sections, we observe that, given an ARG,
we need to partition it into a number of sub-graphs such that the sum of the
sizes of the arrays corresponding to the nodes in each sub-graph is less than that
of a memory bank size. The edges across the sub-graphs correspond to the cost
of keeping multiple memory banks simultaneously active. The objective of the
graph partitioning problem is to minimize the sum of the weights of the edges
across two partitions.

Let us partition the example ARG into two sub-graphs, one containing nodes
a and d and another containing nodes b and c. The sum of the sizes of the
array corresponding to these sub-graphs is less than 4MB, the size of a memory
bank. The edges that are across the two sub-graphs are: (a, b), (b, d), and (c, d).
The sum of the weights of these edges is 7N . For this allocation, the memory
banks that are active in each loop and the bank-cycles for which the memory is
active are shown in Table 1. We see that memory is active for a total of 23N
bank-cycles.
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4 Our Approach

In this section we formulate the array allocation problem as a graph partitioning
problem, which, in turn, leads to an Integer Linear Programming formulation.

4.1 Graph Partition Formulation

We now give a formal definition of this problem. Let G = {V, E, w, c} be the
array relation graph which is an undirected graph where each vertex v represents
an array. We use the same symbol v to denote the node as well as the array it
represents. An edge (u, v) represents that the arrays corresponding to u and v
are accessed together in same region of program execution. Associated with each
edge (u, v) is a cost cu,v, which represents the number of cycles for which arrays
u and v are accessed together. Since G is undirected, cu,v = cv,u. Finally we
associate a weight wv with each vertex v which corresponds to the size of the
array v. Let w be a positive number, such that 0 < wv ≤ w for all v. We are given
a memory architecture with k memory banks where the size m of each memory
bank is greater than w. We can make this assumption without loss of generality
since, if for some v, wv > m, then a number of memory banks l = �(wv/m)�
can be allocated exclusively for v and the remaining array locations in v can be
considered in our array allocation problem.

A k-way partition of G is a set of subsets Gi = {Vi, Ei, w, c}, such that

1. Any pair of subsets Gi and Gj are disjoint.
2.

⋃k
i=1 Vi = V and

3. For all (u, v) ∈ E, (u, v) is in Ei iff u ∈ Vi and v ∈ Vi.

A partition is admissible if
∑

v ∈ Vi
wv ≤ m for all Gi. An edge (u, v) ∈ E is

said to be an external edge for a partition if u ∈ Ei and v ∈ Ej and i �= j.
The cost of a partition is the summation of weights of all external edges. We
refer to this cost as the external cost of the partition. The partitioning problem
is thus to find an admissible partition of G with minimal external cost.

The optimal partitioning problem is NP-Complete [11]. There are a number
of heuristic approaches to this problem. We used one such heuristic proposed
in [11]. The heuristic proposed primarily aims to find a minimal cost partition
of a set of 2n elements into two sets of n elements each. The heuristic algorithm
works by starting with a pair of initial partitions A and B and swapping vertices
a ∈ A and b ∈ B to the other partition based on External Cost (ECost) and
Internal Cost (ICost). We define ECost of a as Ea =

∑
y∈B cay. We also define

ICost Ia as Ia =
∑

x∈A cax. Similarly we define ECost Eb and ICost Ib for
each b ∈ B. Let Da = Ea − Ia for each a ∈ A be the difference between the
ECost and ICost. Now according to a lemma proved in [11], for any a ∈ A and
b ∈ B, if they are interchanged, the reduction in the partitioning cost is given
by Rab = Da + Db − 2 ∗ cab. The nodes a and b are interchanged to partitions
B and A respectively if Rab > 0.
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Next we generalize the heuristic algorithm for doing a k-way partition (refer
to Algorithm 1). In Step 1 the graph is partitioned into a set of k admissible
partitions. We then proceed to make sure that they are pairwise optimal. To do
that we consider a pair of such partitions. In Step 5 and Step 7 we calculate the
ICost and ECost. In Step 9 we iterate through the elements of each of the pairs
and calculate the reduction in partitioning costs, if they were to be interchanged.
In Step 14 we choose the pair of nodes a and b, which has the largest positive
Rab value. We move a to partition Gj and b to partition Gi if the resulting
partitions are admissible. We repeat the steps till no more such interchanges are
possible. This process is performed pair-wise on the partitions till no interchange
of elements occurs.

We shall illustrate the heuristic on the example graph in Figure 2. The graph
is split into two sets A, containing the elements {a, b}, and B, containing the
elements {c, d}. Now if we consider a ∈ A and c ∈ B we have Ea = N ,
Ia = 2N , Ec = 8N , Ic = 4N , Da = − N and Dc = 4N The Rac

value is now 3N . We see that this is the maximum value and hence we need to
interchange a and c. We get the partition (a, d) and (b, c). The algorithm iterates
over step 2 to step 11 and then concludes that no more interchanges are possible
and hence terminates.

Algorithm 1. Algorithm to partition a graph
1. Partition the graph G randomly into subsets G1, G2, ..., Gk such that Gi =
{Vi, Ei, w, c} and

�
j ∈ Vi

wj ≤ m. (Admissible Partitions)
2. Do
3. Take a pair of partitions Gi and Gj that are not marked as

pairwise optimal.
4. Repeat
5. For each a ∈ Gi calculate Ea, Ia, Da

6. EndFor
7. For each b ∈ Gj calculate Eb, Ib, Db

8. EndFor
9. For each a ∈ Gi do
10. For each b ∈ Gj do
11. Calculate Rab.
12. EndFor
13. EndFor
14. For the largest Rab value, Rab > 0, interchange a ∈ Gi

and b ∈ Gj if the resulting partitions Gi′ and
Gj ′ are admissible.

15. Until all Rab > 0
16. Mark Gi and Gj as being optimal with respect to each

other
17. While there is no interchange of elements between any two

pairs Gi and Gj
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There are quite a number of implementations of the graph partitioning algo-
rithm available. We use one such implementation described in [10]. A detailed
discussion on the technique used for performing the partitioning can be found
in [10].

4.2 Integer Linear Programming Formulation

In this section we formulate the array allocation problem as an Integer Linear
Programming problem. We use the Array Relation Graph representation for this
formulation too. We use a 0-1 integer variable with xij = 1 to denote that array
i is allocated to a memory bank j. Let sj denote the size of memory bank j. If
all memory banks are of size m, then sj = m for all j. Once again we assume
that the size of an array wv is less than that of a memory bank size sj . Further,
since we assume an array can be allocated to only one memory bank, we have
the following constraint:

k∑

j=1

xij = 1 for all i = 1, n (1)

Now the sum of the sizes of arrays allocated to each memory bank must be less
than the size of the memory bank. This constraint can be formulated as:

n∑

i=1

xij ∗ wi ≤ sj for all j = 1, ..., k (2)

Note that in the above equation wi is a constant. To model whether an edge
(i, j) is an external edge, i.e., spans two partitions, we use a 0-1 integer variable
eij . If xip = 1 and xjq = 1, where p �= q, indicating that arrays i and j are
placed in two different memory banks (viz. p and q ), then the edge (i, j) is an
external edge and therefore the value of eij must be one. This is specified by the
following logical statement (xip Λ xjq) =⇒ eij . This can be written as a linear
constraint as follows:

xip + xjq − eij < 2 for all i, j ∈ [1, n] and p, q ∈ [1, m] (3)

It can be seen that if xip = 1 and xjq = 1, then eij should be equal to 1 to
satisfy the above equation. Although the above constraint does not necessarily
set the value of eij to 0 when either of (xip = 0) or (xjq = 0), the use of eij in
the objective function will ensure this. Thus the objective function of the array
allocation problem is to minimize the sum of the weights on the external edges.
That is

minimize
n∑

i=1

n∑

j=i+1

eij ∗ cij (4)

subject to Equations 1, 2 and 3. Note that cijs in the objective function are
constants.
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5 Experimental Results

5.1 Implementation Details

We have used the SUIF compiler framework [18] to implement our data alloca-
tion heuristics. We first compile the given benchmark into a SUIF intermediate
file. SUIF provides a framework to analyze this intermediate file on the basis
of data dependence framework, live dependence analysis, etc. We use the de-
pendency analysis framework to compute a co-access index matrix, which is the
edge weight matrix Cuv. That is, for a given array A in the program, this matrix
is used to find out those arrays that are accessed together along with this array.
The sizes of the arrays, along with co-access index matrix are used to construct
the ARG which in turn is used as input to the array allocation heuristic. We
have implemented Algorithm 1 for our array allocation heuristic. The output
of the heuristic is the partition of arrays into different memory banks. For the
Integer Linear Programming problem formulation we have used the commercial
solver CPLEX R© [5]. From the partition obtained from the heuristic or CPLEX
solver, we derive the declaration order of the arrays (with appropriate padding)
to enforce the partition to different memory banks. We also make necessary
modifications to accommodate arrays whose sizes are greater than the memory
banks.

We have used Simple-Scalar[16] to simulate the execution of the benchmark
programs. The benchmarks with modified array declaration order, are compiled
using the PISA tool-chain compiler provided along with the Simple-Scalar distri-
bution with -O2 optimizations. We have simulated full program execution. The
energy consumption of the memory subsystem is estimated by first generating
the address trace and determining the active or low-power modes in which the
memory banks are in during the different regions of program execution. The
energy consumption of the memory subsystem is estimated using the method
outlined in Section 2.

5.2 Evaluation Methodology

We have used six array-dominated and data-intensive benchmarks, four from
scientific applications and two applications from the embedded systems domain.
Liv8 is a part of the Livermore[12] kernel, which does 2D ADI Integration and
has 6 arrays with a dataset size of 33MB. tomcatv having 6 arrays and a dataset
of 48MB, is a part of SPEC’95 benchmark suite and is a vectorized mesh genera-
tion program. eflux is a part of Perfect Club benchmark suite and is widely used
in image processing applications. It has 5 arrays and a data set size of 42MB.
vpenta having 8 arrays and a dataset of size 34MB, is a part of the nasa7 kernel,
a program in the SPEC’92 floating-point benchmark suite, and is a routine to
invert 3 pentadiagonals. The MPEG-4 Encoder and Decoder is a video decoder
and encoder, having 12 arrays and a dataset of 54MB. The AMR Encoder and
Decoder is a speech encoder and decoder. It has 10 arrays and a dataset of size
57MB. These are primarily used in many multimedia applications for portable
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devices like video capture etc. For the purposes of our experiments, a fifteen
minute raw video sample and a fifteen minute raw audio sample were used.
These samples were encoded and then decoded back to raw video and raw audio
samples.

Many portable devices of today do not provide multiprogramming environ-
ment nor have a virtual memory subsystem. Hence, we have assumed a single
program environment and all addresses are physical addresses. Further, for most
of our experiments, we have assumed a memory system without caches. We
have assumed an in-order execution processor having two memory system ports,
four integer and floating point ALU’s, and one integer and one floating point
multiplier/divider.

5.3 Results

First we report the performance comparison of four different array allocation
techniques. The No-allocation scheme refers to one in which arrays are allocated
to memory banks in the order in which they are declared in the program. How-
ever, we assume that, whenever possible, inactive memory banks are put into
appropriate low power mode even in this No-Allocation scheme. The MWPC
technique refers to Delaluz’ scheme [6] which allocates arrays to memory banks
based on the Maximum Weight Path Cover approach. The HGPS scheme cor-
responds to the heuristic graph partitioning scheme discussed in Section 4.1.
Finally, the ILPS scheme refers to the ILP formulation presented in Section 4.2.
In this study we assume a memory bank size of 2MB and a memory subsystem
having enough memory banks to hold all the arrays. In all these experiments,
we assume oracle activation of a memory bank as discussed in Section 2. The
oracle activation scheme, assumed equally for all four schemes, gives the up-
per bound of the energy reduction achievable by each of the schemes. We will

Fig. 3. Energy Comparisons for a 2MB
Memory Bank

Fig. 4. Power-Down Cycle Comparisons for
a 8MB Memory Bank
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evaluate our schemes under a more realistic on-demand activation scheme later
in this section.

In Figure 3 we plot the energy consumption of the memory subsystem, for
all the benchmarks under various allocation schemes normalized to the No-
Allocation scheme, which is treated as the base case. We observe that the the
MWPC scheme achieves an energy reduction of 8% to 12% in various bench-
marks programs. Whereas, HGPS and ILPS achieve a reduction of 18% to 20%
in comparison to the No-Allocation scheme. Thus the HGPS and ILPS schemes
achieve a further reduction in energy of 8% to 10% over MWPC. This clearly
demonstrates the limitation of formulating the array allocation problem as a
Maximum Weight Path Cover problem and also highlights the benefits of the
graph partitioning approach.

Further, we observe that our heuristic graph partitioning method performs as
well as the optimal solution given by the ILPS solver. This is encouraging, given
that the heuristic approach takes only 0.1 seconds on the average to solve an
average graph partitioning problem, while the ILPS solver could take hundreds
of seconds for the same problem. However, in many cases, when the number of
arrays and/or memory banks is small (less than 20), the ILPS solver was also
able to obtain the optimal partition within 2 seconds.

Much of the effectiveness of the heuristic in trying to reduce the energy con-
sumed by the memory subsystem comes from placing a memory bank in the
lowest power mode possible viz., Power-Down mode for the largest number of
cycles. Hence an increase in number of Power-Down cycles would mean that
it is able to find large intervals of idle time for a particular memory bank.
Figure 4 plots the power-down mode cycles for all the benchmarks running on a
system which has memory banks of size 8MB, normalized to the base case i.e.,
the No-Allocation scheme. As can be observed from Figure 4, the HGPS heuristic
scheme proposed in this paper is able to place a memory bank in Power-Down
mode for as much as 25% more cycles when compared to the base case and upto
12% when compared to using MWPC heuristic. Further, the number of cycles
in the power-down mode for the HGPS is within 1% of that for ILPS.

Next we study the impact of memory bank size on energy reduction. In Figure 5
we plot the actual energy consumed (in micro-Joules) by the memory system, with
memory bank sizes of 2MB, 4MB, or 8MB, for MPEG-4 and AMR benchmarks un-
der various array allocation schemes. The results for other benchmarks are similar
and are not included here due to space constraints. We observe that even under
various memory bank sizes HGPS and ILPS perform significantly better than No-
Allocation and MWPC schemes. An average improvement of 8% over MWPC and
18% over No-Allocation is seen in all cases. Also we observe that the difference in
the energy consumed by the HGPS and ILPS array layouts is within 1%. Next,
as the memory bank size is increased from 2MB to 4MB and 8MB, the energy con-
sumedby thememory subsystem increases by 14% in case ofAMRand105% in case
of MPEG-4. However this increase is seen uniformly across all allocation schemes.
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Fig. 5. Energy Comparisons for MPEG-4 and AMR Benchmarks

This is due to fewer memory banks and hence fewer opportunities available for the
memory allocation scheme to put them to low power modes.

Next we compare the oracle memory bank activation and on-demand mem-
ory bank activation schemes. As explained in Section 2, the on-demand ac-
tivation scheme results in increased execution time due to resynchronization
time. Further, the low-power mode (Standby, Napping, Power-down) to which
a memory bank is put into is determined assuming oracle knowledge. Figure 6
plots the energy consumed by MWPC and HGPS methods with oracle and on-
demand memory bank activation, normalized to No-Allocation method. In this
graph MWPC(OD) and HGPS(OD) refer to MWPC method and HGPS schemes
with on-demand memory bank activation, while MWPC and HGPS refer to
the respective schemes with oracle activation. The graphs in Figure 6 clearly
shows that HGPS with on-demand activation performs better than MWPC and
MWPC(OD) by 5% to 8%. Further, for HGPS method it can be observed that
the energy consumption difference is only around 3% between oracle and on-
demand activation, while this difference is upto 6% for MWPC method. This
could be due to the fact that HGPS method is able to place a large number of
memory banks in optimum low-power mode, which reduces the need to perform
frequent resynchronization.

Figure 7 plots the execution cycles for on-demand memory bank activation
for MWPC and HGPS methods normalized to No-Allocation method. We have
not plotted the execution cycles for oracle memory bank activation schemes as
they remain the same. Here we observe that the increase in execution cycles for
HGPS method is within 3% while it goes upto 5% for MWPC method. Thus we
conclude that even when we use an on-demand activation scheme, we are still
able to obtain sufficient energy reduction with little increase in execution time
of the program.

In order to study the effect of our array allocation scheme in the presence
of caches, we have performed experiments assuming two different L1 cache con-
figurations, a 4K 2-way set associative cache and a 4k 4-way set associative
cache. We assumed a memory bank size of 2MB in this experiment. In all these
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Fig. 6. Energy Comparisons between oracle
and on-demand memory bank activation for
a 2MB memory bank

Fig. 7. Execution Cycle Comparisons for
on-demand memory bank activation for
2MB memory bank

Fig. 8. Energy Comparisons for a 2MB Memory Bank with caches

experiments, we assume oracle activation of a memory bank. Figure 8 gives de-
tails of energy consumption of the memory subsystem with caches, for all the
benchmarks under various allocation schemes normalized to the No-Allocation
scheme. We observe that the energy reduction due to various array allocation
schemes decreases when the memory subsystem consists of a cache. This is due
to the fact that the cache filters many of the memory accesses (due to local-
ity), which, in turn, enables the memory banks to be put into low-power modes
for longer duration even in No-Allocation scheme. However, we also make an
important observation that the HGPS and ILPS schemes are able to obtain a
reduction of about 8% in the energy consumption when compared to MWPC
scheme, even when a cache is present. The results for remaining memory bank
configurations (4MB, 8MB) are along similar lines and have not been included
due to space constraints.
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6 Related Work

The problem of minimizing the energy consumption of the memory subsystem
is dealt with in [6]. They have also proposed loop optimizations such as tiling
for reducing the energy consumption which are orthogonal to the array place-
ment technique considered in this paper. Also the loop optimization considered
in their paper might introduce control overheads, which may lead to increase in
execution time, which in turn may increase the energy consumed by the system.
Their work does not model these appropriately.

Array allocation techniques to minimize the energy consumption of the mem-
ory subsystem is dealt with in [2]. They have proposed Array-interleaving and
memory layout modifications for identifying memory banks which can be tran-
sitioned into low power modes. However they focus mainly on optimizations
meant for the Java Virtual Machine environment. The array allocation we have
proposed however does not limit itself to any particular run-time environment.

A memory bank assignment algorithm for retargetable compilers is proposed
in [9]. They profile the program to obtain data access patterns of variables and
use this information to place the variables in such a way that the memory banks
can be transitioned to a low power mode. However, unlike the various low-power
operating modes for memory banks considered in this paper, they assume that
each memory bank is either kept in active state or is switched off.

Energy aware variable partitioning along with instruction scheduling for multi-
bank architectures has also been dealt with in [17]. An optimal assignment of
variables to memory banks is obtained through effective scheduling of memory
intensive instructions. The heuristic we have proposed focuses directly on allo-
cating variables to memory banks by making use of the features provided by the
underlying hardware.

Assignment of variables to memory banks is also dealt with in [4]. Their work
tries to optimize the assignment mainly for Digital Signal Processors. Although
they have also reduced the assignment problem to a graph partitioning problem,
they use the idea of Maximum Spanning Tree to partition their graph. Array
allocation to memory banks that provide various low power operating modes
was also done in [15]. The arrays that are accessed together for a large number
of times are allocated to a single memory bank by a greedy heuristic which eval-
uates a trade-off between size of array and access with other arrays currently in
the memory banks.

In [1] they consider Page allocation policies, controlled by operating system,
that can take advantage of the various low power modes of the memory banks
are considered in [1]. They try to reassign frequently used pages to common
memory banks, so that the remaining memory banks can be switched to a low
power mode without impacting program performance. While their study con-
centrates on pages and interaction between the operating system and memory
banks, our study focuses on arrays and how compilers can make use of the hard-
ware features.
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7 Conclusions

In this paper we formulate the array allocation problem as a graph partitioning
problem. We observe that this is a more natural formulation for the problem
that the earlier approaches [6], [7]. We have used existing heuristic approaches
for the graph partitioning problem as a solution to the array allocation problem.
We have shown that the array allocation problem can also be formulated as an
Integer Linear Programming problem. Our heuristic approaches obtain, on an
average, 20% reduction in memory subsystem energy over energy unaware array
allocation methods, and 8% to 10% reduction over other competitive methods.
Further the heuristic solution performs as well as the optimal solution obtained
from the ILP solution, and results in energy consumption that is within 1% of the
optimal solution. As future work, we are investigating on methods to determine
the appropriate low-power mode for the memory banks.
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