
Searching for Shapes in Cryptographic
Protocols�

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation
shaddin@stanford.edu,

{guttman,jt}@mitre.org

Abstract. We describe a method for enumerating all essentially differ-
ent executions possible for a cryptographic protocol. We call them the
shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are
easy to determine from them, as are attacks. cpsa, our Cryptographic
Protocol Shape Analyzer, implements the method.

In searching for shapes, cpsa starts with some initial behavior, and
discovers what shapes are compatible with it. Normally, the initial be-
havior is the point of view of one participant. The analysis reveals what
the other principals must have done, given this participant’s view.

1 Introduction

The executions of cryptographic protocols frequently have very few essentially
different forms, which we call shapes. By enumerating these shapes, we may
ascertain whether they all satisfy a security condition such as an authentication
or confidentiality property. We may also find other anomalies, which are not
necessarily counterexamples to the security goals, such as involving unexpected
participants, or involving more local runs than expected.

In this paper, we describe a complete method for enumerating the shapes of a
protocol within a pure Dolev-Yao model [7]. If the protocol has only finitely many
essentially different shapes, the enumeration will terminate. From the shapes,
we can then read off the answers to secrecy and authentication questions and
observe other anomalies. Our software implementation of this method is called
a Cryptographic Protocol Shapes Analyzer (cpsa).

We use the strand space theory [10]. A skeleton represents regular (non-
penetrator) behavior that might make up part of an execution, and a homo-
morphism is an information-preserving map between skeletons. Skeletons are
partially-ordered structures, like fragments of Lamport diagrams [13] or frag-
ments of message sequence charts [12]. A skeleton is realized if it is nonfragmen-
tary, i.e. it contains exactly the regular behavior of some execution. A realized
skeleton is a shape if it is minimal in a sense we will make precise. We search

� Supported by the National Security Agency and by MITRE-Sponsored Research.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 523–537, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

524 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

for shapes using the authentication tests [10] to find new strands to add when a
skeleton is not large enough to be realized.

The main technical result underlying cpsa is completeness, in the sense that—
for any protocol—our authentication test search eventually discovers every shape
for that protocol. It cannot terminate for every protocol [8]. It does, however,
terminate for reasonably inclusive classes [4,19].

The type-and-effect system for spi calculus [9] is related to the authentica-
tion tests, but differs from our work in two ways. First, we do not use the
syntactically-driven form of a type system, but instead a direct analysis of behav-
iors. Second, type-and-effect systems aim at a sound approximation, whereas our
work provides actual counterexamples when a security goal is not met. Blanchet’s
ProVerif [1] is also based on a sound approximation, and may thus refuse to cer-
tify a protocol even though there are no counterexamples.

cpsa’s search is related to the second version of Athena [18], which adopted
the authentication tests from [10]. However, cpsa differs from Athena in several
ways. First, it involves the regular behaviors alone; we never represent adversary
activity within a shape. Second, the notion of shape defines a criterion for which
possible executions should be considered, among the infinitely many executions
(of unbounded size) of any protocol. Third, we introduce strong versions of the
authentication tests, for which completeness is true.

The shapes describe protocol executions of all sizes; we do not follow the
widely practiced bounded protocol analysis (e.g. [2,15]).

Structure of this paper. We develop the cpsa search strategy from exam-
ples, leaving precise definitions, theorems, and proofs to an extended version [6].
Section 2 shows a protocol and its shapes, and introduces terminology. Section 3
introduces the Yahalom protocol [17], a more substantial example. The search
for shapes is guided by the authentication test principles (Section 4), which we
apply to analyze Yahalom’s protocol in Section 5. This analysis illustrates al-
most every aspect of the cpsa search method. In Section 6, we define the search’s
control structure. The cpsa implementation is the subject of Section 7.

2 Shapes: The Core Idea

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [16,14] protocol has only one. A responder B, asking what global behavior
must have occurred when B has had a local run of the protocol, finds the initia-
tor A must have had a matching run. An initiator A knows that B must have
had a matching run, although the last message may not have been received.

Uniqueness of shape is unsurprising for so strong a protocol. However, even
a flawed protocol such as the original Needham-Schroeder may have a unique
shape, shown in Fig. 1.

Terminology. Newly introduced terminology is in boldface.
B’s local behavior is represented by the right-hand column in Fig. 1, consisting
of nodes connected by double arrows • ⇒ •. A’s local behavior is represented

Searching for Shapes in Cryptographic Protocols 525

A
{|Na ˆA|}pubk(C)� {|Na ˆA|}pubk(B)� B

•
�

�{|Na ˆNb|}pubk(A) � � {|Na ˆNb|}pubk(A) •
�

•
� {|Nb|}pubk(C) � ≺

{|Nb|}pubk(B) � •
�

Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, Nb fresh)

by the left-hand column. We call such a column a strand. The nodes represent
message transmission or reception events, and the double arrows represent suc-
cession within a single linearly ordered local activity. The message transmitted
or received on a node n is written msg(n). A regular strand is a strand that
represents a principal executing a single local session of a protocol; it is called a
regular strand because the behavior follows the protocol rules. A local behavior
as used so far refers to a regular strand.

We use {|t|}K to refer to the encryption of t with key K, and tˆt′ means the
pair of messages t and t′. Messages are constructed freely from atomic values
such as principal names A, nonces Na, keys K, etc., via these two operations.

The subterm relation is the least reflexive, transitive relation such that t is a
subterm of {|t|}K , t is a subterm of tˆt′, and t is a subterm of t′ˆt (for all K, t′).
We write t � t′ if t is a subterm of t′. Thus, K �� {|t|}K unless (anomalously)
K � t. Instead, K contributed to how {|t|}K was produced. This terminology has
an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n
if (1) n is a transmission node; (2) a � msg(n); and (3) if m is any earlier node
on the same strand, then a �� msg(m).

Adversary behavior is represented by strands too. Penetrator strands cod-
ify the basic abilities that make up the Dolev-Yao model. They include trans-
mitting an atomic value such as a nonce or a key; transmitting an encrypted
message after receiving its plaintext and key; and transmitting a plaintext after
receiving ciphertext and decryption key. The adversary can pair two messages,
or separate the pieces of a paired message. Since a penetrator strand that en-
crypts or decrypts must receive the key as one of its inputs, keys used by the
adversary—compromised keys—have always been transmitted by some partici-
pant. The penetrator strands are independent of the protocol under analysis.

Let B be a finite, directed acyclic graph whose nodes lie on regular and pene-
trator strands, and whose edges are either (a) strand succession edges n0 ⇒ n1,
or else (b) message transmission edges n → m where msg(n) = msg(m), n is a
transmission node, and m is a reception node. B is a bundle if (1) if n0 ⇒ n1
and n1 ∈ B, then n0 ∈ B, and (2) for every reception node m ∈ B, there is a
unique transmission node n ∈ B such that the edge n → m is in B. The condi-
tions (1,2) ensure that B is causally well founded. A global behavior or execution,
as used so far, refers to a bundle.

526 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

The NS Shape. Suppose B’s nonce Nb has been freshly chosen, and A’s private
key privk(A) is uncompromised. In this protocol, privk(A), privk(B) are used only
to destructure incoming messages, never to construct messages. Given that—on
a particular occasion—B received and sent the messages in the strand shown at
the right in Fig. 1, what must have occurred elsewhere in the network?

A must have had a partially matching strand, with the messages sent and
received in the order indicated by the arrows of both kinds and the connecting
symbols ≺. These symbols mean that the endpoints are ordered, but that other
behavior may intervene, whether adversary strands or regular strands. A’s strand
is only partially matching, because the principal A meant to contact is some C
which may or may not equal B. There is no alternative: Any diagram containing
the responder strand of Fig. 1 must contain at least an instance of the initiator
strand, with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
bundle, forming a minimal set containing initial regular strands (in this case,
the right-hand column). Possible bundles may freely add adversary behavior.

Each shape is relative to assumptions about keys and freshness, in this case
that privk(A) is uncompromised and Nb freshly chosen. Nothing useful would
follow without any such assumptions.

Although there is a single shape, there are two ways that this shape may be
realized in bundles. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [14]; or else (2) C = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. A skeleton A is (1) a finite set of
regular nodes, equipped with additional information. The additional information
consists of (2) a partial order �A on the nodes indicating causal precedence; (3)
a set of keys nonA; and (4) a set of atomic values uniqueA. Values in nonA must
originate nowhere in A, whereas those in unique

A
originate at most once in A.1

A is realized if it has precisely the regular behavior of some bundle B. Every
message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously.
Fig. 1 shows a skeleton Ans , indeed a realized one.

A homomorphism is a map H from A0 to A1, written H : A0 	→ A1. We
represent it as a pair of maps (φ, α), where φ maps the nodes of A0 into those
of A1, and α is a replacement mapping atoms to atoms. We write t · α for
the result of applying a replacement α to all the atoms mentioned in a message
t. H = (φ, α) is a homomorphism iff: (1) φ respects strand structure, and for
all n ∈ A0, msg(n) · α = msg(φ(n)); (2) m �A0 n implies φ(m) �A1 φ(n); (3)
nonA0 · α ⊆ nonA1 ; and (4) uniqueA0

· α ⊆ uniqueA1
.

Homomorphisms are information-preserving transformations. Each skeleton
A0 describes the realized skeletons reachable from A0 by homomorphisms. Since
1 When n ⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.

Searching for Shapes in Cryptographic Protocols 527

homomorphisms compose, if H : A0 	→ A1 then any realized skeleton accessible
from A1 is accessible from A0. Thus, A1 preserves the information in A0: A1
describes a subset of the realized skeletons described by A0.

A homomorphism may supplement the strands of A0 with additional behavior
in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the
partial ordering. For instance, consider the map Hns embedding a single strand
of Fig. 1 (e.g. Ab containing only B’s strand on the right side) into Ans . This is
a homomorphism Hns : Ab 	→ Ans . Likewise if we embed the first two nodes of
B’s strand (rather than all of Ab) into Ans . Another homomorphism Hi rewrites
each occurrence of C in Ans to B, hence each occurrence of pubk(C) to pubk(B).
It yields the Needham-Schroeder intended run Ansi .

A homomorphism H = (φ, α) is nodewise injective if the function φ on
nodes is injective. The nodewise injective homomorphisms determine a partial
order on homomorphisms: If for some nodewise injective H1, H1 ◦ H = H ′, we
write H ≤n H ′. If H ≤n H ′ ≤n H , then H and H ′ are isomorphic.

A homomorphism H : A0 	→ A1 is a shape iff (a) A1 is realized and (b) H
is ≤n -minimal among homomorphisms from A0 to realized skeletons. If H is a
shape, and we can factor H into A0

H0	→ A
′ H1	→ A1, where A

′ is realized, then
A

′ cannot contain fewer nodes than A1, or identify fewer atomic values. A1 is as
small and as general as possible.

We call a skeleton A1 a shape when the homomorphism H (usually an embed-
ding) is understood. In this looser sense, Fig. 1 shows the shape Ans . Strictly,
the embedding Hns : Ab 	→ Ans is the shape. The embedding Hnsi : Ab 	→ Ansi ,
with target the Needham-Schroeder intended run Ansi , is not a shape. Ans iden-
tifies fewer atoms, and the map replacing C with B is a nodewise injective
Hi : Ans 	→ Ansi , so Hns ≤n Hi ◦ Hns = Hnsi .

Shapes exist below realized skeletons: If H : A0 	→ A1 with A1 realized, then
the set of shapes H1 with H1 ≤n H is finite and non-empty.

3 The Yahalom Protocol Definition

The Yahalom protocol (Fig. 2 [17]) provides a session key K to principals sharing
long-term symmetric keys with a key server. We let ltk(·) map each principal A
to its long term shared key ltk(A). We assume that all participants agree on the
server, which does not also participate as a client.

The protocol contains three roles, the initiator, the responder, and the server.
Each is described by one strand in Fig. 2, and each role is parametrized by
A, B, Na, Nb, K. The parameters are atomic values, and the instances of each
role are constructed by replacing them with other atomic values. The behavior
Init of the initiator consists in transmitting AˆNa followed by receiving some
message of the form {|BˆK ˆNaˆNb|}ltk(A) and finally transmitting {|Nb|}K . The
other roles are also self-explanatory. The key server is trusted to generate a fresh,
uniquely originating session key K in each run. By this, we mean that if a skeleton
A contains a server strand with session key K, then K ∈ uniqueA.

528 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Init
AˆNa � AˆNa � Resp

�Bˆ{|AˆNa ˆNb|}ltk(B) •
�

•
�

�
�
�
�
�

� {|BˆK ˆNaˆNb|}ltk(A)

{|AˆK|}ltk(B) � •
�

�
�
�
�
�

•
�

�
�
�
�
�

{|Nb|}K � {|Nb|}K � •
�

Serv �Bˆ{|AˆNa ˆNb|}ltk(B)

�{|BˆK ˆNaˆNb|}ltk(A) •
�

•
� {|AˆK|}ltk(B) �

Fig. 2. Yahalom protocol (forwarding removed)

4 Search Steps

The authentication tests are the basic steps leading from a particular initial
skeleton to its shapes. The Yahalom protocol requires both types of step, and
relies on the strong outgoing test we give here. The older form [10] does not
suffice.

Terminology. A protocol is a finite set of regular strands, called the roles.
For instance, the Yahalom roles include the three strands shown in Fig. 2. Roles
have atoms as parameters, namely A, B, Na, Nb, K for each role of Fig. 2. A
parameter may be distinguished by the assumption that it is always uniquely
originating, like the session key K in the Yahalom server role. The instances of
roles under replacements are regular strands.

We assume that each protocol also includes listener strand roles, by which
we mean a regular strand with a single node receiving an atomic message. We
write Lsn[a] for the strand a→ • that receives the atom a. If A containing Lsn[a] is
realized, then a is available without protection in A, i.e. a is compromised. We
use listener strands to test whether atoms are safe secrets. Suppose a skeleton
A

′ is the result of adding Lsn[a] to A, and there is no homomorphism mapping
A

′ to any realized A
′′. Then A is safe in A, as no execution described by A is

compatible with a being compromised. Listener strands, lacking transmission
nodes, need never precede anything else; we always let them be maximal in �A.

If A, A′ are both realized, and differ only in which listener strands they contain,
then we regard them as similar and write A ∼L A

′. In this case, the skeleton A
′′

that contains all listener strands from both A, A′ is also realized, and A
′′ ∼L

A ∼L A
′. We will ignore differences between homomorphisms H : A0 	→ A and

H ′ : A0 	→ A
′ that agree but have distinct, similar targets. Each may be extended

by an embedding to yield the same homomorphism H ′′ : A0 	→ A
′′.

Searching for Shapes in Cryptographic Protocols 529

A homomorphism is a contraction if it identifies at least one pair of atoms
and is surjective on nodes. A contraction replaces C with B in Fig. 1 to produce
the Needham-Schroeder intended run.

Suppose that S is a set of encrypted messages and the atom a ∈ unique
A

originates at n0. The pair of nodes n0, n1, where n1 is a reception node, form
an outgoing test pair for a and S iff all a’s occurrences in msg(n0) are within
messages in set S, but a has at least one occurrence in n1 outside the messages
in S.2 The second and fourth nodes on the responder strand, for instance, form
an outgoing test pair for Nb and S0 = {{|AˆNaˆNb|}ltk(B)}, or for any S′

0 ⊇
S0. The set of keys used for outermost encryptions in any S is called used(S),
i.e. used(S) = {K : ∃t . {|t|}K ∈ S}. So used(S0) = {ltk(B)}.

The nodes m0, m1, with m1 a transmission node, are an outgoing trans-
forming edge for a, S if (1) they lie on the same regular strand . . . ⇒∗ m0 ⇒+

m1 ⇒∗ . . .; (2) a occurs in msg(m0) but no earlier node; (3) a occurs outside
S in msg(m1) but not in any earlier node. In the Yahalom protocol, the second
and third nodes of the server role are an outgoing transforming edge for Nb, S0,
although not for the larger set S′

0 = {{|AˆNaˆNb|}ltk(B), {|BˆK ˆNaˆNb|}ltk(A)}.
However, the second and third nodes of the initiator role are an outgoing trans-
forming edge for Nb, S

′
0.

Types of Search Step. There are two types of search steps, outgoing steps
and incoming steps. The outgoing step states that each outgoing test pair n0, n1
must be solved, either by contracting atoms, or else by adding an outgoing
transforming edge or a listener strand.

Outgoing test principle. Let H : A0 	→ A1 with A1 realized, and let n0, n1 ∈ A0
be an outgoing test pair for a and S. If A0 contains no outgoing transforming
edge for a, S that precedes n1, then, for some H ′′, H = H ′′ ◦ H ′ where either:

1. H ′ is a contraction; or
2. H ′ : A0 	→ A

′ is an embedding adding m0 ⇒+ m1, an outgoing transforming
edge for a, S, where n0 �A′ m0 and m1 �A′ n1; or

3. H ′ is an embedding adding Lsn[K−1], for some K ∈ used(S).

Clause 1 is used when H(n0), H(n1) is no longer an outgoing test pair for H(S).
It is also sometimes needed to prepare for an application of Clause 2, if (n0, n1) is
more general than some transforming edge in a protocol role. Then the contrac-
tion H unifies a member of S with a subterm of a role. Clause 1 is needed only
in these two cases. Clause 3 uses the inverse K−1 because in public-key (asym-
metric) algorithms, the adversary would use the inverse key K−1 to extract a
from an occurrence within a message {|t|}K ∈ S. We regard pubk(A), privk(A) as
inverses; symmetric keys are self-inverse.

2 A message t0 occurs only within S in t1 if, in the abstract syntax tree for t1, every
path to an occurrence of t0 as a subterm traverses some member of S. A message t0
occurs outside S in t1 if t0 � t1 and t0 does not occur only within S in t1 [6]. In our
terminology (Section 2), the K in {|t|}K is not an occurrence as a subterm.

530 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

The older outgoing test [10] lacked the set parameter S and applied (in effect)
only to singleton S. The Yahalom analysis requires a non-singleton S. Only
finitely many homomorphisms (to within isomorphism) can satisfy an instance
of Clauses 1–3, because only finitely many atoms are mentioned in A0 and only
finitely many transforming edges exist in one protocol. In particular, there is a
finite set of most general homomorphisms. A set of homomorphisms {Hk}k≤j is
an outgoing cohort if, for some instance of Clauses 1–3, each Hk satisfies a
clause, and for every H ′ satisfying one of those clauses, there is some k ≤ j and
some H ′′ such that H ′ = H ′′ ◦ Hk.

In a simple though not quite complete version, the incoming step states that
if {|t|}K is received, either Kis compromised or a regular strand transmitted it.

Incoming test principle. Let H : A0 	→ A1 with A1 realized, and let n1 ∈ A0
receive message {|t|}K. If A0 contains (preceding n1) no m1 transmitting {|t|}K,
then, for some H ′′, H = H ′′ ◦ H ′ where either:

1. H ′ is a contraction; or
2. H ′ : A0 	→ A

′ is an embedding adding an m1 �A′ n1 transmitting {|t|}K ; or
3. H ′ is an embedding adding Lsn[K].

We use Clause 1 only to prepare for an application of Clause 2, when n1 is more
general than a node in a role of the protocol. Again, there are finite sets {Hk}k≤j

that satisfy Clauses 1–3 in a most general way; we call them incoming cohorts.
We call the skeletons {Ak}k≤j a cohort if each Hk : A 	→ Ak for some outgoing
or incoming cohort {Hk}k≤j . In practice, for protocols that occur naturally, the
size of the cohorts is very small, no more than four in the Yahalom protocol.

5 Yahalom: Shapes for the Responder

Suppose an execution contains a local run sr of the responder’s role as in the
upper right column of Fig. 2. We assume the long term keys ltk(A), ltk(B) are
uncompromised, as no authentication can be achieved otherwise. Similarly, we
assume the responder’s nonce Nb to be fresh and unguessable.

So let the initial skeleton A0 consist of sr, with nonA0 = {ltk(A), ltk(B)} and
uniqueA0

= {Nb}. What skeletons are shapes for A0? Or more precisely, for what
realized skeletons A is there a shape H : A0 	→ A?

We will find only one possibility, the skeleton A4 (Fig. 5). Any realized A

containing any responder strand s′r—with uncompromised long-term keys and
a fresh nonce—has a subskeleton A

′ containing s′r, with J : A4 	→ A
′. J is both

nodewise injective and surjective, i.e. an isomorphism on nodes, although it may
identify atoms. The portion of A containing s′r resembles A4.

Transforming the Nonce. B chooses a fresh nonce Nb in node n0 (see Fig. 3),
and transmits it within the encrypted unit {|AˆNaˆNb|}ltk(B). In B’s node n2,
it is received outside that unit, in the form {|Nb|}K . So n0, n2 is an outgoing test
pair for Nb, S1 whereS1 =

{{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key}.

Searching for Shapes in Cryptographic Protocols 531

1. The only outgoing transforming edges for Nb, S1 lie on initiator strands.
Unifying node 2 of the role with messages in S1 shows that the parameters
must be A, B, Na, Nb, and some K ′. We ask later whether K ′ = K.

2. Alternatively some decryption key may be compromised. Since used(S1) =
{ltk(A), ltk(B)} contains symmetric (self-inverse) keys, this means we con-
sider adding Lsn[ltk(A)] or Lsn[ltk(B)].

No contraction is relevant. Thus, these three embeddings—adding to A0 an ini-
tiator strand si, a listener strand Lsn[ltk(A)], or one of the form Lsn[ltk(B)]—form
an outgoing cohort. When adding si, we know that n0 ≺ (si ↓ 2) ⇒ (si ↓ 3) ≺ n2.

A : si B : sr

S : s<3
s

�............................ n0

�
�

•
�

�
�
�
�
�
�
�
�

�.................................. m1

�
�

?

�
�

n1

�

�
�
�
�
�
�
�
�

•
�

�
�
�
�
�
�
�
�

...� n2

�
�

A,B, Na, Nb, K
′ A,B, Na, Nb, K

′ A,B, Na, Nb, K

Fig. 3. Skeleton A1, with nonA1 = {ltk(A), ltk(B)} and unique
A1

= {Nb, K
′}

Since nonA0 = {ltk(A), ltk(B)}, we also know that A0 ∪ Lsn[ltk(A)] and A0 ∪
Lsn[ltk(B)] are unrealizable. No bundle B can ever contain a listener strand for
a value that originates nowhere. Thus, the embeddings of Case 2 are dead in the
sense that no homomorphism from A0 to a realized skeleton can begin this way.
Thus, every homomorphism from A0 to a realized skeleton factors through the
embedding A0 	→ A0 ∪ {si}.

We again have an outgoing test edge between n0 and si ↓ 2, for Nb, S2 where

S2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A) : K ′′ �= K ′}.

Nb originates only at n0, where it occurs only within S2; however, in msg(si ↓ 2),
Nb occurs outside S2 in the form {|BˆK ′ˆNaˆNb|}ltk(A).

3. The only outgoing transforming edges for Nb, S2 lie on server strands ss.
Unifying node 1 of the role with messages in S2 shows that the parameters
must be A, B, Na, Nb, and some K ′′. Since Nb must occur outside S2 in
ss ↓ 2, we have K ′′ = K ′; so that the last parameter is K ′. The last node
ss ↓ 3 may not be included; we will write s<3

s for the initial segment of ss.
4. Alternatively a decryption key in used(S1) = {ltk(A), ltk(B)} may be com-

promised. However, neither listener strand produces a live skeleton.

532 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Thus, any homomorphism from A0 to a realized skeleton must factor through
the embedding A0 	→ A0 ∪ sr ∪ s<3

s . We call this skeleton A1, shown in Fig 3,
which also shows how the ordering relation extends. Since the server always
provides a fresh session key, we also have K ′ ∈ unique

A1
.

Does K′ = K?. The server generated K ′ on strand ss and delivers it to A on
si ↓ 2. B receives K on n1, and on n2 finds K also used to encrypt the nonce
Nb. Must the keys K ′, K be the same, or could they be distinct?

Nodes n0, n2 form an outgoing test pair for Nb and the set

S3 = { {|AˆNaˆNb|}ltk(B), {|BˆK ′ˆNaˆNb|}ltk(A), {|Nb|}K′ }.

The resulting outgoing cohort consists of Cases 5–7:

5. Another server strand s′s could receive Nb in its original form and transmit
Nb and a new session key K ′′ as {|BˆK ′′ˆNaˆNb|}ltk(A).

6. Under the contraction β that maps K ′ 	→ K and is elsewhere the identity,
no new edge is needed, as {|Nb|}K′ · β = {|Nb|}K · β.

7. used(S3) = {ltk(A), ltk(B), K ′}. Although adding Lsn[ltk(A)] and Lsn[ltk(B)]
lead to dead skeletons, perhaps adding Lsn[K ′] does not, i.e. K ′ may become
compromised.

However, we can prune Case 5, because K ′′ is not usefully different from K ′. The
adversary cannot use messages transmitted by s′s differently from the messages
transmitted by the existing ss. Discarding Case 5, there are two live possibilities:
either K ′ = K or else K ′ becomes compromised. We consider Case 7 next.

Case 7: K ′ becomes compromised. Consider the skeleton A1 ∪ Lsn[K ′]. K ′ orig-
inates uniquely at m1, so m1, (Lsn[K ′] ↓ 1) is an outgoing transformed pair for
K ′ and S4 = { {|BˆK ′ˆNaˆNb|}ltk(A), {|AˆK ′|}ltk(B) }. Thus, some case in the
cohort 8–9 must hold:

8. Some role Init, Resp, Serv provides a transforming edge for K ′, S4. However,
no Yahalom role retransmits it as a subterm of any new message. The initia-
tor uses K ′ to encrypt a message, but in our model, this discloses nothing.
For finer models, see e.g. [3,5].

9. One of the keys that protects K ′ in S4, i.e. a key K0 ∈ used(S4), becomes
compromised; but used(S4) = { ltk(A), ltk(B) }.

So neither Case 8 nor Case 9 is possible. We discard Case 7, as the whole co-
hort 8–9 is unrealizable or “dead.”

Hence, all homomorphisms to realized skeletons must factor through Case 6.
Let A2 = A1 · β be the result of replacing K ′ by K wherever mentioned in A1.
If any homomorphism H : A0 	→ A

′ has A
′ realized, then H factors through the

embedding A0 	→ A2.

B’s Source for K. The responder B receives {|AˆK|}ltk(B) on node n1. We
apply the Incoming Test Principle, with cohort:

Searching for Shapes in Cryptographic Protocols 533

A : si B : sr

S : s<3
s

�........................... n0

�

�
�

S : s′
s

•
�

�
�
�
�
�
�
�
�
�

�................................. m1

�

�
�

m′
1

�
�

?

�

�
�

n1

�

�
�
�
�
�
�
�
�
�
�

�................................ m′
2

�
�

•
�

�
�
�
�
�
�
�
�
�
�

...� n2

�

�
�

A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K A, B, N ′
a, N ′

b, K

Fig. 4. A3, with nonA3 = {ltk(A), ltk(B)} and unique
A3

= {Nb, K}

10. A server strand s′s, with parameters A, B, K, transmits {|AˆK|}ltk(B); possi-
bly different nonces appear in s′s. The embedding yields A3 in Fig. 4.

11. Alternatively, ltk(B) has been compromised and {|AˆK|}ltk(B) is generated
by the adversary. However, ltk(B) ∈ nonA2 , excluding this case.

A3 is not a skeleton because of an anomaly, however. K ∈ uniqueA3
is intended to

originate at just one node, but in fact originates at both m1 and m′
1. Therefore,

in any skeleton obtained by a homomorphism H = [φ, α] jointly from the union
A2 ∪ {s′s} = A3, necessarily φ(m1) = φ(m′

1), equating the strands ss and s′s. H
must then factor through skeleton A4 (Fig. 5), where consequently Na ·α = N ′

a ·α
and Nb · α = N ′

b · α, and the height of φ(ss) is 3.
Skeleton A4 is realized : every message received is sent, even without adversary

activity. Moreover, A4 is a shape. First, if we leave out any nodes, then either B’s
original strand is no longer embedded in the result, or else the result is no longer
realized. Second, we cannot make it more general: If two different strands share
a parameter, and we alter that parameter in one of the strands, then the result
is no longer realized. For instance, the diagram would no longer be realized if

A : si B : sr

S : ss
�............................. n0

�
�

•
�

�
�
�
�
�
�
�
�

�................................. m1

�
�

m2

�
�

................................� n1

�

�
�
�
�
�
�
�
�

•
�

�
�
�
�
�
�
�
�

...� n2

�
�

A, B, Na, Nb, K A,B, Na, Nb, K A, B, Na, Nb, K

Fig. 5. Skeleton A4, with nonA4 = {ltk(A), ltk(B)} and unique
A4

= {Nb, K}

534 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

A’s parameter Nb were altered to some N ′
b. Since all homomorphisms from A0

to realized skeletons factor through A4, it is the only shape for A0.

6 Search Strategy

The goal of cpsa is defined using the following terms:

step(A, C), which holds if the finite set C of skeletons is an outgoing or incom-
ing cohort for A. Any homomorphism from A to a realized skeleton passes
through some Ak ∈ C. The principles of Section 4 imply that the tests and
their cohorts may be used in any order, while still finding all shapes.

realized(A), which holds if A is realized; we can determine this directly.
min realA0(A′), which is defined if A

′ is realized. Its value is the finite, non-empty
set of shapes A such that (1) there is a homomorphism from A0 to A; (2)
A is realized; (3) there is a nodewise injective homomorphism from A to A

′;
and (4) A is ≤n -minimal among skeletons satisfying (1–3).

We say child(A, A′) if for some C, step(A, C) and A
′ ∈ C. Let descendent be

the reflexive, transitive closure of child. The goal of the search, given a starting
skeleton A0, is to determine the set

shapes(A0) = {A2 : ∃A1 . descendent(A0, A1) ∧ A2 ∈ min realA0(A1)}.

To do so, we use the search algorithm in Fig 6. We also need some auxiliaries:

dead(A) means A cannot be realized, i.e. there is no realized A
′ with H : A 	→ A

′.
Dead(A) follows from any of the following: (1) A contains Lsn[a] where a ∈
nonA; (2) dead(A0) and H : A0 	→ A; or (3) step(A, C) where C consists of
dead skeletons. Condition (1) was used repeatedly and condition (3) was
used to discard Case 7, as the cohort 8–9 led only to dead skeletons.

F := {A0}; shapes found := ∅; seen := F ;
while F 	= ∅ begin

A := select(F); F := F \ {A};
if realized(A)

then shapes found := shapes found ∪ min realA0(A)
else if redundant strand(A) then skip
else if step applies(A) then begin

let new = targets(apply step(A)) \ seen in
F := F ∪ new; F := F \ (filter dead F);
seen := seen ∪ new
end

else fail “Impossible.”
end;

return shapes found

Fig. 6. cpsa Search Algorithm

Searching for Shapes in Cryptographic Protocols 535

redundant strand(A) tests whether A contains a redundant strand that can be
identified with some other strand by a homomorphism from A to a proper
subskeleton. We discarded a redundant strand in Case 5.

step applies(A) tests if an unsolved outgoing or incoming step exists in A.
apply step(A) selects an unsolved step, finds a cohort, updates the step relation,

and then returns the cohort (assuming step applies(A) is true).
targets(H) = {Ak : k ≤ j}, if H is a set of j homomorphisms Hk : A 	→ Ak.

We assume select S selects a member of S if it is non-empty; and filter p S takes
the subset of S satisfying p. The failure marked “Impossible” in Fig. 6 cannot
be reached, because completeness [6] ensures that when A is not realized, then
some authentication test step applies.

7 Implementing CPSA

We discuss here three aspects of the cpsa implementation. They are: finding
candidate transforming edges in protocols, and using unification in applying
them; choosing sets S for outgoing tests, and representing the sets; and a few
items for future work.

Finding transforming edges. When cpsa reads a protocol description in its
input format, it identifies all the potential transforming edges. For the outgoing
tests, it locates all candidate pairs of a reception node m0 and a transmission
node m1 later on the same role such that a key or nonce is received in one or
more encrypted forms on m0 and retransmitted outside these forms in m1. For
incoming tests, cpsa notes all transmission nodes m1 that send encrypted units.

To find outgoing transforming edges for a ∈ uniqueA and a set S, cpsa con-
siders each candidate edge m0 ⇒+ m1. Suppose an encrypted sub-message t
of msg(m0) unifies with a member of S using a replacement α. If a · α occurs
in msg(m0) · α, but only within S · α, then we check msg(m1) · α. If it occurs
outside S · α in msg(m1) · α, then m0 ⇒+ m1 is a successful candidate. If α
contracts atoms, then we apply the Outgoing Test Principle twice, once to apply
this contraction, and once to add the instance of m0 ⇒+ m1.3 We also check
whether a contraction eliminates the outgoing test edge entirely, as in Case 6.

For incoming tests, we do a unification on the candidate nodes m1.

Selecting sets S for outgoing tests. To select sets S in the outgoing test
principle, we use a trick we call the “forwards-then-backwards” technique. cpsa

plans a sequence of applications of the outgoing test until no further transforming
edge is found, as in Yahalom cases 3 and 1. It follows the transmission of the
uniquely originating value—Nb in that case—forwards. Newly introduced atoms
like K ′ are implicitly universal. Originally, Nb occurs only in {|AˆNaˆNb|}ltk(B);
after a server strand it also occurs in {|BˆK ′ˆNaˆNb|}ltk(A). After an initiator
strand, no other transforming edges can succeed.
3 This is the only aspect of the authentication test search that does not occur in the

Yahalom analysis.

536 S.F. Doghmi, J.D. Guttman, and F.J. Thayer

Protocol Point of view Runtime Shapes
iso reject responder 0.193s 2
Kerberos client 1.443s 1
Needham-Schroeder responder 0.055s 1
Needham-Schroeder-Lowe responder 0.124s 1
Yahalom responder 2.709s 1

Fig. 7. Protocols with cpsa runtimes

cpsa uses the sets in the opposite order. The set S1 = {{|AˆNaˆNb|}ltk(B)}∪
{{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key} is used first to introduce the initiator trans-
forming edge. Then the smaller set {{|AˆNaˆNb|}ltk(B)} is used to introduce the
(earlier) server transforming edge.4

The forwards-then-backwards technique suggested cpsa’s representation for
the sets S. These sets are not necessarily finite; S1 e.g. is not. The family is closed
under union and set difference. The primitive members are singletons {t0} and
sets that represent all the instances of a term t1 as some of t1’s parameters vary.
Thus, we can represent all candidate sets are as finite unions and differences
of values of the form λv . t, where the vector v binds 0 or more atoms in t.
Completeness requires only sets S representable in this form.

This representation fits also nicely with our use of unification to provide an
extremely focused search, leading to good runtimes on a variety of protocols.
Samples run on a Thinkpad X31, with a 1.4 GHz Pentium M processor and 1
GB store, under Linux, are shown in Fig. 7. cpsa is implemented in OCaml.

Future work. The soundness of the search algorithm does not require the bare-
bones Dolev-Yao model used here. One can augment cpsa with Diffie-Hellman
operations, as studied in [11]. One can also allow keys to be complex messages,
typically the result of hashing. In our current framework, replacements map
atoms to other atoms only, but it should be possible to map atoms to terms
in general, at the cost of using more sophisticated methods to check whether
skeletons are realized (e.g. [15]). The skeletons-and-homomorphisms approach
may remain useful in a cryptographic, asymptotic probabilistic context.

Acknowledgments. We thank Lenore Zuck and John D. Ramsdell for their
comments. Larry Paulson suggested the Yahalom protocol as a challenge.

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

2. Roberto M. Amadio and Denis Lugiez. On the reachability problem in crypto-
graphic protocols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

4 The cleverer set S2 we used in Case 3 is an optimization. To ensure that the server
and initiator agree on the session key, cpsa uses instead a cohort similar to Cases 5–7.

Searching for Shapes in Cryptographic Protocols 537

3. Michael Backes and Birgit Pfitzmann. Relating cryptographic and symbolic key
secrecy. In Proceedings, 26th IEEE Symposium on Security and Privacy, May 2005.
Extended version, http://eprint.iacr.org/2004/300.

4. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Foundations of Software Science and Computa-
tion Structures, LNCS, pages 136–152, April 2003.

5. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Proceedings, Theory of Cryp-
tography Conference (TCC), March 2006.

6. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
Searching for shapes in cryptographic protocols (extended version).
URL:http://eprint.iacr.org/2006/435, November 2006.

7. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

8. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004.

9. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4):435–484, 2003.

10. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002. Conference
version appeared in IEEE Symposium on Security and Privacy, May 2000.

11. Jonathan C. Herzog. The Diffie-Hellman key-agreement scheme in the strand-
space model. In 16th Computer Security Foundations Workshop, pages 234–247,
Asilomar, CA, June 2003. IEEE CS Press.

12. ITU. Message sequence chart (MSC). Recommendation Z.120, 1999.
13. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.

CACM, 21(7):558–565, 1978.
14. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer Verlag, 1996.

15. Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), pages 166–175. ACM, 2001.

16. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), 1978.

17. Lawrence C. Paulson. Relations between secrets: Two formal analyses of the Ya-
halom protocol. Journal of Computer Security, 2001.

18. Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert:
Extending automatic protocol generation to three-party authentication and key
agreement protocols. In Proceedings of the 13th IEEE Computer Security Founda-
tions Workshop. IEEE Computer Society Press, July 2000.

19. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.
Journal of Computer Security, 13(1):135–166, 2005. Preliminary version appeared
in WITS ’03, Workshop on Issues in the Theory of Security, Warsaw, April 2003.

http://eprint.iacr.org/2004/300
URL:http://eprint.iacr.org/2006/435

	Introduction
	Shapes: The Core Idea
	The Yahalom Protocol Definition
	Search Steps
	Yahalom: Shapes for the Responder
	Search Strategy
	Implementing CPSA

