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Abstract. The IEEE standard Property Specification Language (PSL) allows to
express all ω-regular properties mixing Linear Temporal Logic (LTL) with Se-
quential Extended Regular Expressions (SEREs), and is increasingly used in
many phases of the hardware design cycle, from specification to verification.

In recent works, we propose a modular and symbolic PSL compilation that is
extremely fast in conversion time and outperforms by several orders of magni-
tude translators based on the explicit construction and minimization of automata.
Unfortunately, our approach creates rather redundant automata, which result in a
penalty in verification time.

In this paper, we propose a set of syntactic simplifications that enable to signif-
icantly improve the verification time without paying the price of automata sim-
plifications. A thorough experimental analysis over large sets of paradigmatic
properties shows that our approach drastically reduces the overall verification
time.

1 Introduction

The IEEE standard Property Specification Language PSL [1] is increasingly used in
several phases of the design flows: it is a means to describe behavioral requirements,
such as assumptions about the environment in which the design is expected to operate,
internal behavioral requirements, and further constraints that arise during the design
process from specification to verification.

The most important fragment of PSL combines Linear Temporal Logic (LTL) [2]
with Sequential Extended Regular Expressions (SERE), a variant of classical regular
expressions [1]. This combination results in ω-regular expressiveness, and enables to
express many properties of practical interest in a compact and readable way.

The conversion from PSL to Nondeterministic Büchi Automata (NBAs) is an en-
abling factor for the the adaptation of standard verification tools, and has been recently
investigated in several works (e.g. [3,4,5,6,7]).

[3] describes a classical approach based on Alternating Büchi Automata (ABA): the
SEREs occurring in the PSL formula are first translated into minimum Nondeterministic
Finite Automata (NFA); the NFAs are then combined bottom up and the overall PSL
formula is translated into an ABA; the ABA is finally translated into an NBA by means
of the Miyano-Hayashi (MH) construction [8]. [4] specializes this approach to SAT-
based bounded model checking, exploiting the fact that alternating automata are weak.
In [5], a symbolic encoding, based on MH, of the NBA corresponding to the ABA of
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the PSL property is proposed. Both approaches try to limit the encoding size (delaying
the explosion until search time), but are based on a library that tries to carry out some
optimizations in order to minimize the ABA. However, the minimization of ABA is very
expensive these approaches are often unable to carry out the conversion in acceptable
time, even for PSL specifications of moderate size.

The works in [7] and in [6] independently propose direct encodings of PSL into sym-
bolically represented NBA. Both approaches are compositional, and neither requires
the generation of ABA. The former is based on the notion of transducer, while the lat-
ter proposes a reduction to Suffix Operator Normal Form (SONF). The experimental
evaluation in [6] shows that the SONF construction is extremely fast in the construction
of the NBA, thus enabling the verification in cases where the automaton construction
blows up.

The results in [6], however, show that the verification times are often in favor of the
approaches in [5] and [4]. In fact, the semantic simplifications implemented in the ABA
library, though costly, are often able to construct optimized automata, that can then be
verified more effectively. This is similar to what happens in LTL model checking, where
semantic simplifications on the automaton recognizing the violation, though costly, can
often pay off in overall verification time [9].

We notice that some specifications contain obvious forms of redundancy, since de-
signers heavily rely on syntactic sugaring, and redundant specifications may enable
reusability. A typical example is length matching between a fixed-length expression,
and an expression containing stars. Thus, it is an important practical problem to devise
means to deal with redundant specifications, without paying a price in performance. In
principle, redundancies can be removed with automata minimization techniques; how-
ever, such reductions can be expensive and produce large intermediate automata.

In this paper, we propose a syntactic approach to improving PSL verification: rather
than simplifying the automaton at a semantic level, we propose a number of syntactic
rewriting rules on the formula. After the preprocessing, the SONF-based method result
in more compact NBA, which in turn results in much faster verification. The rewrite
rules are based on the following ideas. First, we try to minimize the size of the argu-
ments to the SERE language intersection operators, given that they are associated with
an exponential blow up. Second, whenever possible we convert the SEREs into LTL,
in order to limit as much as possible Suffix operators, and to enable the use of special-
ized algorithms for LTL. Third, some Suffix Operator Subformulas resulting from the
conversion into SONF can be eliminated by taking into account their structure. Finally,
we also apply syntactic simplifications to the LTL component of the formula resulting
from the conversion into SONF.

We experimentally evaluate our method on the test cases proposed in [6] on a large
test suite with formulas identified and classified in [10] to be of practical relevance. The
experiments show that the simplifications are computationally cheap, and substantially
pay off in terms of verification time. The result is that overall the new method is vastly
superior to [6] and to [5]. A final remark in favor of the proposed approach is that it is
open and customizable with respect to typical patterns in the application at hand.

The paper is structured as follows. In Section 2 we present the syntax and semantics
of PSL. In Section 3 we overview the approaches to PSL conversions into NBA, and
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discuss the performance issues. In Sections 4 we describe the various classes of rewrit-
ing rules. In Section 5 we experimentally evaluate the impact of our optimizations.
Finally, in Section 6 we draw some conclusions and discuss directions for future re-
search.

2 The Property Specification Language PSL

PSL is a very rich language [1]. We consider the subset of PSL that combines Linear
Temporal Logic [2] (LTL) and Sequential Extended Regular Expressions (SERE), a
variant of classical regular expressions [1]. This subset provides ω-regular expressive-
ness [11], it is the mostly used in practice and constitutes the core of the PSL temporal
layer [1]. We will not deal with PSL “clocked” expressions that are not part of the core
since any clocked expression can be rewritten into an equivalent un-clocked one [1].
The same applies for the PSL “abort” operator that can be efficiently rewritten into pure
LTL as shown in [12].

In the following, we assume as given a set A of atomic propositions. Let Σ := 2A . We
denote a letter over the alphabet Σ by �, a word from Σ by v or w, and the concatenation
of v and w by vw. We denote with |w| the length of word w. A finite word w = �0�1 . . . �n

has length n + 1, an infinite word has length ω. If w = �0�1 . . . , for 0 ≤ i < |w| , we use
wi to denote the letter �i, and we denote with wi.. the suffix of w starting at wi. When
i ≤ j ≤ |w| , we denote with wi.. j the finite sequence of letters starting from wi and
ending in wj (wi.. j := wiwi+1 . . .wj).

SEREs are the PSL version of regular expressions. In particular, they extend the
standard regular expressions with language intersection. This allows for a greater suc-
cinctness, but it implies a possible exponential blow-up in the conversion to automata.
Moreover, the atoms of SEREs are Boolean expressions enabling efficient determiniza-
tion of automata. Formally,

Definition 1 (SEREs syntax)

– if b is Boolean expression, then b is a SERE;
– if r is a SERE, then r[*] is a SERE;
– if r1 and r2 are SEREs, then the following are SEREs

r1 ; r2 r1 : r2 r1 ||| r2 r1 & r2 r1 && r2.

SEREs can be concatenated with the operators ; and : , the former for the consecutive
concatenation of two sequences, the latter for one-state overlapping concatenation. The
conjunction operators & and && can be used to specify overlapping sequences, the
latter for length-matching sequences. Disjunction can be specified using the ||| operator.
The [*] operator specifies finite consecutive repetitions. We use r[*n] as an abbreviation
of r ; r ; ... ; r, where r is repeated n times.

The semantics of SEREs is formally defined over finite words using, as the base case,
the semantics of Boolean expressions over letters in Σ, denoted with |=B hereafter.

Definition 2 (SEREs semantics). Given a Boolean expression b, a SERE r, and a finite
word w, we define the satisfaction relation w |≡r as follows:
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– w |≡b iff |w| = 1 and w0 |=B b;
– w |≡r1 ; r2 iff ∃w1,w2 s.t. w = w1w2, w1 |≡r1, w2 |≡r2;
– w |≡r1 : r2 iff ∃w1,w2, � s.t. w = w1�w2, w1� |≡r1, �w2 |≡r2;
– w |≡r1 ||| r2 iff w |≡r1 or w |≡r2;
– w |≡r1 & r2 iff w |≡r1 and ∃w1,w2 s.t. w = w1w2, w1 |≡r2,

or w |≡r2 and ∃w1,w2 s.t. w = w1w2, w1 |≡r1;
– w |≡r1 && r2 iff ∃w1,w2 s.t. w = w1w2, w1 |≡r1,w1 |≡r2;
– w |≡r[*] iff |w| = 0 or ∃w1,w2 s.t. |w1| �= 0,w = w1w2, w1 |≡r, w2 |≡r[*].

In the definition of the PSL syntax, for technical reasons, we introduce the “releases”
operator (that is the dual of the “until” operator), and also we introduce the “suffix
conjunction” connective as a dual of the suffix implication. Moreover, we consider only
the strong version of the temporal operators (the weak operators can be rewritten in
terms of the strong ones [1]) and the strong version of the SEREs (though our approach
can be easily extended to deal also with the weak semantics).

Definition 3 (PSL syntax). We define the PSL formulas over A , as follows:

– if p ∈ A , p is a PSL formula;
– if φ1 and φ2 are PSL formulas, then ¬¬¬φ1, φ1 ∧∧∧φ2, φ1 ∨∨∨φ2 are PSL formulas;
– if φ1 and φ2 are PSL formulas, then X φ1, φ1 U φ2, φ1 R φ2 are PSL formulas;
– if r is a SERE and φ is a PSL formulas, then r ♦→♦→♦→ φ and r |→|→|→ φ are PSL formulas;
– if r is a SERE, then r is a PSL formula.

The X (“next-time”), the U (“until”), and the R (“releases”) operators are called tem-
poral operators. We call the ♦→♦→♦→ (“suffix conjunction”), and the |→|→|→ (“suffix impli-
cation”), suffix operators. Notice that, the r not occurring in the left side of a suffix
operator is the strong version of a SERE (r! in the PSL notation). In the following,
we will consider such r as an abbreviation for r ♦→♦→♦→ True [1,3]. We also use G φ as
an abbreviation for False R φ. LTL can be seen as a subset of PSL in which the suffix
operators and the SEREs are suppressed.

We interpret PSL expressions over infinite words:

Definition 4 (PSL semantics). Let w ∈ Σω.

– w |= p iff w0 |=B p;
– w |= ¬¬¬φ iff w �|= φ;
– w |= φ∧∧∧ψ iff w |= φ and w |= ψ;
– w |= φ∨∨∨ψ iff either w |= φ or w |= ψ;
– w |= X φ iff |w| > 1 and w1.. |= φ;
– w |= φ U ψ iff, for some j ≥ 0, w j.. |= ψ and, for all 0 ≤ k < j, wk.. |= φ;
– w |= φ R ψ iff, for all j ≥ 0, either wj.. |= ψ or,for some 0 ≤ k < j, wk.. |= φ;
– w |= r ♦→♦→♦→ φ iff, for some j ≥ 0, w0.. j |≡r and wj.. |= φ;
– w |= r |→|→|→ φ iff, for all j ≥ 0, if w0.. j |≡r, then wj.. |= φ.

Notice that we can build Boolean expressions by means of atomic formulas and
Boolean connectives. The language of a PSL formula φ over the alphabet Σ is defined
as the set L(φ) := {w ∈ Σω | w |= φ}.

Example 1. Consider the PSL formula G ({{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ { f ; g}).
It encodes the property for which every sequence that matches both regular expressions
{a ; b[*] ; c} and {d[*] ; e} must be followed by { f ; g}.
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3 From PSL to NBA: Previous Approaches

In this section, we overview recent approaches to dealing with PSL verification. In the
monolithic approaches, the first step is the conversion from PSL in a monolithic al-
ternating Büchi automaton; during the conversion, semantic simplification steps (such
as the elimination of unreachable states, and restricted forms of minimization by ob-
servational equivalence) are applied. The ABA is then converted into a symbolically
represented NBA. In [5], this is done by means of a symbolic encoding of MH, and can
be applied both to BDD-based and SAT-based verification. In [4], an encoding of the
ABA that is specialized for bounded model checking is proposed.

The conversion proposed in [6] is based on the so called Suffix Operator Normal
Form (SONF). The idea is to partition the translation, by first converting a PSL formula
φ into an equisatisfiable formula in SONF, structured as follows

ΨLT L
︷︸︸︷
∧

i

φi∧∧∧

ΨPSL
︷ ︸︸ ︷
∧

j

G (p j
I →→→ (r j �→�→�→ p j

F))

where φi are LTL formulas, r j are SEREs, p j
I and p j

F are propositional atoms, and
�→�→�→ is either |→|→|→ or ♦→♦→♦→ . Formulae of the form G (p j

I →→→ (r j �→�→�→ p j
F) are called Suffix

Operator Subformulas (SOS’s).
The translation first converts the formula in NNF, and then “lifts out” the occurrences

of suffix operators, by introducing fresh variables (intuitively, the p j in the formula
above), together with the corresponding SOS. For lack of space, we omit the details
regarding the conversion of SOS into NBA. We only mention that the translation is
specialized to exploit the structure of SOS (see [6] for details).

Example 2. The SONF of the PSL formula of Example 1 is G p1 ∧ G (p1 →
{{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ p2)∧ G (p2 → { f ; g}♦→♦→♦→ p3).

In [6], a substantial experimental evaluation is carried out, both on PSL satisfiability
problems (denoted with LE for language emptiness) and on Model Checking (MC)
problems. The modular approach results in dramatic improvements in PSL compilation
time. However, on those problems where the ABA library is able to build an automaton
within the time limit, the search time is typically in favor of the monolithic approach.
This is mainly due to the fact that in certain examples the semantic simplifications are
extremely effective. We notice that, the loss of efficiency in search is often compensated
by the much faster compilation; yet, in the rest of the paper we show how to enhance
our approach even further, by proposing a similar simplification mechanism.

4 Syntactic Optimizations for PSL

In this section, we describe an optimized approach, which extends the SONF-based
conversion with the integration of the following simplifications. Before the SONF con-
version, we apply two steps: (i) we simplify the SEREs in order to reduce the sub-
formulas in the scope of SERE conjunction operators; (ii) we simplify occurrences of
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r && (r1 ||| r2) ⇒ (r && r1) ||| (r && r2)
b1 && b2 ⇒ b1 ∧b2

b && {r1 && r2} ⇒ {b && r1} && r2

b && {r1 ; r2} ⇒

⎧

⎪
⎪
⎨

⎪
⎪
⎩

False if ε �∈ L (r1),ε �∈ L (r2)
b && r1 if ε �∈ L (r1),ε ∈ L (r2)
b && r2 if ε ∈ L (r1),ε �∈ L (r2)
b && r1 ||| b && r2 otherwise

b && {r1 : r2} ⇒ {b && r1} && r2
b && r[*] ⇒ b && r

b[*] && {r1 ; r2} ⇒ {b[*] && r1} ; {b[*] && r2}
b[*] && {r1 : r2} ⇒ {b[*] && r1} : {b[*] && r2}

b[*] && r[*] ⇒ {b[*] && r}[*]
{b1 ; r1} && {b2 ; r2} ⇒ {b1 ∧b2} ; {r1 && r2}
{b1 : r1} && {b2 : r2} ⇒ {b1 ∧b2} : {r1 && r2}
{r1 ; b1} && {r2 ; b2} ⇒ {r1 && r2} ; {b1 ∧b2}
{r1 : b1} && {r2 : b2} ⇒ {r1 && r2} : {b1 ∧b2}

{b1[*] ; r1} && {b2 ; r2} ⇒
{r1 && {b2 ; r2}} ||| {{b1 ∧b2} ; {{b1[*] ; r1} && r2}}

{b1[*] ; r1} && {b2[*] ; r2} ⇒
{b1 ∧b2}[*] ; {{r1 && {b2[*] ; r2}} ||| {{b1[*] ; r1} && r2}}

r1[*] && r2[*] ⇒∗ {r1[*n2] && r2[*n1]}[*]
*) where r1 and r2 have “fixed length”, n1 and n2 are the least integers
such that n = (|r1| ·n2) = (|r2| ·n1).

Fig. 1. Rules for &&

suffix operators by converting as much as possible the regexps to which they are ap-
plied to into LTL. Then, after the conversion in SONF, we apply two other steps: (iii)
we simplify the Suffix Operator Subformulas by means of rules that strengthen the ones
in (ii) by exploiting the specific structure of SOSs; (iv) the LTL component is rewritten
in order to minimize the overall automaton and reduce the number of resulting fairness
constraints. In the rest of this section we describe the first three sets of rewriting rules,
which regard SEREs and PSL formulas and are an original contributions of this paper.
For lack of space, we do not report a detailed description of the LTL simplification
rules, which follow [13,14].

In the following, we write b,b1,b2, . . . for boolean formulas, and r,r1,r2, . . . for
SEREs. We notice that we can check if the empty word ε belongs to the language of r
by parsing: if r = [*0], then True; if r = b, then False; if r = r1 ; r2, then True if both
r1 and r1 accept ε, False otherwise; if r = r1 : r2, then False; if r = r1[*], then True;
if r = r1 && r2 or r = r1 & r2, then True if both r1 and r2 accept ε, False otherwise; if
r = r1 ||| r2, then True if either r1 or r2 accept ε, False otherwise.

(i) Simplifying Regular Expressions. Step (i) of our simplification flow is implemented
by the rules of Figures 1 and 2. For lack of space, Figure 2 only contains some of the
rules for & ; other rules based on the commutativity and associativity of the operators
are also omitted.
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r & (r1 ||| r2) ⇒ (r & r1) ||| (r & r2)
b1 & b2 ⇒ b1 ∧b2

b & {r1 & r2} ⇒ {b & r1} & r2

b & {r1 ; r2} ⇒

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

b : {r1 ; r2} if ε �∈ L (r1),ε �∈ L (r2)
b : {r1 ; r2} ||| b && r1

if ε �∈ L (r1),ε ∈ L (r2)
b : {r1 ; r2} ||| b && r2

if ε ∈ L (r1),ε �∈ L (r2)
b : {r1 ; r2} ||| b otherwise

b & {r1 : r2} ⇒ b : {r1 : r2}
b & r[*] ⇒ b ||| {b : r[*]}
b[*] & r ⇒ r ||| {b[*] && r} ; b[*]

r1[*] & r2 ⇒ r2 ||| r1[*] && {r2 ; �[*]}
{b1 ; r1} & {b2 ; r2} ⇒ {b1 ∧b2} ; {r1 & r2}
{b1 : r1} & {b2 : r2} ⇒ {b1 ∧b2} : {r1 & r2}
{r1 ; b1} & {r2 ; b2} ⇒ {r1 & r2} ; {b1 ∧b2}
{r1 : b1} & {r2 : b2} ⇒ {r1 & r2} : {b1 ∧b2}

r1[*] & r2[*] ⇒ r1[*] ||| r2[*]

Fig. 2. Rules for &

Example 3. The rewriting rules of Figure 1 apply to the SERE in the PSL formula of
Example 1, as follows:

{a ; b[*] ; c} && {d[*] ; e} ⇒ {{a ; b[*]} && d[*]} ; c ∧ e
⇒ {a && d[*]} ; {b[*] && d[*]} ; c ∧ e
⇒ {a && d} ; {b[*] && d}[*] ; c ∧ e
⇒ a ∧d ; {b && d}[*] ; c ∧ e
⇒ a ∧d ; {b ∧d}[*] ; c ∧ e.

(ii) Simplifying Suffix Operations In order to reduce a PSL formula to LTL “as much
as possible”, we define the rules in Figure 3. The rewritings are mostly effective on
those expressions where iterations are applied to boolean expressions, as shown in the
following example.

Example 4. Consider the formula of Example 1. After applying the rules of Figure 1 as
in the Example 3, the formula becomes G ({a∧d ; {b∧d}[*] ; c∧e} |→|→|→ { f ; g}). The
rewriting rules of Figure 3 apply as follows:

G ({a ∧d ; {b ∧d}[*] ; c ∧ e} |→|→|→ { f ; g}) ⇒
G ((a ∧d) → {{b ∧d}[*] ; c ∧ e} |→|→|→ ( f ∧X {g}) ⇒
G ((a ∧d) → (¬(b ∧d) R ({c ∧ e} |→|→|→ ( f ∧X g)) ⇒
G ((a ∧d) → (¬(b ∧d) R ((c ∧ e) → ( f ∧X g)).

(iii) Rewriting Suffix Operator Subformulas After the simplifications described in pre-
vious sections, the SONF conversion is carried out [6], so that the occurrences of suffix
operators have the fixed structure of SOS, and can be further rewritten. The aim is to
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({[*0]}♦→♦→♦→ φ) ⇒ False
({b}♦→♦→♦→ φ) ⇒ b∧φ

{r1 : r2}♦→♦→♦→ φ ⇒ {r1}♦→♦→♦→ ({r2}♦→♦→♦→ φ)
{r1 ; r2}♦→♦→♦→ φ ⇒∗ {r1}♦→♦→♦→ X ({r2}♦→♦→♦→ φ)

({r1 ||| r2}♦→♦→♦→ φ) ⇒ ({r1}♦→♦→♦→ φ)∨ ({r2}♦→♦→♦→ φ)
({r ; b[*]}♦→♦→♦→ φ) ⇒∗∗ {r}♦→♦→♦→ ((X b) U φ)
({b[*] ; r}♦→♦→♦→ φ) ⇒∗∗ b U ({r}♦→♦→♦→ φ)

({[*0]} |→|→|→ φ) ⇒ True
({b} |→|→|→ φ) ⇒ b → φ

{r1 : r2} |→|→|→ φ ⇒ {r1} |→|→|→ ({r2} |→|→|→ φ)
{r1 ; r2} |→|→|→ φ ⇒∗ {r1} |→|→|→ X ({r2} |→|→|→ φ)

({r1 ||| r2} |→|→|→ φ) ⇒ ({r1} |→|→|→ φ)∧ ({r2} |→|→|→ φ)
({b[*] ; r} |→|→|→ φ) ⇒∗∗ ¬b R ({r} |→|→|→ φ)
({r ; b[*]} |→|→|→ φ) ⇒∗∗ {r} |→|→|→ ((X ¬b) R φ)

*) if ε �∈ L (r1) and ε �∈ L (r2)
**) if ε �∈ L (r)

Fig. 3. Rules for suffix operators

G (P → ({r[*]} |→|→|→ P′)) ⇒∗ G (P → ({r} |→|→|→ (P′ ∧X P)))
*) if ε �∈ L (r)

Fig. 4. Rules for SOS

apply the suffix operators to smaller SERE. This way, we partition further the automa-
ton representation, and we enable the sharing of subformulas representations. The rule
in Figure 4 push the occurrences of suffix implication inside the SEREs, while keeping
the overall formula in SONF. Note that, in general, the transformation is not correct: it
preserves the satisfiability only if the global formula is the result of the SONF-ization
process described in [6] so that there is a fixed structure for SOS. Unfortunately, no
similar transformation is possible for suffix conjunction.

5 Experimental Evaluation

The rewrite rules have been implemented within the NUSMV model checker [15]. We
compared their effectiveness with the same experimental setting as [6]. 1 We compare
three methods: MONO [5], FMCAD06 [6], and TACAS07 (the method presented in
this paper). We preliminarly compare the methods in encoding. We use the test suite of
1000 properties proposed in [6]. The set of properties has been obtained by filling in,
with randomly generated SEREs, typical patterns extracted from industrial case stud-
ies [10]. Then, we used both Boolean combinations and single and double implications

1 All the experiments and files to reproduce the experimental analysis described in this paper
can be downloaded from the url: http://sra.itc.it/people/roveri/tacas07/
tacas07.tar.gz .

http://sra.itc.it/people/roveri/tacas07/tacas07.tar.gz
http://sra.itc.it/people/roveri/tacas07/tacas07.tar.gz


Syntactic Optimizations for PSL Verification 513

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

T
ot

al
 C

P
U

 T
im

e 
(s

ec
s)

# of formulas solved

TACAS07
FMCAD06

MONO

Fig. 5. Problem encoding on 1000 properties

between big conjunctions of typical properties. The latter cases model problems arising
in requirements engineering setting, i.e. refinement and equivalence among specifica-
tions. For each of the methods (MONO, FMCAD06 and TACAS07), we report the time
needed to construct the corresponding representation. All experiments were run on a
3GHz Intel CPU equipped with 4GB of memory running Linux; for each run, we used
a timeout of 900 seconds and a memory limit of 1GB. Figure 5 reports the plot of the
number of problems generated in a given amount of time (the samples are ordered by
increasing computation time). The comparison between FMCAD06 and MONO, just
as stated in [6], shows that the monolithic approach has a much harder time than FM-
CAD06 in completing the generation. The plots also show that the TACAS07 rewriting,
in addition to causing negligible overhead in the simple cases, seems to pay off in the
harder cases. There are several samples where the construction time is substantially re-
duced, and (by looking carefully at the data) we see that TACAS07 completes the 884
samples that FMCAD06 can solve one order of magnitude faster; in addition, we see
that TACAS07 can solve 36 hard problems where FMCAD06 times out. The speed up
typically occurs in examples where SERE automata have to be determinized both in
MONO and FMCAD06, while for TACAS07 the rules manage to generate smaller
SERE.
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Fig. 6. Language emptiness using SBMC on 400 formulas
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Fig. 7. LE — Experimental evaluation results on 400 formulas: MONO vs TACAS07

We then focus on the effect of the rewriting on the search, by considering, as in [6],
a test suite of 400 selected problems for which the ABA library is able to complete
the generation within the time limit. The test suite contains two kinds of problems, fair
cycle detection (LE, for language emptiness), and model checking (MC). For LE, the
problems are a subset of the 1000 problems used to test generation; for MC, the same
PSL properties are applied to the Gigamax model taken from the standard NUSMV
distribution. For each problem, each method takes in input a PSL formula (and, if MC,
a model), and generates a file in NUSMV language, containing an LTL formula and
possibly a model. Each file is solved with the SAT-based approach of Simple Bounded
Model Checking (SBMC) [16], fixing a maximum length of 200 steps and enabling the
check for completeness. For each method we compare solution time, and total time.

The overall results for language emptiness are collected in Figures 6, 7 and 8. Fig-
ure 6 plots the number of problem solved in a given amount of time, considering only
the search time (on the left) and the search time plus the problem construction time (on
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Fig. 8. LE — Experimental evaluation results on 400 formulas: FMCAD06 vs TACAS07

the right). We remark that, TACAS07 plot is under the MONO plot. The plot clearly
shows that the search time for MONO and TACAS07 are comparable, i.e. the rewriting
proposed in this paper are as effective as the semantic ones of MONO; the improvement
with respect to FMCAD06 in terms of search time is also evident. When considering
the total time, we notice that these advantages come without paying the price of the se-
mantic simplification. In fact, this price is often so high that also FMCAD06 is superior
to MONO. These claims are also confirmed by the scatter plots reported in Figure 7
(comparing MONO with TACAS07) and in Figure 8, where it is clear that TACAS07
is almost uniformly superior to FMCAD06. It is also interesting to notice that while
MONO and TACAS07 have overall similar performance, they are not simplifying in
the same way, and sometimes the semantic simplifications are unable to achieve as
much reduction as rewriting.

The overall results for model checking are collected in Figures 9, 10 and 11. Fig-
ure 9 plots the number of model checking problems solved in a given amount of time,
considering only the search time (on the left) and the search time plus the problem
construction time (on the right). The plot of search time shows that the three methods,
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Fig. 9. Model checking using SBMC on 400 formulas
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Fig. 10. MC — Experimental evaluation results on 400 formulas: MONO vs TACAS07

while tackling these model checking problems, are almost comparable; this is probably
due to the presence of the model that here is predominant. However, if the total time
is taken into account, it appears that MONO is outperformed by both FMCAD06 and
TACAS07, and that TACAS07 is better than FMCAD06 as in the language emptiness
case (again, here the difference is less evident because of the presence of the model).
Also in this case the scatter plots in Figure 10 (comparing MONO with TACAS07)
and in Figure 11 (comparing FMCAD06 with TACAS07) confirm that for the search
TACAS07 is able to achieve substantial simplifications, although not exactly the same
as MONO. The cost of semantic simplification is however substantial.

We restricted our experimental evaluation only to SBMC, even though in [6] the
same experiments where carried out also using BDDs. Preliminary experiments showed
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Fig. 11. MC — Experimental evaluation results on 400 formulas: FMCAD06 vs TACAS07

us that FMCAD06 and TACAS07 with the BDD engine are incomparable. The reason
is that the optimizations we proposed produce a large number of fairness constraints so
that the results are highly influenced by several factors (BDD variable ordering, order
in which the fairness conditions are considered, algorithms for language emptiness). A
fair comparison requires an improvement of language emptiness with multiple fairness
conditions and a deep tuning of possible options. We plan to carry out this analysis later
on to better support the new proposed approach.

Another relevant approach is the one by Heljanko et al. [4], in the following referred
to as CAV06: basically, it takes in input an ABA and instead of using a symbolic MH for
generating an NBA, a partitioning of the ABA is carried out by exploiting the fact that
PSL will result in weak ABAs [3]. Given that the approach is substantially different, it
would be worth to carry out a comparison with it. Since [4] implements its own format
for reading in ABA, and we do not yet have a complete translator available, we leave
the comparison to future work. We expect that the results would be biased by the fact
that the approach implemented in [4] is not complete, so that we have to disable the
completeness check. Since CAV06 must rely on the ABA library of MONO, it is easy
to predict that it will inherit the same bottleneck in construction.

6 Conclusions and Future Work

In this paper, we proposed an approach based on syntactic rewriting to improve the ver-
ification times for PSL specifications. The approach improves on [6], greatly reducing
the redundancies of the generated automata. Although the optimizations have negligible
run-times, the benefit in verification and overall time is substantial.
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In the future we plan to work on the problem of the analysis of requirements, trying
to scale up on large sets of PSL formulas. In particular, we will concentrate on the
definition of optimized algorithms for language emptiness, based on the structure of the
modular automaton, on the definition of specialized BDD-based language emptiness
algorithms. We also plan to investigate rewriting as a tool for better understanding the
meaning of specifications.
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