MAVEN: Modular Aspect Verification

Max Goldman and Shmuel Katz

Technion — Israel Institute of Technology
{mgoldman,katz}@cs.technion.ac.il

Abstract. Aspects are program modules that include descriptions of
key events (called joinpoints) and code segments (called advice) to be
executed at those key events when the aspect is bound (woven) to an
underlying system. The MAVEN tool verifies the correctness of an aspect
relative to its specification, independently of any specific underlying sys-
tem to which it may be woven. The specification includes assumptions
about properties of the underlying system, and guaranteed properties
of any system after the aspect is woven into it. The approach is based
on model checking of a single state machine constructed using the linear
temporal logic (LTL) description of the assumptions, a description of the
joinpoints, and the state machine of the aspect advice. The tableau of
the LTL assumption is used in a unique way, as a representative of any
underlying system satisfying the assumptions. This is the first technique
for once-and-for-all verification of an aspect relative to its specification,
thereby increasing the modularity of proofs for systems with aspects.

1 Introduction

1.1 Aspect-Oriented Programming

The aspect-oriented approach to software development is one in which concerns
that cut across many parts of the system are encapsulated in separate modules
called aspects. The approach was first presented in the AspectJ [I] extension
of Java, and has been generalized to a variety of languages and aspect-oriented
software development techniques (see, for example, [2]). When a concern such
as security or logging is encapsulated in an aspect, this aspect contains both the
code associated with the concern, called advice, and a description of when this
advice should run, called a pointcut descriptor. The pointcut descriptor identifies
those points in the execution of a program at which the advice should be invoked,
called joinpoints. The combination of some base program with an aspect (or in
general, a collection of aspects), is termed an augmented program.

Aspects are of particular interest as a software construct because the pointcuts
that govern the execution of their advice are evaluated dynamically. When a
pointcut identifies joinpoints, these joinpoints are not static locations in the
code; rather, in the most popular and expressive joinpoint models used by aspect-
oriented programming languages, joinpoints are well-defined points during the
execution of a program. Depending on the runtime context of a particular point,
such as the methods on the program’s stack, or the values currently in certain

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 308 2007.
© Springer-Verlag Berlin Heidelberg 2007

MAVEN: Modular Aspect Verification 309

data fields, the same static code location might match a pointcut at one time,
but fail to match it at another. To give the programmer access to these dynamic
data, a pointcut may also expose values of program variables to the advice.

1.2 Modular Aspectual Verification

In this work we are concerned with generic formal verification of aspects rel-
ative to a specification. The specification of an aspect consists of assumptions
about any base program to which the aspect can reasonably be woven, and de-
sired properties intended to hold for the augmented program (this terminology is
applied to aspects in [3]). We view both base programs and aspect code as non-
deterministic finite state machines, in which computations are infinite sequences
of states within the machine. For both assumptions and desired properties to be
verified we consider formulas in linear temporal logic (LTL).

Clearly, given a base program, a collection of aspects with their pointcut
descriptors and advice, and a system for weaving together these components
to produce a stand-alone augmented program, we can verify properties of this
augmented system using the usual model checking techniques. Such weaving
involves adding edges from joinpoint states of the base program to the initial
states of the advice, and from the states at the end of an advice segment to
states back in the base program. It would be preferable, however, if we could
employ a modular technique in which the aspect can be considered separately
from the base program. Instead of examining a particular augmented program,
using a generic model of augmented program behavior will allow us to:

— obtain verification results that hold for a particular aspect with any base
program from some class of programs, rather than for only one base program
in particular;

— use the results to reason about the application of aspects to base programs
with multiple evolving state machines describing changing configurations
during execution, or to other systems not amenable to model checking; and

— avoid model checking augmented systems, which may be significantly larger
than either their base systems or aspects, and whose unknown behavior may
resist abstraction.

The second point above relates to object-oriented programs that create new
instances of classes (objects) with associated state machine components. Often,
the assumption of an aspect about the key properties of those base state ma-
chines to which it may be woven can indeed be shown to hold for every possible
machine that corresponds to an object configuration of a program. For exam-
ple, it may involve a so-called class invariant, provable by reasoning directly on
class declarations, as in [4]. More details on the connections between code-based
aspects (as in AspectJ) and the state machine versions are discussed in Sect. [l

This problem of creating a single generic model that can represent any possible
augmented program for an aspect woven over some class of base programs is
especially difficult because of the aspect-oriented notion of obliviousness: base
programs are generally unaware of aspects advising them, and have no control

310 M. Goldman and S. Katz

over when or how they are advised. There are no explicit markers for the transfer
of control from base to advice code, nor are there guarantees about if or where
advice will return control to the base program.

1.3 Results

In this paper we show how to verify once-and-for-all that for any base state ma-
chine satisfying the assumptions of an aspect, and for a weaving that adds the
aspect advice as indicated in the joinpoint description, the resulting augmented
state machine is guaranteed to satisfy the desired properties given in the specifi-
cation. The verification algorithm is implemented in a prototype called MAVEN.
A single generic state machine is constructed from the tableau of the assump-
tion, the pointcut descriptor, and the advice state machine, and verified for the
desired properties. Then, when a particular base program is to be woven with
the aspect, it is sufficient to establish that the base state machine satisfies the as-
sumptions. Thus the entire augmented program never has to be model checked,
achieving true modularity and genericity in the proof. This approach is espe-
cially appropriate for aspects intended to be reused over many base programs,
such as those in libraries or middleware components.

LTL model checking is based on creating a tableau state machine automaton
that accepts exactly those computations that satisfy the property to be verified.
Usually, the negation of this machine is then composed as a cross-product with
the model to be checked. Here we use the tableau of the assumption in a unique
way, as the basis of the generic model to be checked for the desired property. It
represents any base machine satisfying the assumption, because the execution
sequences of these base programs can be abstracted by sequences in the tableau.

The aspects treated are assumed to be weakly invasive, as defined in [5].
This means that when advice has completed executing, the system continues
from a state that was already reachable in the original base program (perhaps
for different inputs or actions of the environment). Many aspects fall into this
category, including spectative aspects that never modify the state of the base
system (logging is a good example), and regulative aspects that only restrict the
reachable state space (for example, aspects implementing security checks). Also
weakly invasive would be an aspect to enforce transactional requirements, which
might roll back a series of changes so that the system returns to the state it was
in before they were made. Even a ‘discount policy’ aspect that reduces the price
on certain items in a retail system is weakly invasive, since the original price
given as input could have been the discounted one.

Additionally, we assume that any executions of an augmented program that
infinitely often include states resulting from aspect advice will be fair (and thus
must be considered for correctness purposes). The version here does not treat
multiple aspects or joinpoints influenced by the introduction of advice, although
the approach can be expanded to treat such cases as well.

In the following section, needed terms and constructs are defined. Section [3]
presents the algorithm, and outlines a proof of soundness in the weakly invasive
aspect case. This section also uses an abstract example to illustrate the approach.

MAVEN: Modular Aspect Verification 311

The MAVEN implementation is described in Section [along with descriptions
of some typical aspect verifications. Section [0l details works related to the result
here, and is followed by the conclusion.

2 Definitions

2.1 LTL Tableaux

Intuitively, the tableau of an LTL formula f is a state machine whose fair infinite
paths are exactly all those paths which satisfy the formula f. This intuition will
be realized formally in Theorem [below.

We define T, the tableau for LTL path formula f (equivalently, state formula
A f), as given in the chapter of [6] on “Symbolic LTL Model Checking,” with
clarifications described in [7]. We denote Ty = (Sr, ST Ry, Lr, Fr), where St
is the set of states; S{ is the set of initial states, Ry is the transition relation,
Ly is the labeling function, and Fr is the set of fair state sets.

If APy is the set of atomic propositions in f, then Ly : § — P(APy) —
that is, the labels of the states in the tableau will include sets of the atomic
propositions appearing in f. A state in any machine is given a particular label
if and only if that atomic proposition is true in that state. We also need:

Definition 1. For path m, let label(m) be the sequence of labels (subsets of AP)
of the states of m. For such a sequence | = lg,l1,... and set Q, let l|lg =
mg,m1, ... where for each 1 >0, m; =1, N Q.

Theorem 1. (from [6], 6.7, Theorems 4 & 5) Given T, for any Kripke structure
M, for all fair paths ©" in M, if M,n" |= f then there exists fair path m in T}
such that w starts in S and label(n')|ap, = label(r).

That is, for any possible computation of M satisfying formula f, there is a path
in the tableau of f which matches the labels within APy along the states of that
computation.

In the algorithm of Sect. [l we restrict the tableau to its reachable component.
Such restriction does not affect the result of this theorem, since all reachable
paths are preserved, but is necessary in order to achieve useful results. This
follows from the observation that the tableau for the negation of a formula has
precisely the same states and transition relation, but the complementary set of
initial states. Thus, any unreachable portion of the tableau is liable to contain
exactly those behaviors which violate the formula of interest.

2.2 Aspects

Advice. An aspect machine A = (Sa,S§',SA,, Ra, La) over atomic proposi-
tions AP is defined as usual for a state machine with no fairness constraint, with

the following addition:

Definition 2. S, is the set of return states of A, where S/

ret
any state s € S2,, s has no outgoing edges.

C 5S4 and for

312 M. Goldman and S. Katz

Pointcuts. Recall that a pointcut identifies the states at which an aspect’s ad-
vice should be activated, and can include conditions on the present state and
execution history. We do not give a prescriptive definition for pointcut descrip-
tors; in practice they might take a number of forms, e.g., as in [8] or using
variants of regular expressions. Another choice for describing pointcuts might be
LTL path formulas containing only past temporal operators. For example, the
descriptor p1 = aA Y bA Y Y b would match sequences ending with a state where
a is true, preceded by b, preceded by another b (operator Y is the past analogue
of X). However expressed, we require that descriptors operate as follows:

Definition 3. Given a pointcut descriptor p over atomic propositions AP and
a finite sequence | of labels (subsets of AP), we can ask whether or not the end
of I is matched by p.

We define L Ep to mean that finite label sequence | is matched by pointcut
descriptor p in this way.

Specifications. In addition to its advice, in state machine A, and pointcut,
described by p, an aspect has two pieces of formal specification:

— Formula 1 expresses the assumptions made by the aspect about any base
machine to which it will be woven. This 1 is thus a requirement to be met
by any such machine.

— Formula ¢ expresses the desired result to be satisfied by any augmented
machine built by weaving this aspect with a conforming base machine. In
other words, ¢ is the guarantee of the aspect.

2.3 Weaving

Weaving is the process of combining a base machine with some aspect according
to a particular pointcut descriptor; the result is an augmented machine that
includes the advice of the aspect.

The weaving algorithm has the following inputs:

— aspect machine A = (Sa, S, S4,, Ra, La) over AP,
— pointcut p over AP, and
— base machine B = (Sg, S®, Rg, L, Fg) over APg O AP.

And it produces as output:
— augmented machine B= (Sg, S{?, Rz, Ly, Fg).

Set AP can be thought of as the ‘visible’ labels of B with which the aspect is
concerned; labels local to the aspect are not included.

The weaving is performed in two steps. First we construct from the base
machine B a new state machine B which is pointcut-ready for p, wherein each
state either definitely is or is not matched by p. Then we use B” and A to build
the final augmented machine B.

MAVEN: Modular Aspect Verification 313

M

ROROIRION0

Fig. 1. Constructing a pointcut-ready machine M” for the given M and LTL past
formula pointcut descriptor p=a A YDA Y Yb

Constructing a Pointcut-Ready Machine. Pointcut-ready machine B? =
(Spr,SE", Rpo, Le, Fps) is a machine in which unwinding of certain paths has
been performed, so that we can separate paths which match pointcut descriptor
p from those that do not. The pointcut-ready machine contains states with a
new label, pointcut, that indicates exactly those states where the descriptor has
been matched.

This machine must meet the following requirements:

— Spr 2 SB
— Lp» is a function from Sp, to P (APp U {pointcut})
— For all finite-length paths ™ = sq, ..., s; in B? such that s¢ € Ségp7 we have

label(m) E p < sk = pointeut.

— For all infinite sequences of labels | = (P(APg))“, there is a fair path 7ge
in B? where label(mpe)|ap, = 1 if and only if there is a fair path 75 in B
where label(ng) = .

Note that since B and B have the same paths (over AP, ignoring the added
pointcut label), they must satisfy exactly the same LTL formulas over AP.

Figure [1 shows a simple example of this construction. Note that in state
diagrams, the absence of an atomic proposition indicates that the proposition
does not hold, not that the value is unknown or irrelevant. This is in contrast to
a formula, where unmentioned propositions are not restricted.

Finally, note that for a pointcut descriptor that examines only the current
state, the splitting and unwinding is unnecessary, and pointcut can be added
directly to the states in which the pointcut descriptor is matched.

Constructing an Augmented Machine. We construct the components of
augmented machine B= (Sg, SE, Ry, Ly, Fy) as follows:
- SE = Sr US4y
- st = st
(s,t) € Rpr A s - pointcut if s,t € Spe
(s,t) € Ra if s,te Sy
— (s,t) € Rz & { s = pointcut A t € S§
A LBp(S)|Ap = LA(t) if se Spp, t€ Sy
s € S;{;t /\LA(S) = LBp(t)|Ap if s€ S, t€ Spe

314 M. Goldman and S. Katz

Note that this relationship is ‘if and only if.” In words, the path relation contains
precisely all the edges from the pointcut-ready base machine B? and from aspect
machine A, except that pointcut states in B? have edges only to matching start
states in A, and aspect return states have edges to all matching base states.

[Lpe(s)if s € Spo
LB() =9 La(s) if s € Sa
—FEZ{FZ‘USA|F1‘EFB;J}

From the definition of Fj, a path is fair in B if it either satisfies the original
fairness constraint of the pointcut-ready machine, or if it visits some aspect state
infinitely many times. A weaving is considered successful if every reachable node

in S5 has a successor according to Rj.

2.4 Weakly Invasive Aspects

As mentioned above, we show our result for the broad class of aspects which,
when they return from advice, do so to a reachable state in the base machine.
Without this restriction, the aspect may return to unreachable parts of the base
machine whose behavior is not bound by assumption formula . In this case, the
augmented system contains portions with unknown behavior, and is difficult to
reason about in a modular way.

Definition 4. An aspect A and pointcut p are said to be weakly invasive for a
base machine B if, for all states in Spe that are reachable by following a fair
path in B, those states were reachable by following a fair path in BP.

In particular, this means that all states to which the aspect returns are reachable
in the pointcut-ready base machine. This could of course be checked directly, but
would require construction of the augmented machine — precisely the operation
we would like to avoid. In many cases (see [5]), the aspect can be shown weakly
invasive for any base machine satisfying its assumption v, by using local model
checking, additional information (our reasoning in the discount price example
from Sect. uses such information), or static analysis (both spectative and
regulative aspects can be identified in this way).

3 Algorithm

The modular verification algorithm builds a tableau from base requirement
and weaves A with this tableau according to pointcut descriptor p, then performs
model checking on the augmented tableau to verify desired result ¢.

Algorithm. Given:

set of atomic propositions AP;

assumption 1 for base systems, an LTL formula over AP;

desired result ¢ for augmented systems, an LTL formula over AP; and
aspect machine A and pointcut descriptor p over AP.

MAVEN: Modular Aspect Verification 315

Perform the following steps:

0. For all a € AP, if ¢ does not include a, augment ¢ with a clause of the form
-+-A(aV—a), so that 1 contains every a € AP, without altering its meaning.

1. Construct Ty, the tableau for 1. Since i contains every AP, the result of
Theorem [will hold when all labels in AP are considered.

2. Restrict T, to only those states reachable via a fair path.

3. Weave A into Ty according to p, obtaining ZIA’;,

4. Perform model checking in the usual way to determine if i; E ¢.

This algorithm gives us a sound proof method provided that whenever the
model check of the constructed augmented tableau (in step 4 above) succeeds,
then for any base system satisfying 1, applying aspect A according to pointcut
descriptor p will yield an augmented system satisfying ¢. This is expressed below:

Theorem 2. Given AP, i, ¢, A, and p as defined, zfﬁ E ¢, then for any
base program M over a superset of AP such that A and p are weakly invasive
for M, if M = then M = ¢.

The proof is omitted for reasons of space; it can be found in [7]. It involves an
inductive analysis of the paths in the augmented system M over an arbitrary
base system M that satisfies the assumptions 1. Each such path is shown to
correspond to a path in the augmented tableau Ty,. If the model check in the
algorithm succeeded, then all these paths satisfy ¢, as required.

Although we make use of the entire reachable part of tableau T}, it does not
serve as the mechanism for performing LTL model checking, but rather forms
(part of) the system to be checked. The tableau for even a complex assumption
formula is likely to be much smaller than models of concrete bases systems that
satisfy such assumptions. Of course, during the model checking step of the algo-
rithm, which dominates the time and space complexity, any sound optimizations
may be employed to reduce the complexity.

As a first abstract example, suppose we have an aspect with base system
assumption ¥ = A G ((ma Ab) — Fa) — that is, any state satisfying —a A b
is eventually followed by a state satisfying a. We would like to prove that the
application of our aspect to any base system satisfying 1 will give an augmented
system satisfying result ¢ = A G ((a Ab) — X Fa) — that is, any state satisfy-
ing a A b will eventually be followed by a later state satisfying a.

Figure shows the reachable portion of the tableau for the assumption 1.
In the diagram, shaded states are those contained in the only fairness set. The
notation Xg, not formally part of the state label, designates states in the tableau
which satisfy Xg for subformula g = F a (this labeling serves only to differentiate
states; other labels of this form have been omitted for clarity, and all such labels
become invalid after weaving). For the example pointcut descriptor p = (a A b),
this tableau machine is also pointcut-ready for p (since p references only the
current state), simply by adding pointcut to the labels of s3 and s5.

Figureshows the state machine A for the advice of our aspect. This advice
will be applied at the states matched by p, and Fig. gives the weaving of

316 M. Goldman and S. Katz

(9~

(a) The reachable portion of tableau T for ¢» = (b) A simple aspect machine A.
AG ((maAb)— Fa)

(c) Augmented tableau ﬁ, satisfying ¢
AG ((aAb) — XFa).

Fig. 2. Example augmented tableau

MAVEN: Modular Aspect Verification 317

|
f

S0

Q8 @
) One particular base machine M. (b) M: M woven with A according to p.

Fig. 3. Example weaving where M = ¢ and M = é

A with T, according to p. Model checking this augmented tableau will indeed
establish that it satisfies the desired property ¢. This result follows neither from
the aspect nor base machine behavior directly, but from their combined behavior
mediated by p. And since T¢ E ¢, any M = ¢ will yield M = ¢.

Figure [3(- (a)| depicts a particular base machine M satisfying 1, as could be
verified by model checking. Again, the shaded states are those in the only fairness
set. Although this M is small, it does contain atomic proposition ¢ not ‘visible’
to the aspect, and it has a disconnected structure very unlike the tableau.

From Fig. one sees it is indeed the case that the augmented machine M
satisfies ¢ — but there is no need to prove this directly by model checking. This
holds true even though the addition of the aspect has made a number of invasive
changes to M: state s; is no longer reachable, because its only incoming edge has
been replaced by an advice edge; a new loop through sg has been added, while in
M there was no path visiting sg more than once; there is a new path connecting
the previously separated left-hand component to the right-hand; and so forth.
In more realistic examples, the difference in size between the augmented tableau
(involving only v, p, and A) and a concrete augmented system with advice over
a full base machine would be substantial.

4 MAVEN

The verification algorithm defined in the previous section has been implemented
in a prototype system called MAVEN, for “Modular Aspect VerificatioN.” In
MAVEN, aspects are specified directly as state machines, albeit using a more
convenient and expressive language than direct definition of the machine states
and transitions. MAVEN operates on the level of textual input to and output from
components of the NUSMV model checker [9]. NUSMYV is a CTL (branching-
time logic) and LTL model checker that accepts its input as textual definitions of
state machine systems and their specifications. We have extended the NUSMV
finite state machine language to create FSMA, for “finite state machine aspects,”

318 M. Goldman and S. Katz

which describes aspects and their specifications. The language is based closely
on the usual input language of NUSMV, with some added restrictions, and with
a collection of new keywords used for aspect-specific declarations:

VAR ——-BASE. Following this directive, one or more definitions of base ma-
chine variables can appear. NUSMV allows the user to specify variables
which take their value from a symbolic set or numerical range, in addition
to booleans.

VAR ——ASPECT. Following this directive, one or more definitions of aspect
machine variables can appear.

POINTCUT. Describes the aspect’s pointcut. Only current-state expressions
are valid; (past) LTL syntax is not permitted. The complete pointcut is
taken to be the disjunction of all POINTCUT directives; this allows the user
to specify multiple logical pointcuts for the aspect.

INIT. Describes the initial states of the aspect machine.

TRANS. Gives a restriction on the set of valid transitions within the aspect
machine. As in NUSMV, the conjunction of all TRANS directives forms
the complete restriction. Unlike in NUSMYV, TRANS is the only directive
available for specifying state machine transitions in FSMA.

RETURN. Describes the return states of the aspect machine. Return states have
no outgoing transitions, even if TRANS would indicate otherwise.

LTLSPEC --BASE. Defines an expression which must hold as part of the base
system requirement (and is used to build the tableau).

LTLSPEC ——-AUGMENTED. Defines an expression which must hold as part
of the augmented system result (and will be model checked).

From the definition of the POINTCUT directive, one limitation of MAVEN is
immediately clear: only pointcuts which are restricted to examining the current
state are permitted. That is, this prototype does not include the step of creating
pointcut-ready machines during its weaving. However, many pointcut languages
and specific applications indeed examine only the current state.

Tableau construction in MAVEN is performed by 1t12smv, an independent com-
ponent of NUSMYV. The 1t12smv program takes as input an LTL formula in the
syntax used by NUSMV, and outputs the corresponding tableau state machine.
We weave the tableau with the aspect according to the pointcut by modifying
this textual representation; the result is a valid NUSMYV input file representing
the woven tableau and the augmented system results that must hold in it, which
can be given directly to the model checker for verification.

The aspects verified while developing and testing MAVEN have not been chal-
lenging for the model checker because aspect advice typically contains only rela-
tively short code segments. For all the correctly-specified models verified hereto-
fore, runtime has been measured in seconds, and the number of states generated
has been no more than the low thousands.

The MAVEN tool, usage instructions, and a few implemented examples, are
available for download at the website noted in [7]. The examples were selected
for their ability, in a simple and highly abstract way, to demonstrate real-world
situations in which the verification technique is applicable and effective.

MAVEN: Modular Aspect Verification 319

In one, the abstract example given earlier is rephrased to describe a more
realistic situation: prospective base systems are known to have the property
that, whenever a request for a status display is made when the display is not
active at the same time, eventually the display will be shown. We wish to use
an aspect to guarantee the new behavior that, when the request comes while the
display is already active, a later status display will still occur, presumably with
updated information. This becomes the formal specification below, which has
the same structure as the example:

Y = A G ((—display N request) — F display)
¢ = A G ((display A request) — X F display)

The construction and model check clearly succeed.

Another example involves the notion of a retail store discount policy aspect,
discussed at length in [I0]. In the introduction, we noted that such an aspect,
when correctly implemented, is in fact weakly invasive, even though it is altering
the prices of items. We verified a concrete discount aspect whose specified goal
is to implement a “50% Off the Entire Store” policy at the point of purchase. In
particular, we showed both a “healthiness constraint” that assuming all prices
in the underlying system are nonzero, the same is true of the augmented one,
and that the new augmented system has a ceiling on its prices that is half of
the previous ceiling. If the aspect code is incorrect, and zero prices can result,
MAVEN reports that the aspect is not weakly invasive for the given base, be-
cause an aspect return state (one with zero price) differs from all base states,
and it displays one such state, provided by NUSMV as its verification failure
counterexample.

The use of such counterexamples is further investigated in an example aspect
designed to alert users about the occurrence of errors, using an assumption
about an existing message delivery system in the base system. By reasoning
about the circumstances presented in a counterexample produced from model
checking the augmented tableau, we can improve one or more of the specification,
pointcut, or advice of our aspect. In general, the need to refine the specification
indicates either that our original base system assumption was not strong enough,
or possibly that our augmented result was too strong to prove (note that no
assumptions are made about the relationship between the formulas, and we
can vary them independently). Refining the pointcut can be necessary when
the counterexample reveals a situation where the aspect fails to execute advice
when it is needed, or activates advice in an inappropriate situation. The advice
may need to be altered if the counterexample reveals circumstances under which
our original implementation is inadequate; in the case where the advice model
has been derived via abstraction from source code, the counterexample could
indicate a place where our abstraction needs refinement.

The example fails to verify at first because the assumption is too weak, al-
lowing multiple announcements for the same message; a revision to correct this
fails due to situations with overlapping announcements. Correction now requires
changing the advice, and ultimately leads to a version that passes verification.
The important point is that by using the modular verification method, we were

320 M. Goldman and S. Katz

able to reason about the aspect’s correctness independent of any particular base
machine. Furthermore, the method has forced us to think carefully and precisely
about what the aspect will assume, do, and guarantee; precision and certainty
being the goal of formal analysis.

5 Related Work

The first work to separately model check the aspect state machine segments that
correspond to advice is [I1], where the verification is modular in the sense that
base and aspect machines are considered separately. The verification method
also allows for joinpoints within advice to be matched by a pointcut and them-
selves advised. However, the treatment there is for a particular aspect woven
directly to a particular base program. Additionally, it shows only how to extend
properties which hold for that base program to the augmented program (using
branching-time logic CTL). A key assumption of their method is that after the
aspect machine completes, the continuation is always to the state following the
joinpoint in the original base program. This requirement is much stronger than
the assumption used here of a weakly invasive aspect.

In [I2], model checking tasks are automatically generated for the augmented
system that results from each weaving of an aspect. That approach has the
disadvantage of having to treat the augmented system, but offers the benefit
that needed annotations and set-up need only be prepared once. That work takes
advantage of the Bandera [13] system that generates input to model checking
tools directly from Java code, and can be extended to, for example, the aspect-
oriented AspectJ language. Bandera and other systems like Java Pathfinder [14]
that generate state machine representations from code can be used to connect
common high-level aspect languages to the state machines used here.

In [5] a semantic model based on state machines is given, and the treatment of
code-level aspects and joinpoints defined in terms of transitions, as in AspectJ,
is described. The variations needed to express in a state machine weaving the
meaning of before, after, and around with proceed advice are briefly outlined.

The notion of reasoning about systems composed from two or more state
machines is not new, and the most prevalent method for doing so is the assume-
guarantee paradigm, which forms the basis of this work. In [15] and [16], among
others, an assume-guarantee structure for aspect specification is suggested, sim-
ilar to the specifications here, but model checking is not used. In [15], proof
rules are developed to reason in a modular way about aspect-oriented programs
modeled as alternating transition systems; the treatment is for a particular base
program in combination with an aspect. And in [16], aspects are examined as
transition system transformers, but a verification technique is not introduced.

In most model checking works based on assume-guarantee, the notion of com-
positionality is one in which two machines are composed in parallel. Composing
machine M with M’ yields a machine in which composed states are pairs of
original states that agree on atomic propositions shared by the two machines.
The work of [I7] introduced tableaux to modular verification. Under the parallel

MAVEN: Modular Aspect Verification 321

composition model, no issue analogous to aspect invasiveness arises, because the
machines are combined according to jointly-available states.

An alternative mode of verification for composed systems is seen in [18], treat-
ing feature-oriented programs built from collections of state machines that im-
plement different features within a system. Consequently, that framework uses a
weaving-like process of adding edges between initial and return states of individ-
ual machines, but those feature machines explicitly receive and release control
over the global state, unlike the oblivious base machines here. Work on extending
properties modularly for features is presented in [19].

6 Conclusion

By reusing the notion of a tableau containing all behaviors that satisfy a partic-
ular formula, we can achieve a modular verification for aspects. The approach is
based on augmenting this tableau with the advice according to a pointcut de-
scriptor and examining the result. In order to do so we must restrict our view to
aspects which are weakly invasive and always return to states which were reach-
able in the original base system. Any computation that infinitely often visits an
aspect state is considered fair, to guarantee that it is checked.

A number of directions for future work present themselves. While the current
technique only addresses a single aspect and pointcut descriptor, in principle
it can be extended to work for multiple aspects, given proper definitions of
the weaving mechanics. Further development of how weaving is formulated will
also allow treatment of aspects with advice whose addition changes the set of
joinpoints. Furthermore, the entire discussion here is given in terms of states
and state machines, while, as noted earlier, the usual basic vocabulary of aspect-
oriented programming languages refers to events. Problems of real object systems
still must be fully expressed in the state-based model checking used here.

Nevertheless, the generic method in this paper allows us for the first time to
model check aspects independently of a concrete base program, and already the
MAVEN modular aspect verifier can provide useful results. This technique is a
significant step toward the truly modular verification of aspects.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Proceedings ECOOP 2001. LNCS 2072 (2001) 327-353
http://aspectj.org.

2. Filman, R.E., Elrad, T., Clarke, S., Aksit, M., eds.: Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

3. Sihman, M., Katz, S.: Superimposition and aspect-oriented programming. BCS
Computer Journal 46(5) (2003) 529-541

4. Abraham, E., de Boer, F., de Roever, W.P., Steffen, M.: An assertion-based proof
system for multithreaded java. Theoretical Computer Science 331(2-3) (2005)
251-290

322

5.

6.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Goldman and S. Katz

Katz, S.: Aspect categories and classes of temporal properties. In: Transactions on
Aspect Oriented Software Development, Volume 1, LNCS 3880. (2006) 106-134
Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA (1999)

. Goldman, M.: Modular verification of aspects. MSc thesis,

Technion — Israel Institute of Technology (2006) Available at
http://www.cs.technion.ac.il/Labs/ssdl/thesis/finished /2006 /max.

. Sereni, D., de Moor, O.: Static analysis of aspects. In: AOSD’03: Proc. 2nd Intl.

Conf. on Aspect-oriented Software Development, ACM Press (2003) 30-39

. NuSMV. (http://nusmv.irst.itc.it/)
. Douence, R., Stidholt, M.: A model and a tool for Event-based Aspect-Oriented

Programming (EAOP). TR 02/11/INFO, Ecole des Mines de Nantes (2002)
Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect advice modularly.
In: Proc. SIGSOFT Conference on Foundations of Software Engineering, FSE’04,
ACM (2004) 137-146

Katz, S., Sihman, M.: Aspect validation using model checking. In: Proc. of Inter-
national Symposium on Verification. LNCS 2772 (2003) 389-411

Hatcliff, J., Dwyer, M.: Using the Bandera Tool Set to model-check properties of
concurrent Java software. In Larsen, K.G., Nielsen, M., eds.: Proc. 12th Int. Conf.
on Concurrency Theory, CONCUR’01. Volume 2154 of LNCS., Springer-Verlag
(2001) 39-58

Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT) 2(4) (2000)

Devereux, B.: Compositional reasoning about aspects using alternating-time logic.
In: Proc. of Foundations of Aspect Languages Workshop (FOALO03). (2003)
Sipma, H.: A formal model for cross-cutting modular transition systems. In: Proc.
of Foundations of Aspect Languages Workshop (FOALO3). (2003)

Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3) (1994) 843-871

Blundell, C., Fisler, K., Krishnamurthi, S., Hentenryck, P.V.: Parameterized inter-
faces for open system verification of product lines. In: Proc. 19th IEEE Interna-
tional Conference on Automated Software Engineering, ASE’04, Washington, DC,
IEEE Computer Society (2004) 258-267

Guelev, D.P., Ryan, M.D., Schobbens, P.Y.: Model-checking the preservation of
temporal properties upon feature integration. In: Proc. 4th Intl. Workshop on Au-
tomated Verification of Critical Systems (AVoCS). Electronic Notes in Theoretical
Computer Science 128(6) (2004) 311-324

	Introduction
	Aspect-Oriented Programming
	Modular Aspectual Verification
	Results

	Definitions
	LTL Tableaux
	Aspects
	Weaving
	Weakly Invasive Aspects

	Algorithm
	MAVEN
	Related Work
	Conclusion

