
Bit-Pattern Based Integral Attack

Muhammad Reza Z’aba1, H̊avard Raddum2,�, Matt Henricksen3,
and Ed Dawson1

1 Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

m.zaba@isi.qut.edu.au, e.dawson@qut.edu.au
2 Selmersenteret, University of Bergen, Norway

haavardr@ii.uib.no
3 Institute for Infocomm Research, A*STAR,
21 Heng Mui Keng Terrace, Singapore 119613

mhenricksen@i2r.a-star.edu.sg

Abstract. Integral attacks are well-known to be effective against byte-
based block ciphers. In this document, we outline how to launch integral
attacks against bit-based block ciphers. This new type of integral attack
traces the propagation of the plaintext structure at bit-level by incorporat-
ing bit-pattern based notations. The new notation gives the attacker more
details about the properties of a structure of cipher blocks. The main dif-
ference from ordinary integral attacks is that we look at the pattern the
bits in a specific position in the cipher block has through the structure.
The bit-pattern based integral attack is applied to Noekeon, Serpent and
present reduced up to 5, 6 and 7 rounds, respectively. This includes the
first attacks on Noekeon and present using integral cryptanalysis. All at-
tacks manage to recover the full subkey of the final round.

Keywords: Block ciphers, integral cryptanalysis, Serpent, Noekeon,
present.

1 Introduction

The integral attack [11] is the basis for the best attacks on the AES, and has
become standard in a cryptanalyst’s toolbox. The basic idea of the attack is to
analyze how a specified property of a set of plaintexts will evolve through the
encryption algorithm and to use the existence of that property to verify key
guesses. Up until now, integral attacks have not been thought suitable for bit-
based ciphers. In these attacks the plaintext bytes are chosen to be constant, or
take on all values through the set of texts. The reason for this choice is that it
is unaffected by the application of a bijective S-box substituting bytes.

Using the traditional approach on a bit-oriented cipher, the bits output from
an S-box are not treated as a block. This normally implies that any all-values
property of the S-box output will be subsequently destroyed by the linear layer.
� This work done while visiting the Information Security Institute, Queensland Uni-

versity of Technology, Australia.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 363–381, 2008.
c© International Association for Cryptologic Research 2008

364 M.R. Z’aba et al.

In order to address this issue, we introduce a new bit-pattern based notation.
Each bit position within a structure holds a specific sequence of bit ‘0’ and ‘1’.
The pattern in which the bit sequence is repeated serves as the basis of the
notation. This means that the order of the texts in a bit-pattern based integral
attack plays an important part, in contrast to the usual integral attack where
the texts are regarded as an unordered set. This allows an attacker to gain
knowledge of bit patterns in the set of texts through some encryption rounds.
Instead of inputting all possible values into a single S-box in the first round, the
bit-pattern based structure is constructed such that the active bits are spread
over more than one S-box.

The bit-pattern based integral attack manage to penetrate up to 5 (out of 16),
6 (out of 32) and 7 (out of 31) rounds of Noekeon [9], Serpent [1] and present

[7], respectively. To the best of our knowledge, this is the first integral cryptanal-
ysis on Noekeon and present reported in the literature. For all three ciphers,
detailed analysis by the designers show the minimal complexity for a success-
ful differential attack on a few rounds. Bit-pattern based integral cryptanalysis
gives much better results for these reduced-round ciphers. Note, however, that
differential cryptanalysis can be easily extended to more rounds whereas integral
cryptanalysis can not be extended beyond a certain point.

This document is organized as follows. The integral attack and the new nota-
tions are explained in Section 2. The attacks on Noekeon, Serpent and present

are presented in Section 3. Section 4 highlights some related work. Discussions
and conclusion are given in Section 5.

2 Bit-Pattern Based Integral Attack

An integral attack works by choosing a set of plaintexts, where some bit positions
take on all values through the set, and the other bits are chosen to be arbitrary
constants. The set of cipher blocks used in an integral attack is commonly re-
ferred to as a structure. The part of the structure that takes on all values usually
forms the input to one or more bijective S-boxes in the first round. Then two
properties are achieved by the structure: it is unaffected by key-addition, and it
is unaffected by the application of bijective S-boxes. The diffusion of the cipher
will however mix the bits, so after some time the inputs of some S-boxes will
not have the constant or all-values property. When the cipher is byte-oriented
(like the AES), the bits in the output of an S-box are treated as a block, and
only mixed with blocks of bits that have either the all-values or the constant
property. This might delay the destruction of these properties in the structure,
and lead to good attacks.

For a bit-based cipher, the bits in the output of one S-box are treated indepen-
dently and are not mixed in a way that respects the S-box boundaries. Hence the
input bits to an S-box in the next round will have some constant bits, and some
bits that are not constant. The useful properties of a structure will then be lost al-
ready in the second round. We overcome this and make integral attacks possible on
bit-based cipher by introducing a more refined notation for the bits in a structure.

Bit-Pattern Based Integral Attack 365

2.1 Pattern-Based Notations

In our bit-pattern based approach, the status of each single bit position within
the overall structure is treated independently. Each bit position in a plaintext
structure holds a specific sequence of bit ‘0’ and/or ‘1’. The pattern in which the
bit sequence is repeated forms the foundation of the bit-based notations. The
following describes the notation.

– The pattern c in a position means that all bits in this position within the
structure consists of only bit ‘0’ or ‘1’. This pattern is called a constant bit
pattern.

– The pattern ai in a position means that the first block of 2i consecutive bits
in this position are constant, and the next block of 2i consecutive bits all
have the opposite value of the first. The alternating values of bits in 2i-blocks
is repeated throughout the structure. This pattern is called an active bit
pattern.

– The pattern bi in a position means that blocks of 2i consecutive bits in
this position are constant, but the values of the blocks are not necessarily
repeated in an alternating manner.

– The pattern di in a position means that the bits in this position may hold
either a c (constant) or an ai (active) pattern. This pattern is called a dual
bit pattern.

If the XOR sum of all the bits in one pattern equals 0, we say that the pattern is
balanced. Furthermore, if the cipher block which is the XOR sum of all the texts
in a structure only has 0-bits we say that the structure is balanced. All patterns
described above are balanced, except for the b0-pattern which may or may not be
balanced. In fact, any bit-string fulfills the definition of a b0-pattern. To make a
distinction between balanced and unbalanced b0-patterns, we will write b∗0 when
we know that the pattern is balanced and b0 otherwise.

As an example, possible values of a 4-bit text structure with the patterns
a0a3ca2 are {6x, Ex, 6x, Ex, 7x, Fx, 7x, Fx, 2x, Ax, 2x, Ax, 3x, Bx, 3x, Bx}. Table 4
in the Appendix lists out the possible values of c, ai and some bi patterns in a
structure of 24 texts.

2.2 Tracing Bit Patterns through the Cipher

Bit-patterns will be XORed together in the linear operations of the cipher. The
following properties are easy to verify.

– c ⊕ p = p for any pattern p.
– ai ⊕ ai = c.
– pj ⊕ qi = bi for j > i and p, q ∈ {a, b}. If i = 0 the right-hand side will be

b∗0.
– p ⊕ b∗0 = b∗0 when p �= b0.

These rules of XOR addition will be used when analyzing how the bit-patterns
in the cipher block evolves through the linear parts of a cipher.

366 M.R. Z’aba et al.

When the bit-patterns pass through an S-box, every output-bit of the S-box
will have a bi-pattern where i is the smallest index found in the input patterns.
This is because blocks of 2i inputs will all have the same value, and so the output
values will also appear in blocks of 2i equal values.

That is all that can be said in general when patterns pass through an S-box,
but there is another fact that can be useful when analyzing the effect an S-box
has on input patterns. It is summed up in the following lemma.

Lemma 1. Consider m bit sequences, expressed as linear combinations of ai-
patterns l1, . . . , lm, where i ≤ n. Write this using matrix notation as Ma = l,
where a = (a0, . . . , an)T and l = (l1, . . . , lm)T . The different values for the m
bits found in the same position in the sequences lie in an affine space of size
2rank(M).

Proof: Let r = m − rank(M). Then there exists r linearly independent vectors
v1, . . . ,vr such that viM = 0, i = 1, . . . , r. Since ai ⊕ ai = c in our context, a
0-row in M corresponds to the constant pattern. This means that all possible
values of the m bits lie in an affine space cut out by the r linear equations given
by v1, . . . ,vr and r right-hand sides. The size of this space is 2m−r and the
lemma follows. ��
The lemma above can be helpful when determining whether the balancedness
of a structure is lost through the application of an S-box. Assume we have an
m-bit S-box and a structure of 2n texts where m > n, and assume the input
bits to the S-box are expressed as linear combinations of ai-patterns. Suppose
Lemma 1 tells us the inputs to the S-box lie in an affine space of dimension
smaller than n. Then each distinct input value will occur an even number of
times, and so each distinct output value will occur an even number of times.
Hence the balancedness will not be lost after the S-box.

2.3 Generic Bit-Pattern Based Integral Attack

Here we describe a generic bit-pattern based integral attack that can be used
on Noekeon, Serpent and present. These ciphers are similar in structure, so we
will use the same notation on all of them.

The input to round i is denoted by Xi = (xi
0, x

i
1, x

i
2, x

i
3) where X0 is the

plaintext. The input and output of the S-box layer in round i are denoted by
Yi = (yi

0, y
i
1, y

i
2, y

i
3) and Zi = (zi

0, z
i
1, z

i
2, z

i
3), respectively. The round i subkey

is denoted by Ki = (ki
0, k

i
1, k

i
2, k

i
3). The blocks Xi, Yi, Zi and Ki consist of four

32-bit words for Noekeon and Serpent, and four 16-bit words for present. In
every word, the rightmost bit is Bit ‘0’ and x[�] denotes the �-th bit of x. All
non-linear components in these ciphers are composed of 4 × 4 bijective S-boxes.

The attacker first finds a structure of plaintexts, and sees how the bit-patterns
of the structure become affected through the cipher. Just before the S-box layer
in some round the structure will be balanced, but the balancedness is expected
to be destroyed after the S-box layer. If this happens in round r, the following
equation must hold:

Bit-Pattern Based Integral Attack 367

m−1⊕

j=0

Y (j)
r =

m−1⊕

j=0

S−1(Z(j)
r) = 0 (1)

where m is the size of the structure. We then guess enough key material so we
can partially decrypt the ciphertexts to find all the bits coming out of one of the
S-boxes in round r, and use Equation (1) to verify the guess.

Equation (1) puts a 4-bit condition on the guess, so we expect the number of
possible key-bit guesses to be reduced by a factor 2−4. If we are guessing on k
key-bits at the same time, we will then need approximately �k/4	 structures to
identify the correct parts of the round keys used in the last rounds.

This can be summed up in Algorithm (1), where we assume we need to guess
k bits from the last round key(s).

Precomputation
Analyze round function to identify distinguisher;
begin

Choose a structure of plaintexts that matches distinguisher;
Encrypt all plaintexts in structure and get corresponding ciphertexts;
Initialize an array A[] of size 2k bits with all ‘1’s;
Set v = 0;
while number of entries such that A[v] = 1 is greater than one do

Partially decrypt all ciphertexts using the value v as partial subkey bits
to find the output bits of one S-box in round r;
if Equation (1) does not hold then

set A[v] = 0;
end
v = v + 1;

end
Output value v for which A[v] = 1 as correct subkey bits;

end
Algorithm 1. Algorithm for basic attack

We may also extend an attack by one round by adding one round in the
beginning. This can be done by letting the bits in the structure have a specific
pattern at the input of the second round, instead of in the plaintexts. These
patterns are then traced backwards through the first round, until they meet the
output of the S-box layer in the first round. S-boxes that have a sum of active
patterns in its output bits are called active S-boxes. By specifying a value of the
starting bit for patterns in the output of the active S-boxes, we specify some
values of these outputs, and can find the values of the inputs. Next we guess the
value of the bits in the key used for pre-whitening that affect the active S-boxes
in the structure. This allows us to find the structure of plaintexts that will have
the specific bit-pattern at the input of the second round, when the guess of bits
in the pre-whitening key is right.

If we need to guess k bits from the pre-whitening key, we must expect to use 2k

structures before we get one with the specified patterns in the second round. This

368 M.R. Z’aba et al.

increases the number of chosen plaintexts needed, but it may involve a smaller
guess on key-material than would be needed by adding a round at the end.

3 Application on Noekeon, Serpent and PRESENT

We have used bit-pattern based integral cryptanalysis on the block ciphers
Noekeon, Serpent and present. Here we show how the attacks worked.

3.1 Noekeon

Noekeon [9] accepts a 128-bit block of plaintext X0 and a 128-bit key. The 128-
bit block of ciphertext X17 is produced after iterating a round function 16 times,
followed by a final output function. The round function consists of two linear
layers, L0 and L1, and one non-linear layer S. The final round involves only L0.
The encryption scheme of Noekeon can be depicted as:

Xi+1 = L−1
1 (S(L1(L0(Xi, K)))), i = 0, 1, . . .15

X17 = L0(X16, K)

Figure 1 illustrates the round function of Noekeon. The same round subkey is
used in every round. Let x ≪ i and x ≫ i imply the rotation of the word x
by i bits to the left and right, respectively. The linear layer L0 of Noekeon is
described as:

ti0 = (xi
0 ⊕ ci ⊕ k0 ⊕ ui) (2)

ti1 = (xi
1 ⊕ k1 ⊕ vi) (3)

ti2 = (xi
2 ⊕ k2 ⊕ ui) (4)

ti3 = (xi
3 ⊕ k3 ⊕ vi) (5)

where ui = R(pi), vi = R(qi), pi = xi
1 ⊕ k1 ⊕ xi

3 ⊕ k3, qi = xi
0 ⊕ ci ⊕ xi

2,
R(x) = x ⊕ (x ≪ 8) ⊕ (x ≫ 8) and ci is a round constant. L1 simply consist
of three rotations of the words in the cipher block (yi

0, y
i
1, y

i
2, y

i
3) = (ti0, t

i
1 ≪

1, ti2 ≪ 5, ti3 ≪ 2).

3.5-Round Distinguisher. Prepare a structure of 216 plaintexts:

X
(j)
0 = (x0(j)

0 , x
0(j)
1 , x

0(j)
2 , x

0(j)
3) = (j‖c0, R(j‖c1), c2, R(j‖c3))

where 0 ≤ j ≤ 216 − 1, c0, c1, c3 are arbitrary 16-bit constants and c2 is a 32-bit
constant. By consulting Equations (2),(3),(4) and (5), it can be observed that
ui will become a constant and vi will cancel the active bits in x0

1 and x0
3. This

leaves the 16 leftmost bits of yi
0 to hold active patterns, i.e. a15a14 . . . a0. All

other bits hold c patterns. The propagation of bit patterns in this distinguisher
is shown in Figure 4 in the appendix.

Bit-Pattern Based Integral Attack 369

S

≪ 1 ≪ 5 ≪ 2

≪ 8 ≫ 8≪ 8 ≫ 8

xi
0 xi

1 xi
2 xi

3

ci k1 k3

k0 k2

≫ 1 ≫ 5 ≫ 2

pi qi

ui vi

xi+1
0 xi+1

1 xi+1
2 xi+1

3

yi
0 yi

1 yi
2 yi

3

zi
0 zi

1 zi
2 zi

3

L0

L1

L−1
1

Fig. 1. Round function of Noekeon in Round i

There are 16 active S-boxes at the input of S in the first round. The remaining
16 S-boxes receive an all c input patterns. Each active S-box has two inputs which
differ only in the leftmost bit. There exists a partial differential through the S-
box 8x → w‖3x with probability 1, where w ∈ {0x, 1x, 2x, 3x}. As a consequence,
the 16 leftmost bits of both z

0(j)
2 and z

0(j)
3 assume the same ai pattern as the

leftmost bit of the input. The rest of the output bits of the active S-boxes hold
a di pattern where 0 ≤ i ≤ 15.

In the second round, the linear combinations of c and ai bits inside L0 guaran-
tee that no c pattern remains in any bit position. Note that the partial differential
plays a critical role to ensure that this property occurs with certainty. Every bit
of u1 and v1 contains at least one ai pattern. L1 ensures that all bit patterns in
every column are linearly independent. According to Lemma 1 there are there-
fore 16 distinct values in the input and output of every S-box, which are repeated
212 times. After the linear operations in the second round, the number of times
each distinct value appears in the input of any S-box is still even, so the bits
assume a b∗0 pattern after the S-box layer.

Experimentally, it has been verified that L0 and L1 in the third round do
not cause any value in any input to an S-box to occur an odd number of times.
At the input of S, the number of different inputs into each S-box is even and
therefore, the number of different outputs is also even. This causes the structure
to remain balanced after S.

In the fourth round, the balancedness of the structure is ensured through L0
and L1, but is expected to be destroyed after the application of S.

Key Recovery. The 3.5-round distinguisher can be used to attack four and
five rounds of Noekeon using the attack strategy described in Section 2.3.

The key recovery procedure in a 4-round attack is a straightforward process.
Once the distinguisher is available, Equation (1) must hold for m = 216 and r = 3.

370 M.R. Z’aba et al.

The following equations provide the output bits of the S-boxes in the fourth
round:

z
3(j)
0[�] = (x4(j)

0 ⊕ R(x4(j)
1 ⊕ x

4(j)
3) ⊕ c4)[�] ⊕ k0[�] (6)

z
3(j)
1[�] = (x4(j)

1 ⊕ R(x4(j)
0 ⊕ x

4(j)
2))[�−1] ⊕ A1[�−1] (7)

z
3(j)
2[�] = (x4(j)

2 ⊕ R(x4(j)
1 ⊕ x

4(j)
3))[�−5] ⊕ k2[�−5] (8)

z
3(j)
3[�] = (x4(j)

3 ⊕ R(x4(j)
0 ⊕ x

4(j)
2))[�−2] ⊕ A3[�−2] (9)

where [�+n] is computed modulo 32 and A1[�] and A3[�] are linear combinations
of seven key bits as follows:

Ai[�] = (R(k0 ⊕ k2) ⊕ ki)[�]
= (k0 ⊕ k2)[�] ⊕ (k0 ⊕ k2)[�+8] ⊕ (k0 ⊕ k2)[�−8] ⊕ ki[�]. (10)

For the 4-round attack, we need to guess on 4 bits of key material at the
same time; the bits k0[�] and k2[�−5] and the values of the linear combinations
A1[�−1] and A3[�−2]. This means we should need approximately one structure
to identify a correct guess, in practice we sometimes need 2. This needs to be
repeated 32 times to get 128 bits of key material from the last round key. After
the correct values for k0[�], k2[�], A1[�] and A3[�] are identified for � = 0, 1, . . . , 31,
Equation (10) is rearranged and solved to uncover the unknown bits in k1 and k3.
The attack requirements are 2×216 = 217 chosen plaintexts and 2×216×24×32 =
226 partial decryptions.

In a 5-round attack, the values of the outputs from one S-box in the third
round can be obtained by guessing 92 selected bits of information from the keys
used in round 5 and 4. Here we make use of the fact that Noekeon uses the same
key in every round, so the key material we need to guess in round 4 overlaps
with what we need to guess in round 5.

In order to correctly identify all the 92 bits, we have to use 23 different struc-
tures. The remaining 128− 92 = 36 bits can be found by exhaustive search. The
number of plaintexts required is therefore 23×216 ≈ 220.6 chosen plaintexts. The
time complexity for the attack is (292 + 288 + . . . + 24 + 1) × 216 + 236 ≈ 2108.1

partial decryptions. Memory is required for storing 292 bits indicating possible
guesses remaining, thus the memory requirement is 289 bytes.

3.2 Serpent

Serpent [1] is a 128-bit block cipher with key sizes between 0 to 256 bits. It has
32 rounds and can be represented in non-bit-sliced and bit-sliced version. We
focus on the bit-sliced version of Serpent. The round function is composed of a
key mixing layer, a non-linear S-box layer Si, and a linear transformation layer
L. In the last round, the linear transformation is replaced with a key mixing
layer. The round function of Serpent in Round i is depicted in Figure 2. The
cipher can be expressed by the following equations:

Bit-Pattern Based Integral Attack 371

xi
0 xi

1 xi
2 xi

3

yi
0 yi

1 yi
2 yi

3

zi
0 zi

1 zi
2 zi

3

ki
0 ki

1 ki
2 ki

3

Si mod 8

≪ 13 ≪ 3

 3
≪ 1 ≪ 7

 7

≪ 22≪ 5

xi+1
0 xi+1

1 xi+1
2 xi+1

3

L

Fig. 2. Round function of Serpent in Round i

Xi+1 = L(Si mod 8(Xi ⊕ Ki)), i = 0, 1, . . . 30
X32 = S7(X31 ⊕ K31) ⊕ K32.

Serpent has eight different 4 × 4 S-boxes. Round i uses S-box Si mod 8 32
times in parallel. The input is taken one bit from each 32-bit word of the same
bit position. The linear transformation of Serpent can be expressed as:

xi+1
0[�] = zi

0[�−18] ⊕ zi
1[�−6] ⊕ zi

0[�−19] ⊕ zi
2[�−9] ⊕

zi
3[�−12] ⊕ zi

2[�−15] ⊕ (zi
0[((�−12)�3)−13])

xi+1
1[�] = zi

1[�−1] ⊕ zi
0[�−14] ⊕ zi

2[�−4]

xi+1
2[�] = zi

2[�−25] ⊕ zi
3[�−29] ⊕ zi

2[�] ⊕ (zi
0[((�−29)�3)−13]) ⊕

zi
1[((�−22)�7)−1] ⊕ zi

0[((�−22)�7)−14] ⊕ zi
2[((�−22)�7)−4]

xi+1
3[�] = zi

3[�−7] ⊕ zi
2[�−10] ⊕ zi

0[((�−7)�3)−13]

where [� n] = [� − n] is not computed modulo 32. If (� n) < 0 then the bit
at the position is a zero bit.

The cipher has endured extensive cryptanalysis [12,10,2,3,4,5,8] but no anal-
ysis on integral attack has been reported.

3.5-Round Distinguisher. Serpent reduced to 3.5 rounds can be distinguished
fromarandompermutationbychoosingastructureof210plaintexts.Theplaintexts

372 M.R. Z’aba et al.

are chosen such that the tenmost significantbits ofx0
2holdall possible 10-bit values.

The rest of the plaintext bits hold constant values such as the following:

X
(j)
0 = (x0(j)

0 , x
0(j)
1 , x

0(j)
2 , x

0(j)
3) = (c0, c1, j‖c2, c3)

where 0 ≤ j ≤ 210 − 1, c0, c1, c3 are 32-bit constants and c2 is a 22-bit arbitrary
constant. The ten leftmost bits of x

0(j)
2 therefore hold the pattern a9a8 . . . a0 and

the rest of the bits hold a c pattern. The bit pattern propagation of the 4-round
distinguisher is shown in Figure 5 in the appendix.

In the first round, the inputs to the ten affected instances of the S-box receive
a pair of inputs with a difference of 4x. Each input value is repeated 29 times.
These S-boxes will, therefore, output a pair of values repeated 29 times. Since
each of the eight S-boxes of Serpent behaves differently to the input difference,
the output bits of these S-boxes are denoted as a di-pattern. However, at least
two bits in each output will hold an ai-pattern. This is due to one of the design
criteria of the S-box, i.e., one-bit input change results in at least two-bit output
change. All other bits remain constant. The linear layer in the first round does
not affect the balancedness of the structure.

Each instance of the second round S-box may receive a single constant input
value, or between two to sixteen different input values. The input values are re-
peated between 26 and 210 times. The number of distinct outputs is therefore even
and this ensures that the structure is balanced after the S-box in the second round.

The linear layer in the second round ensures that the number of distinct values
in every column occurs an even number times, or that all values occur an odd
number of times. All bits will hold a b∗0-pattern except for a few positions which
still retain a b1-pattern. These bits are then fed to the third round S-box. The
number of repetition for each distinct output value matches that of its input and
this preserves the balancedness of the structure until after L in the third round.

The application of the fourth round S-boxes is expected to destroy the bal-
ancedness of the structure.

Key Recovery. Note that in the last round L is replaced with key addition,
so for four-round Serpent the ciphertexts and the output of the S-boxes in the
fourth round is only separated by a simple XOR of the last round key. Hence we
only need to guess four bits of the last round key to make use of Equation (1).
This attack requires 2× 210 chosen plaintexts, and it must be repeated 32 times
to recover the whole last round key. The time complexity is therefore 2 × 210 ×
24 × 32 = 220 partial decryptions.

In a 5-round attack, we verify Equation (1) three times, for the fourth round
S-boxes in bit positions 0,1 and 2. To compute the output of the S-box in position
0, we need to guess 11 bits of K4 and 36 bits of K5. For position 1 we need to
guess 32 bits of K5 and 10 bits of K4, and for position 2 we need to guess 20
bits of K5 and 10 more bits of K4. The remaining 40 bits of K5 can then be
found by exhaustive search. In order to correctly identify all bits 12 structures
are needed, so a total of 12 × 210 ≈ 213.6 chosen plaintexts are needed. The time
requirement is approximately (247 + 243 + . . . + 1) × 210 × 3 + 240 ≈ 258.7 partial
decryptions. The memory for the possible key candidates are 244 bytes.

Bit-Pattern Based Integral Attack 373

Table 1. Bit patterns of Z0 in the 6-round attack

Word Bit Pattern
z0
0 c

z0
1 c a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

z0
2 a2 a1 a0 c a9 a8 a7 a6 a5 a4 a3

z0
3 c a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

The 5-round attack can be extended by adding one round at the beginning.
We want the 10 most significant bits of x1

2 to hold the pattern a9a8 . . . a0 and the
rest of the bits to hold a c pattern. If the active bits in x1

2 are traced backwards
until the input of the linear transformation of the first round (Round 0), the bits
assume the pattern shown in Table 1. Since the number of active S-boxes is 13,
we need to guess 52 bits of K0 to find a plaintext structure that will evolve into
the desired pattern in X1 when the guess is right. This requires 213.2×252 ≈ 265.2

chosen plaintexts and approximately 258.7×252 ≈ 2110.7 partial decryptions. The
memory requirement is the same as in the 5-round attack.

3.3 PRESENT

present [7] is a 64-bit block cipher with key sizes of 80 and 128 bits. It has
31 rounds and is developed exclusively for lightweight applications. Figure 3
illustrates the round function of this cipher. The encryption function is given as:

Xi+1 = L(S(Xi ⊕ Ki)), i = 0, 1, . . . 30
X32 = X31 ⊕ K31

For consistency with the other analyzed ciphers, the representation of the bits
are slightly modified so that the 16 S-boxes in S are implemented in bit-sliced
mode like Noekeon and Serpent. The linear layer L is described in Table 2.

xi
0 xi

1 xi
2 xi

3

ki
0 ki

1 ki
2 ki

3

yi
0 yi

1 yi
2 yi

3

S

zi
0 zi

1 zi
2 zi

3

xi+1
0 xi+1

1 xi+1
2 xi+1

3

L

Fig. 3. Round function of present in Round i

374 M.R. Z’aba et al.

Table 2. Linear layer L of present

Output Input
zi
0 zi

1 zi
2 zi

3

xi+1
0 15 11 7 3 15 11 7 3 15 11 7 3 15 11 7 3

xi+1
1 14 10 6 2 14 10 6 2 14 10 6 2 14 10 6 2

xi+1
2 13 9 5 1 13 9 5 1 13 9 5 1 13 9 5 1

xi+1
3 12 8 4 0 12 8 4 0 12 8 4 0 12 8 4 0

3.5-Round Distinguisher. A 3.5-round distinguisher can be built for present

by constructing a structure of 24 chosen plaintexts:

(x0(j)
0 , x

0(j)
1 , x

0(j)
2 , x

0(j)
3) = (c0, c1, c2, c3‖j)

where c0, c1, c2 are arbitrary 16-bit constants, c3 are random 12-bit constants
and 0 ≤ j ≤ 15. The bit propagation of this distinguisher is shown in Figure 6
in the appendix.

In the first round, each of the four rightmost S-boxes receives two different
input values repeated eight times. The rest of the S-boxes receives only a single
constant value repeated sixteen times. The output bits of the four rightmost
S-boxes assume the pattern dididiai since there is a differential 1x → w‖1x

occurring with probability 1 where w ∈ {1x, 3x, 4x, 6x}.
In the second round, these sixteen bit patterns are fed to S-boxes 0, 4, 8 and 12.

S-box 0 receives the pattern a3a2a1a0 which represents all possible 4-bit values. S-
boxes 4, 8 and 12 receive the pattern d3d2d1d0. The inputs to the other 12 S-boxes
have the pattern c. The input and output values of the active S-boxes are repeated
either once or an even number of times, the structure therefore is balanced.

The linear layer in the second round spreads the bits such that each S-box in
the third round has the pattern cccb∗0. Since only one bit position is non-constant,
all S-boxes receive at most two different input values. In the preceding round, the
output of S-box 0 consists of all possible 4-bit values. Therefore, due to the linear
transformation, the number of repetitions for the different input values for S-boxes
0, 4, 8 and 12 in the current round is exactly 8. The output bits of all S-boxes at
this point hold the pattern b∗0 and the structure remains balanced.

In the fourth round, the balancedness of the structure is expected to be de-
stroyed after the application of the S-box.

Key Recovery. The attack on 4 rounds is exactly the same as for Serpent.
The number of chosen plaintexts needed is 2 × 24 = 25 with time complexity of
2 × 24 × 16 × 24 = 213 partial decryptions.

In a 5-round attack, due to the linear layer, the attacker needs to guess an
additional 4 × 4 = 16 bits of key material from K5, so 5 structures are needed
to identify the correct guess. The attack can be repeated 3 times to get 60 bits
of K5, the remaining 20 bits of K5 can be found by exhaustive search. The
number of chosen plaintexts needed is 5 × 24 ≈ 26.4, and the time complexity
is (220 + 216 + . . . + 1) × 24 × 3 + 220 ≈ 225.7 partial decryptions. The memory
requirement is small.

Bit-Pattern Based Integral Attack 375

A 6-round attack can be made by adding one round at the beginning to
construct a 4.5-round distinguisher. The plaintexts are chosen such that the
inputs into the second round assume the pattern of the inputs of the 3.5-round
distinguisher described above. There are four active S-boxes in the first round,
and hence 16 bits of K0 needs to be guessed. This 6-round attack would require
216 × 26.4 ≈ 222.4 chosen plaintexts and 216 × 225.7 ≈ 241.7 partial decryptions.
The memory complexity is still small.

We can extend the attack to seven rounds by adding even another round in
the end, but this attack is only better than exhaustive search for 128-bit keys.
In a 7-round attack, the whole 64 bits of K7 is needed to be guessed. After
examining the key schedule for 128-bit keys, we find that 3 bits of K6 and 58
bits of K5 are given from guessing all of K7. These known bits overlap in one
of the bits needed from K6 and three of the bits needed from K5, so in total
we need to guess 1 + 15 + 64 = 80 bits of key material. The attack requires
20×216×24 ≈ 224.3 chosen plaintexts and (280 +276+ . . .+1)×24×216 ≈ 2100.1

partial decryptions. A total of 280 bits are required to keep track of possible
values for the 80 key bits, so the memory complexity is 277 bytes.

3.4 Summary

The complexities of key recovery attacks on Noekeon, Serpent and present de-
pend largely on the linear component of the round function. All 4-round attacks
have been implemented on a single desktop PC. The attacks took only a few
seconds to recover the last round subkey. A summary of attacks presented in
this paper is shown in Table 3.

Table 3. Summary of attacks

Cipher Rounds Complexity
Data Time Memory

Noekeon 4 217 CP 226 small
5 220.6 CP 2108.1 289 bytes

Serpent 4 211 CP 220 small
5 213.6 CP 258.7 244 bytes
6 265.2 CP 2110.7 244 bytes

present 4 25 CP 213 small
5 26.4 CP 225.7 small
6 222.4 CP 241.7 small
7 224.3 CP 2100.1 277 bytes

4 Related Work

The applicability of the integral attack on bit-oriented ciphers was mentioned
in Knudsen and Wagner’s work [11]. The attack is demonstrated on the Data
Encryption Standard (DES). The attack, however, works only for a very few

376 M.R. Z’aba et al.

rounds of the DES. Lucks [13] also attacked Twofish, which is not a purely byte-
based cipher, with integral cryptanalysis. In Piret’s thesis [14, pg 79-82], the
construction of an integral distinguisher for Serpent was discussed. The distin-
guisher, however, does not occur with certainty and the number of rounds of the
distinguisher was not explicitly mentioned.

In another work, Biryukov and Shamir [6] show how to attack a generic cipher
structure which consists of non-linear and linear layers which are unknown. The
technique, called the multiset attack, makes use of several multiset properties.
These properties take into account whether the multiset: (1) contains arbitrary
repetitions of a single value; (2) takes on all possible values; (3) contains values
which occur an even number of times; (4) XOR sum equals 0; (5) has either prop-
erty (2) or (3). Therefore, there is some similarities to the notations described
in our work.

5 Discussion and Conclusion

In this paper, we examined the integral attack using a bit-pattern based ap-
proach. It differs from classical integral cryptanalysis in that the order of the
texts in a structure becomes important, and gives the cryptanalyst a more re-
fined notation for the texts in the structure. This information allows an attacker
to gain a detailed analysis of the individual bit that propagates through the
rounds. This is especially useful in analyzing the attack on ciphers that have
bit-oriented round functions.

In the Noekeon document [9], it is stated that there are no 4-round differential
trails with a predicted prop ratio above 2−48. A prop ratio is the fraction of
input pairs with a fixed difference that propagates into a fixed output difference.
The Appendix of the Noekeon document describes that the differential trail
propagates until before the non-linear component in the fourth round. In this
paper, a 3.5-round distinguisher with probability 1 is discovered in which the
balancedness of the structure can be retained until just before the S-box layer in
the fourth round. This distinguisher is therefore comparable to the differential
trail described in the document. Since our distinguisher can be constructed using
just 216 chosen plaintexts (as opposed to the differential attack which requires
on the order of 248 plaintexts), attacks using this distinguisher are much more
efficient than using the best differential trail described by the authors.

The designers of Serpent have shown in their submission to the AES com-
petition [1] that the probability of the best 5-round differential characteristic
is less than 2−42, so a differential attack on 5-round Serpent would require on
the order of 242 chosen plaintexts. The 5-round bit-pattern based integral attack
described in this paper requires only 213.6 chosen plaintexts. It should be noted
that there exists better attacks on Serpent than what is reported here, the best
we are aware of is a linear attack that breaks 10 rounds of Serpent with 128-bit
keys [8]. The complexities of the six-round differential attack reported in [12] are
comparable to the bit-pattern based integral attack described here.

In the present document [7] resistance to integral cryptanalysis is explained
by noting that integral attacks are suited for ciphers with a word-wise structure,

Bit-Pattern Based Integral Attack 377

and that the design of present is bitwise. We have shown here that bit-pattern
based integral cryptanalysis is indeed suited for present. Moreover, the authors
show that a differential characteristic over five rounds has probability at most
2−20, so a differential attack on five rounds would need on the order of 220

plaintexts to succeed. In contrast, bit-pattern based integral cryptanalysis breaks
five-round present with 80 chosen plaintexts.

Over a few rounds, bit-pattern based integral cryptanalysis of the three ciphers
studied here is comparable to differential cryptanalysis in time complexity, but
require in general much less chosen plaintext. However, differential cryptanalysis
is easy to extend to more rounds whereas integral cryptanalysis can not be
extended beyond a certain point. Even though the attacks do not pose a serious
threat to the ciphers presented in this paper, it shows that the integral attack
can still be applied to bit-oriented ciphers.

Acknowledgements

We would like to thank Adi Shamir for pointing out a related work in [6]. We also
thank Leonie Simpson and anonymous referees that helped to improve this paper.

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard. In: NIST AES Proposal (1998),
http://www.cl.cam.ac.uk/∼rja14/serpent.html

2. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

3. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round
Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

4. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

5. Biham, E., Dunkelman, O., Keller, N.: Differential-Linear Cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

6. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Inscrypt 2007. LNCS, vol. 4990. Springer, Heidelberg (2008)

http://www.cl.cam.ac.uk/~rja14/serpent.html

378 M.R. Z’aba et al.

9. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: NOEKEON.
In: First Open NESSIE Workshop (2000), http://gro.noekeon.org/

10. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

11. Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

12. Kohno, T., Kelsey, J., Schneier, B.: Preliminary Cryptanalysis of Reduced-Round
Serpent. In: The Third Advanced Encryption Standard Candidate Conference, pp.
195–211. NIST (2000),
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3conf.htm

13. Lucks, S.: The Saturation Attack – A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

14. Piret, G.: Block Ciphers: Security Proofs, Cryptanalysis, Design, and Fault At-
tacks. PhD Thesis, Université Catholique de Louvain (2005),
http://www.di.ens.fr/∼piret/

Appendix

Table 4 depicts the possible values of bit patterns in a 24 structure. Each indi-
vidual pattern has two columns to indicate that a pattern may start with bit
value ‘0’ or bit value ‘1’. Recall that the pattern b∗0 and bi where i > 0 are not
restricted to hold the values of only the XOR combinations of ai patterns. If
the patterns are composed of XOR combinations of ai patterns, the number of
occurrences of bit ‘0’ is the same as bit ‘1’.

Table 4. Example of bit pattern values in a 24 structure

c a3 a2 a1 a0 b2 b1 b∗
0

a3⊕ a3 ⊕ a2 a2⊕ a3 ⊕ a1

a2 ⊕a1 a0 ⊕ a0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1

http://gro.noekeon.org/
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3conf.htm
http://www.di.ens.fr/~piret/

Bit-Pattern Based Integral Attack 379

151413121110 9 8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 151413121110 9 8

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 151413121110 9 8
L1 ◦ L0 ↓

151413121110 9 8 7 6 5 4 3 2 1 0

S ↓
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0

L1 ◦ L0 ◦ L−1
1 ↓

8 7 6 5 4 3 2 1 0 0 5 4 3 2 1 0 0 0 6 5 4 3 2 1 0 0 1413121110 9
6 5 4 3 2 1 0 4 3 2 1 0 2 1 0 0 3 2 1 0 2 1 0 4 3 2 1 0 10 9 8 7
3 2 1 0 0 6 5 4 3 2 1 0 0 2 1 0 3 2 1 0 0 1413121110 9 8 7 6 5 4
5 4 3 2 1 0 4 3 2 1 0 2 1 0 1 0 2 1 0 2 1 0 4 3 2 1 0 10 9 8 7 6

S ↓
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4

L1 ◦ L0 ◦ L−1
1 ◦ S ◦ L1 ◦ L0 ◦ L−1

1 ↓
0 0
0 0
0 0
0 0

S ↓

c i ai i di i bi, b
∗
0 b0

Fig. 4. The 3.5-round integral distinguisher for Noekeon. Top row of cipher block is
word 0, bottom row is word 3. The rightmost column corresponds to the least significant
bit (bit 0) in each word.

380 M.R. Z’aba et al.

9 8 7 6 5 4 3 2 1 0

Si ↓
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

L ↓
0 2 1 0 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 0 2 1 0 2 1 0 2 1
5 4 3 2 1 0 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6
8 7 6 6 5 4 3 2 1 0 1 0 0 3 2 1 0 9 8 7 6 5 4 3 2 1 0 1 0 9
2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Si+1 ↓
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0

L ↓
0 0
1 0 0 1 0 0 1 0
0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

L ◦ Si+2 ↓
0 0
0 0
0 0
0 0

Si+3 ↓

c i ai i di i bi, b∗0 b0

Fig. 5. The 3.5-round integral distinguisher for Serpent. Top row of cipher block is word
0, bottom row is word 3. The rightmost column corresponds to the least significant bit
(bit 0) in each word.

Bit-Pattern Based Integral Attack 381

3 2 1 0
S ↓

3 2 1 0
3 2 1 0
3 2 1 0
3 2 1 0

L ↓
3 3 3 3
2 2 2 2
1 1 1 1
0 0 0 0

S ↓
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

L ↓

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L ◦ S ↓

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S ↓

c i ai i di i bi, b
∗
0 b0

Fig. 6. The 3.5-round integral distinguisher for present. Top row of cipher block is
word 0, bottom row is word 3. The rightmost column corresponds to the least significant
bit (bit 0) in each word.

	Bit-Pattern Based Integral Attack
	Introduction
	Bit-Pattern Based Integral Attack
	Pattern-Based Notations
	Tracing Bit Patterns through the Cipher
	Generic Bit-Pattern Based Integral Attack

	Application on Noekeon, Serpent and PRESENT
	Noekeon
	Serpent
	PRESENT
	Summary

	Related Work
	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

