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Abstract. Consider the permutation S in RC4. Roos pointed out in
1995 that after the Key Scheduling Algorithm (KSA) of RC4, each of
the initial bytes of the permutation, i.e., S[y] for small values of y, is
biased towards some linear combination of the secret key bytes. In this
paper, for the first time we show that the bias can be observed in S[S[y]]
too. Based on this new form of permutation bias after the KSA and
other related results, a complete framework is presented to show that
many keystream output bytes of RC4 are significantly biased towards
several linear combinations of the secret key bytes. The results do not
assume any condition on the secret key. We find new biases in the initial
as well as in the 256-th and 257-th keystream output bytes. For the first
time biases at such later stages are discovered without any knowledge of
the secret key bytes. We also identify that these biases propagate further,
once the information for the index j is revealed.

Keywords: Bias, Cryptanalysis, Keystream, Key Leakage, RC4, Stream
Cipher.

1 Introduction

RC4 is one of the most well known stream ciphers. It has very simple imple-
mentation and is used in a number of commercial products till date. Being one
of the popular stream ciphers, it has also been subjected to many cryptanalytic
attempts for more than a decade. Though lots of weaknesses have already been
explored in RC4 [1,2,3,4,5,6,7,8,10,11,12,13,15,16,17,19,20,21], it could not be
thoroughly cracked yet and proper use of this stream cipher is still believed to
be quite secure. This motivates the analysis of RC4.

The Key Scheduling Algorithm (KSA) and the Pseudo Random Generation
Algorithm (PRGA) of RC4 are presented below. The data structure contains an
array S of size N (typically, 256), which contains a permutation of the integers
{0, . . . , N − 1}, two indices i, j and the secret key array K. Given a secret key k
of l bytes (typically 5 to 16), the array K of size N is such that K[y] = k[y mod l]
for any y, 0 ≤ y ≤ N − 1.
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Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Apart from some minor details, the KSA and the PRGA are almost the same.
In the KSA, the update of the index j depends on the secret key, whereas the key
is not used in the PRGA. One may consider the PRGA as the KSA with all zero
key. All additions in both the KSA and the PRGA are additions modulo N .

Initial empirical works based on the weaknesses of the RC4 KSA were ex-
plored in [17,21] and several classes of weak keys had been identified. In [17],
experimental evidences of the bias of the initial permutation bytes after the KSA
towards the secret key have been reported. It was also observed in [17] that the
first keystream output byte of RC4 leaks information about the secret key when
the first two secret key bytes add to 0 mod 256. A more general theoretical study
has been performed in [11,12] which includes the observations of [17]. These bi-
ases do propagate to the keystream output bytes as observed in [5,11]. In [5],
the Glimpse theorem [4] is used to show the propagation of biases in the initial
keystream output bytes. On the other hand, a bias in the choice of index has
been exploited in [11] to show a bias in the first keystream output byte.

More than a decade ago (1995), Roos [17] pointed out that the initial bytes
S[y] of the permutation after the KSA are biased towards some function fy

(see Section 1.1 for the definition of fy) of the secret key. Since then several
works [2,9,10,11,12,14] have considered biases of S[y] either with functions of
the secret key bytes or with absolute values and discussed applications of these
biases. However, no research has so far been published to study how the bytes
S[S[y]] are related to the secret key for different values of y. Here we solve this
problem, identifying substantial biases in this direction. It is interesting to note
that as the KSA proceeds, the probabilities P (S[y] = fy) decrease monotonically,
whereas the probabilities P (S[S[y]] = fy) first increases monotonically till the
middle of the KSA and then decreases monotonically until the end of the KSA.

Using these results and other related techniques, we find new biases in the
keystream output bytes towards the secret key. A complete framework is pre-
sented towards the leakage of information about the secret key in the keystream
output bytes, that not only reveals new biases at a later stage (256, 257-th bytes),
but also points out that the biases propagate further, once the information re-
garding j is known.

The works [2,7] also explain how secret key information is leaked in the
keystream output bytes. In [2], it is considered that the first few bytes of the se-
cret key is known and based on that the next byte of the secret key is predicted.
The attack is based on how secret key information is leaked in the first keystream
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output byte of the PRGA. In [7], the same idea of [2] has been exploited with
the Glimpse theorem [4] to find the information leakage about the secret key at
the 257-th byte of the PRGA. Note that, our result is better than that of [7], as
in [7] the bias is observed only when certain conditions on the secret key and IV
hold. However, the biases we note at 256, 257-th bytes do not assume any such
condition on the secret key.

1.1 Notations, Contributions and Outline

Let Sr be the permutation, ir and jr be the values of the indices i and j after r
many rounds of the RC4 KSA, 1 ≤ r ≤ N . Hence SN is the permutation after
the complete key scheduling. By S0, we denote the initial identity permutation.
During round r of the KSA, ir = r − 1, 1 ≤ r ≤ N , and hence the permutation
Sr after round r can also be denoted by Sir+1.

Let SG
r be the permutation, iGr and jG

r be the values of the indices i and j,
and zr be the keystream output byte after r many rounds of the PRGA, r ≥ 1.
Clearly, iGr = r mod N . We also denote SN by SG

0 as this is the permutation
before the PRGA starts.

Further, let

fy =
y(y + 1)

2
+

y∑

x=0

K[x],

for y ≥ 0. Note that all the additions and subtractions related to the key bytes,
the permutation bytes and the indices are modulo N .

Our contribution can be summarized as follows.

– In Section 2, we present the results related to biased association of SN [SN [y]]
towards the linear combination fy of the secret key bytes.

– In Section 3, we present a framework for identifying biases in RC4 keystream
bytes towards several linear combinations of the secret key bytes.

• In Section 3.1, we show that P (zN = N−f0) is not a random association.
This indicates bias at z256.

• In Section 3.2, we use the bias of SN [SN [1]] (from Section 2) to prove
that P (zN+1 = N + 1 − f1) is not a random association. This indicates
bias at z257.

• In Section 3.3, we observe new biases in the initial keystream bytes apart
from the known ones [5]. It is shown that for 3 ≤ r ≤ 32, P (zr = fr−1)
are not random associations.

• These results are taken together in Section 3.4 to present cryptanalytic
applications.

– In Section 4, considering that the values of index j are leaked at some points
during the PRGA, we show that biases of the keystream output bytes to-
wards the secret key are observed at a much later stage.

2 Bias of S[S[y]] to Secret Key

We start this section discussing how P (Sr[Sr[1]] = f1) varies with round r, 1 ≤
r ≤ N , during the KSA of RC4. Once again, note that f1 = (K[0] + K[1] +
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Fig. 1. P (Si+1[Si+1[1]] = f1) versus i (r = i + 1) during RC4 KSA

1) mod N . To motivate, we like to refer to Figure 1 that demonstrates the nature
of the curve with an experimentation using 10 million randomly chosen secret
keys. The probability P (Sr[Sr[1]] = f1) increases till around r = N

2 where it
gets the maximum value around 0.185 and then it decreases to 0.136 at r = N .
Note that this nature is not similar to the nature of P (Sr[1] = f1) that decreases
continuously as r increases during the KSA.

Towards the theoretical results, let us first present the base case for r = 2,
i.e., after round 2 of the RC4 KSA.

Lemma 1. P (S2[S2[1]] = K[0] + K[1] + 1) = 3
N − 4

N2 + 2
N3 .

Further, P (S2[S2[1]] = K[0] + K[1] + 1 ∧ S2[1] ≤ 1) ≈ 2
N .

Proof. The proof is based on three cases.

1. Let K[0] �= 0, K[1] = N − 1. The probability of this event is N−1
N2 . Now

S2[1] = S1[K[0] + K[1] + 1] = S1[K[0]] = S0[0] = 0. So, S2[S2[1]] = S2[0] =
S1[0] = K[0] = K[0]+K[1]+1. Note that S2[0] = S1[0], as K[0]+K[1]+1 �= 0.
Moreover, in this case, S2[1] ≤ 1.

2. Let K[0] + K[1] = 0, K[0] �= 1, i.e., K[1] �= N − 1. The probability of this
event is N−1

N2 . Now S2[1] = S1[K[0] + K[1] + 1] = S1[1] = S0[1] = 1. Note
that S1[1] = S0[1], as K[0] �= 1. So, S2[S2[1]] = S2[1] = 1 = K[0] + K[1] + 1.
Also, in this case, S2[1] ≤ 1.

3. S2[S2[1]] could be K[0] + K[1] + 1 by random association except the two
previous cases.
Out of that, S2[1] ≤ 1 will happen in 2

N proportion of cases.
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Thus P (S2[S2[1]] = K[0]+K[1]+1) = 2(N−1)
N2 +(1− 2(N−1)

N2 ) 1
N = 3

N − 4
N2 + 2

N3 .
Further P (S2[S2[1]] = K[0]+K[1]+1∧S2[1] ≤ 1) = 2(N−1)

N2 + 2
N (1− 2(N−1)

N2 ) 1
N =

2
N − 4(N−1)

N4 ≈ 2
N . ��

Lemma 1 shows that after the second round (i = 1, r = 2), the event (S2[S2[1]] =
K[0] + K[1] + 1) is not a random association.

Lemma 2. Let pr = P (Sr[Sr[1]] = K[0] + K[1] + 1 ∧ Sr[1] ≤ r − 1) for r ≥ 2.
Then for r ≥ 3, pr = (N−2

N )pr−1 + 1
N · (N−2

N ) · (N−1
N )2(r−2).

Proof. After the (r − 1)-th round is over, the permutation is Sr−1. In this case,
pr−1 = P (Sr−1[Sr−1[1]] = K[0] + K[1] + 1 ∧ Sr−1[1] ≤ r − 2). The event(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 1)

)
can occur in two mutually

exclusive and exhaustive ways:
(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 2)

)

and
(
(Sr[Sr[1]] = K[0]+K[1]+1)∧(Sr[1] = r−1)

)
. We compute the contribution

of each separately.
In the r-th round, i = r − 1 and hence does not touch the indices 0, . . . , r − 2.

Thus, the event
(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 2)

)
occurs if

we already had
(
(Sr−1[Sr−1[1]] = K[0] + K[1] + 1) ∧ (Sr−1[1] ≤ r − 2)

)
and

jr /∈ {1, r − 1}. Thus, the contribution of this part is pr−1(N−2
N ).

The event
(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] = r − 1)

)
occurs if after the

(r − 1)-th round, Sr−1[r − 1] = r − 1, Sr−1[1] = K[0] + K[1] + 1 and jr = 1
causing a swap involving the indices 1 and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the
rounds i = 0, . . . , r − 2. This happens with a probability at least (N−1

N )r−1.
2. The event Sr−1[1] = K[0]+K[1]+1 may happen as follows. In the first round

(when i = 0), j1 /∈ {1, K[0] + K[1] + 1} so that S1[1] = 1 and S1[K[0] +
K[1]+1] = K[0]+K[1]+1 with probability (N−2

N ). After this, in the second
round (when i = 1), we will have j2 = j1 + S1[1] + K[1] = K[0] + K[1] + 1,
and so after the swap, S2[1] = K[0]+K[1]+1. Now, K[0]+K[1]+1 remains
in location 1 from the end of round 2 till the end of round (r − 1) (when
i = r − 2) with probability (N−1

N )r−3. Thus, P (Sr−1[1] = K[0]+K[1]+ 1) =
(N−2

N ) · (N−1
N )r−3.

3. In the r-th round (when i = r − 1), jr becomes 1 with probability 1
N .

Thus, P
(
(Sr[Sr[1]] = K[0]+K[1]+ 1)∧ (Sr[1] = r − 1)

)
= (N−1

N )r−1 · (N−2
N ) ·

(N−1
N )r−3 · 1

N = 1
N · (N−2

N ) · (N−1
N )2(r−2).

Adding the above two contributions, we get pr = (N−2
N )pr−1 + 1

N · (N−2
N ) ·

(N−1
N )2(r−2). ��

The recurrence in Lemma 2 along with the base case in Lemma 1 completely
specify the probabilities pr for all r ∈[2,. . . ,N].

Theorem 1. After the complete KSA,
P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N )2(N−1).
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Proof. Using the approximation N−2
N ≈ (N−1

N )2, the recurrence in Lemma 2 can
be rewritten as pr = apr−1 + ar−1b, where a = (N−1

N )2 and b = 1
N . The solution

of this recurrence is given by pr = ar−2p2 + (r − 2)ar−1b, r ≥ 2. Substitut-
ing the values of p2 (from Lemma 1), a and b, we get pr = 2

N (N−1
N )2(r−2) +

( r−2
N )(N−1

N )2(r−1). Substituting r = N and noting the fact that P
(
(SN [SN [1]] =

K[0] + K[1] + 1) ∧ (SN [1] ≤ N − 1)
)

= P (SN [SN [1]] = K[0] + K[1] + 1), we get
P (SN [SN [1]] = K[0] + K[1] + 1) = 2

N (N−1
N )2(N−2) + (N−2

N )(N−1
N )2(N−1). Note

that the second term (≈ 0.1348 for N = 256) dominates over the negligibly small
first term (≈ 0.0011 for N = 256), and so P (SN [SN [1]] = K[0] + K[1] + 1) ≈
(N−1

N )2(N−1) (replacing N−2
N = 1 − 2

N by 1 in the second term). ��

Now we like to present a more detailed observation. In [17,12], the association
between SN [y] and fy is shown. As we have observed the non-random associ-
ation between SN [SN [1]] and f1, it is important to study what is the associ-
ation between SN [SN [y]] and fy, and moving further, the association between
SN [SN [SN [y]]] and fy, for 0 ≤ y ≤ N − 1 and so on. Our experimental obser-
vations show that these associations are not random (i.e., much more than 1

N )
for initial values of y. The experimental observations (over 10 million runs of
randomly chosen keys) are presented in Figure 2.

The theoretical analysis of the biases of Sr[Sr[y]] towards fy for small values
of y is presented in Appendix A. The results involved in the process are tedious
and we need to approximate certain quantities to get the following closed form
formula.
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Theorem 2. After the complete KSA,
P (SN [SN [y]] = fy) ≈ y

N · (N−1
N )

y(y+1)
2 +2(N−2) + 1

N · (N−1
N )

y(y+1)
2 −y+2(N−1) +

(N−y−1
N ) · (N−y

N ) · (N−1
N )

y(y+1)
2 +2N−3, 0 ≤ y ≤ 31.

Extending similar techniques, the association between SN [SN . . . [SN [y]] . . .] and
fy can be studied in general. Though the general results are combinatorially
interesting, it is not immediate how they will be applicable to find further weak-
nesses in the RC4 PRGA. In terms of cryptanalytic point of view, we use the
non-random association of SN [SN [1]] relating f1 (Theorem 1) to obtain the bias
at the 257-th keystream output byte in Section 3.2.

3 New Biases in RC4 Keystream

We will first build the framework and then present new biases in Sections 3.1, 3.2
and 3.3, which were not known earlier.

Let us consider the existing result that relates each permutation byte after
the KSA with certain linear combination of the secret key bytes.

Proposition 1. [12, Theorem 1] Consider that the index j takes its values
uniformly at random during the KSA rounds. Then, P (Sr[y] = fy) ≈ (N−y

N ) ·
(N−1

N )[
y(y+1)

2 +r] + 1
N , 0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

Substituting r = N in the statement of the aboveProposition,we get the following.

Corollary 1. The bias of the final permutation after the KSA towards the secret
key is given by P (SN [y] = fy) = (N−y

N ) · (N−1
N )[

y(y+1)
2 +N ] + 1

N , 0 ≤ y ≤ N − 1.

As explained in [12], the above result indicates significant biases for small values
of y (more precisely, for 0 ≤ y ≤ 47), that is supported by the experimental
result presented in [17].

The Glimpse Main Theorem [4,7] states that after the r-th round of the
PRGA, r ≥ 1, P (SG

r [jG
r ] = r − zr) = P (SG

r [iGr ] = jG
r − zr) = 2

N . We rewrite the
first relation between SG

r [jG
r ] and r − zr as the following proposition.

Proposition 2. P (zr = r − SG
r−1[i

G
r ]) = 2

N , r ≥ 1.

Proof. SG
r [jG

r ] is assigned the value of SG
r−1[iGr ]. As the Glimpse Main Theorem

gives P (zr = r − SG
r [jG

r ]) = 2
N for r ≥ 1, we get P (zr = r − SG

r−1[i
G
r ]) = 2

N for
r ≥ 1. ��

The idea of writing the Glimpse Main Theorem in the form of Proposition 2 is
due to the fact that relating “zr to SG

r−1[i
G
r ]” will ultimately relate “zr to the

secret key bytes”, as the permutations in the initial rounds of the PRGA are
related to the secret key.

Now we start with our results. The following lemma shows how the permuta-
tion bytes at rounds t and r − 1 of the PRGA, for t + 2 ≤ r, are related.
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Lemma 3. Let P (SG
t [iGr ] = X) = qt,r, for some X. Then, for t+2 ≤ r ≤ t+N ,

P (SG
r−1[i

G
r ] = X) = qt,r ·

[
(N−1

N )r−t−1 − 1
N

]
+ 1

N .

Proof. We consider two separate cases.

1. SG
t [iGr ] = X and during the next (r − t − 1) rounds of the PRGA, the index

iGr is not touched by any of the r − t − 1 many j values (since t + 2 ≤ r ≤
t + N , the index iGr is not touched by any of the r − t − 1 many i values
anyway). The first event occurs with probability qt,r and the second event
occurs with probability (N−1

N )r−t−1. Thus the contribution of this case is
qt,r · (N−1

N )r−t−1.
2. SG

t [iGr ] �= X and still SG
r−1[i

G
r ] equals X by random association. The contri-

bution of this case is (1 − qt,r) · 1
N .

Thus, adding the above two contributions, we get P (SG
r−1[iGr ] = X) = qt,r ·

(N−1
N )r−t−1 + (1 − qt,r) · 1

N = qt,r ·
[
(N−1

N )r−t−1 − 1
N

]
+ 1

N . ��

Remark 1. The above result holds for t+2 ≤ r ≤ t+N , and not for r = t+1. If
we take r = t+1, then SG

r−1 = SG
t , which is our starting point, i.e., P (SG

r−1[iGr ] =
X) = P (SG

t [iGr ] = X) = qt,r.

The following is an immediate consequence of Lemma 3.

Corollary 2. For 2 ≤ r ≤ N −1, P (SG
r−1[r] = fr) =

[
(N−r

N ) ·(N−1
N )[

r(r+1)
2 +N ]+

1
N

]
·
[
(N−1

N )r−1 − 1
N

]
+ 1

N .

Proof. For 2 ≤ r ≤ N −1, we have iGr = r. Taking X = fr and t = 0 in Lemma 3,
we have q0,r = P (SG

0 [r] = fr) = P (SN [r] = fr) = (N−r
N ) · (N−1

N )[
r(r+1)

2 +N ] + 1
N

(by Corollary 1), and hence P (SG
r−1[r] = fr) =

[
(N−r

N ) · (N−1
N )[

r(r+1)
2 +N ] + 1

N

]
·[

(N−1
N )r−1 − 1

N

]
+ 1

N . ��

Next, we present the bias of each keystream output byte to a combination of the
secret key bytes in the following lemma.

Lemma 4. Let P (SG
r−1[i

G
r ] = fiG

r
) = wr, for r ≥ 1. Then P (zr = r − fiG

r
) =

1
N · (1 + wr), r ≥ 1.

Proof. We consider two separate cases in which the event (zr = r − fiG
r
) can

occur.

1. SG
r−1[i

G
r ] = fiG

r
and zr = r − SG

r−1[i
G
r ]. The contribution of this case is

P (SG
r−1[iGr ] = fiG

r
) · P (zr = r − SG

r−1[iGr ]) = wr · 2
N (by Proposition 2).

2. SG
r−1[iGr ] �= fiG

r
, and still zr = r − fiG

r
due to random association. So the

contribution of this case is P (SG
r−1[i

G
r ] �= fiG

r
) · 1

N = (1 − wr) · 1
N .

Adding the above two contributions, we get the total probability as wr · 2
N +

(1 − wr) · 1
N = 1

N · (1 + wr). ��
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Some results for biases in initial keystream bytes has earlier been pointed out
in [5] that has later been discussed in [19] too. We detail these biases giving
explicit formula under our theoretical framework.

Theorem 3.
(1) P (z1 = 1 − f1) = 1

N ·
(
1 + (N−1

N )N+2 + 1
N

)
.

(2) For 2 ≤ r ≤ N − 1,
P (zr = r−fr) = 1

N ·
(
1+

[
(N−r

N ) · (N−1
N )[

r(r+1)
2 +N ] + 1

N

]
·
[
(N−1

N )r−1 − 1
N

]
+ 1

N

)
.

Proof. First, we prove part (1). In the first round, i.e., when r = 1, we have
iGr = 1 and fiG

r
= f1, and so w1 = P (SG

0 [1] = f1) = P (SN [1] = f1) = (N−1
N ) ·

(N−1
N )[

1(1+1)
2 +N ] + 1

N = (N−1
N )N+2 + 1

N (by Corollary 1). Now, using Lemma 4,

we get P (z1 = 1 − f1) = 1
N · (1 + w1) = 1

N ·
(
1 + (N−1

N )N+2 + 1
N

)
.

Next, we prove part (2). From Corollary 2, wr = P (SG
r−1[r] = fr) =

[
(N−r

N ) ·
(N−1

N )[
r(r+1)

2 +N ]+ 1
N

]
·
[
(N−1

N )r−1− 1
N

]
+ 1

N , 2 ≤ r ≤ N −1. Now, using Lemma 4,

we get P (zr = r − fr) = 1
N · (1 + wr) = 1

N ·
(
1 +

[
(N−r

N ) · (N−1
N )[

r(r+1)
2 +N ] + 1

N

]
·

[
(N−1

N )r−1 − 1
N

]
+ 1

N

)
. ��

Note that Lemma 3 or Corollary 2 is not used in proving part (1) of the above
theorem. It is proved directly from Corollary 1. In fact, Lemma 3 can not be
used in part (1), as here we have r = t + 1 with t = 0 (see Remark 1).

To have a clear understanding of the quantity of the biases, Table 1 lists the
numerical values of the probabilities according to the formula given in Theo-
rem 3. Note that the random association is 1

N , which is 0.0039 for N = 256.
Close to the round 48, the biases tend to disappear. This is indicated by the

convergence of the values to the probability 1
256 = 0.0039.

Table 1. The probabilities computed following Theorem 3

r P (zr = r − fr)
1-8 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052 0.0051

9-16 0.0051 0.0050 0.0050 0.0049 0.0048 0.0048 0.0047 0.0047
17-24 0.0046 0.0046 0.0045 0.0045 0.0044 0.0044 0.0043 0.0043
25-32 0.0043 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041
33-40 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
41-48 0.0040 0.0040 0.0040 0.0040 0.0040 0.0039 0.0039 0.0039

One may check that P (z1 = 1 − f1) = 1
N (1 + 0.36) and that decreases to

P (z32 = 32 − f32) = 1
N (1 + 0.05), but still then it is 5% more than the random

association.

3.1 Bias in the 256-th Keystream Output Byte

Interestingly, the biases again reappear after rounds 256 and 257. First we present
the bias for the 256-th keystream byte.
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Theorem 4. P (zN = N−f0) = 1
N ·

(
1+(N−1

N )2N−1+ 1
N2 ·(N−1

N )N−1− 1
N2 + 1

N

)
.

Proof. During the N -th round of the PRGA, iGN = N mod N = 0. Taking X =
f0, t = 0 and r = N in Lemma 3, we have q0,N = P (SG

0 [0] = f0) = P (SN [0] =
f0) = (N−1

N )N + 1
N (by Corollary 1), and hence wN = P (SG

N−1[0] = f0) =[
(N−1

N )N + 1
N

]
·
[
(N−1

N )N−1 − 1
N

]
+ 1

N = (N−1
N )2N−1 + 1

N2 · (N−1
N )N−1 − 1

N2 + 1
N .

Thus, by Lemma 4, the bias is given by P (zN = N − f0) = 1
N · (1 + wN ) =

1
N ·

(
1 + (N−1

N )2N−1 + 1
N2 · (N−1

N )N−1 − 1
N2 + 1

N

)
. ��

For N = 256, wN = w256 = 0.1392 and the bias turns out to be 0.0045 (i.e.,
1

256 (1 + 0.1392)). Experimental results confirm this bias.

3.2 Bias in the 257-th Keystream Output Byte

We will now show that the bias in the 257-th keystream output byte follows from
Theorem 1, i.e., P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N )2(N−1).

Theorem 5. P (zN+1 = N + 1 − f1)
= 1

N ·
(
1 + (N−1

N )3(N−1) − 1
N · (N−1

N )2(N−1) + 1
N

)
.

Proof. During the (N + 1)-th round, we have, iGN+1 = (N + 1) mod N = 1.
Taking X = f1, t = 1 and r = N + 1 in Lemma 3, we have q1,N+1 = P (SG

1 [1] =
f1) = P (SN [SN [1]] = f1) = (N−1

N )2(N−1), and hence wN+1 = P (SG
N [1] = f1) =

(N−1
N )2(N−1) ·

[
(N−1

N )N−1 − 1
N

]
+ 1

N = (N−1
N )3(N−1) − 1

N · (N−1
N )2(N−1) + 1

N .
Now, using Lemma 4, we get P (zN+1 = N + 1 − f1) = 1

N · (1 + wN+1) =
1
N ·

(
1 + (N−1

N )3(N−1) − 1
N · (N−1

N )2(N−1) + 1
N

)
. ��

For N = 256, wN+1 = w257 = 0.0535 and P (z257 = 257−f1) = 1
N ·(1+0.0535) =

0.0041 which also conforms to experimental observation.

3.3 More Biases in Initial Bytes of RC4 Keystream

The biases of zr with r − fr for the initial keystream output bytes have been
pointed out in Theorem 3. Interestingly, experimental observation reveals bias
of zr with fr−1 too. The results are presented in Table 2 which is experimented
over hundred million (108) randomly chosen keys of 16 bytes. For proper random
association, P (zr = fr−1) should have been 1

256 , i.e., 0.0039.
Following our experimental observation, the explanation of the fact P (z3 =

f2) > 1
256 was pointed out in [18]. We present the idea of [18] in this paragraph.

Assume that after the third round of the KSA, S3[2] takes the value f2, and
is hit by j later in the KSA. Then f2 is swapped with Sk[k] and consider that
Sk[k] has remained k so far. Further, suppose that SN [3] = 0 holds. Thus,
SN [2] = k, SN [k] = f2 and SN [3] = 0 at the end of the KSA. In the second
round of the PRGA, SG

1 [2] = k is swapped with a more or less random location
SG

1 [l]. Therefore, SG
2 [l] = k and jG

2 = l. In the next round, i = 3 and points to
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Table 2. Additional bias of the keystream bytes towards the secret key

r P (zr = fr−1)
1-8 0.0043 0.0039 0.0044 0.0044 0.0044 0.0044 0.0043 0.0043
9-16 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042 0.0042
17-24 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040
25-32 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
33-40 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
41-48 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

SG
2 [3] = 0. So j does not change and hence jG

3 = l = jG
2 . Thus, SG

2 [l] = k is
swapped with SG

2 [3] = 0, and one gets SG
3 [l] = 0 and SG

3 [3] = k. The output z3
is now SG

3 [SG
3 [i] + SG

3 [jG
3 ]] = SG

3 [k + 0] = SG
3 [k] = f2.

Along the same line of arguments given in [18], we here provide a detailed
proof considering the event zr = fr−1 for r > 2 in general and explicitly derive
a formula for P (zr = fr−1). The proof depends on P (SN [r] = 0) for different r
values. The explicit formula for the probabilities P (SN [u] = v) was derived for
the first time in [9] and the problem was addressed again in [10,14].

Proposition 3. [14, Theorem 1, Item 2] For 0 ≤ v ≤ N − 1, v ≤ u ≤ N − 1,
P (SN [u] = v) = 1

N · (N−1
N )N−1−u + 1

N · (N−1
N )v+1 − 1

N · (N−1
N )N+v−u.

Theorem 6. For 3 ≤ r ≤ N , P (zr = fr−1) = (N−1
N ) · (N−r

N ) ·
(
(N−r+1

N ) ·

(N−1
N )[

r(r−1)
2 +r] + 1

N

)
· (N−2

N )N−r+1 · (N−3
N )r−2 · γr + 1

N ,

where γr = 1
N · (N−1

N )N−1−r + 1
N · (N−1

N ) − 1
N · (N−1

N )N−r.

Proof. Substituting y = r−1 in Proposition 1, we have P (Sr[r−1] = fr−1) = αr,
where αr ≈ (N−r+1

N ) · (N−1
N )[

r(r−1)
2 +r] + 1

N , 1 ≤ r ≤ N . After round r, suppose
that the index r − 1 is touched for the first time by jt+1 in round t + 1 of the
KSA and due to the swap the value fr−1 is moved to the index t, r ≤ t ≤ N − 1
and also prior to this swap the value at the index t was t itself, which now comes
to the index r−1. This means that from round r+1 to round t (both inclusive),
the pseudo-random index j has not taken the values r − 1 and t. So, after round
t + 1, P

(
(St+1[r − 1] = t) ∧ (St+1[t] = fr−1)

)

= P
(
(St[r − 1] = fr−1) ∧ (St[t] = t) ∧ (jt+1 = r − 1)

)

= αr · (N−2
N )t−r · 1

N .
From round t+1 until the end of the KSA, fr−1 remains in index t and t remains
in index r − 1 with probability (N−2

N )N−t. Thus,
P

(
(SN [r − 1] = t) ∧ (SN [t] = fr−1)

)

= αr · (N−2
N )t−r · 1

N · (N−2
N )N−t

= αr · (N−2
N )N−r · 1

N = βr (say). Also, from Proposition 3, we have P (SN [r] =
0) = γr, where γr = 1

N · (N−1
N )N−1−r + 1

N · (N−1
N ) − 1

N · (N−1
N )N−r.

Suppose the indices r − 1, t and r are not touched by the pseudo-random
index j in the first r − 2 rounds of the PRGA. This happens with probability
(N−3

N )r−2. In round r−1 of the PRGA, due to the swap, the value t at index r−1
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moves to the index jG
r−1 with probability 1, and jG

r−1 /∈ {t, r} with probability
(N−2

N ). Further, if SG
r−1[r] remains 0, then in round r of the PRGA, jG

r = jG
r−1

and zr = SG
r

[
SG

r [r]+SG
r [jG

r ]
]

= SG
r

[
SG

r−1[r]+SG
r−1[j

G
r−1]

]
= SG

r [0+ t] = SG
r [t] =

fr−1 with probability βr · γr · (N−3
N )r−2 · (N−2

N ) = δr (say). Since, t can values
r, r + 1, r + 2, . . . , N − 1, the total probability is δr · (N − r). Substituting the
values of αr, βr, γr, δr, we get the probability that the event (zr = fr−1) occurs
in the above path is p = (N−r

N ) ·
(
(N−r+1

N ) · (N−1
N )[

r(r−1)
2 +r] + 1

N

)
· (N−2

N )N−r+1 ·
(N−3

N )r−2 · γr.
If the above path is not followed, still there is (1− p) · 1

N probability of occur-
rence of the event due to random association. Adding these two probabilities,
we get the result. ��

The theoretically computed values of the probabilities according to the above
theorem match with the estimated values provided in Table 2. It will be interest-
ing to justify the bias at r = 1 and the absence of the bias at r = 2 as observed
experimentally in Table 2. These two cases are not covered in Theorem 6.

3.4 Cryptanalytic Applications

Here we accumulate the results explained above. Consider the first keystream
output byte z1 of the PRGA. We find the theoretical result that P (z1 = 1−f1) =
0.0053 (see Theorem 3 and Table 1) and the experimental observation that
P (z1 = f0) = 0.0043 (see Table 2). Further, from [11], we have the result that
P (z1 = f2) = 0.0053. Taking them together, one can check that the P (z1 =
f0 ∨z1 = 1−f1 ∨z1 = f2) = 1− (1−0.0043) · (1−0.0053) · (1−0.0053) = 0.0148.
(The independence assumption in calculating the probability is supported by
detailed experimentation with 100 different runs, each run presenting the average
probability considering 10 million randomly chosen secret keys of 16 bytes.) Our
result indicates that out of randomly chosen 10000 secret keys, in 148 cases on
an average, z1 reveals f0 or 1 − f1 or f2, i.e., K[0] or 1 − (K[0] + K[1] + 1) or
(K[0]+K[1]+K[2]+3). If, however, one tries a random association, considering
that z1 will be among three randomly chosen values v1, v2, v3 from [0, . . . , 255],
then P (z1 = v1 ∨ z1 = v2 ∨ z1 = v3) = 1 − (1 − 1

256 )3 = 0.0117. Thus one can
guess z1 with an additional advantage of 0.0148−0.0117

0.0117 · 100% = 27% over the
random guess.

Looking at z2, we have P (z2 = 2−f2) = 0.0053 (see Theorem 3 and Table 1),
which provides an advantage of 0.0053−0.0039

0.0039 · 100% = 36%.
Similarly, referring to Theorem 3 and Theorem 6 (and also Table 1 and Table 2),

significant biases can be observed in P (zr = fr−1 ∨ zr = r − fr) for r = 3 to 32
over random association.

Now consider the following scenario with the events E1, . . . , E32, where E1 :
(z1 = f0∨z1 = 1−f1∨z1 = f2), E2 : (z2 = 2−f2), and Er : (zr = fr−1∨zr = r−
fr) for 3 ≤ r ≤ 32. Observing the first 32 keystream output bytes z1, . . . , z32, one
may try to guess the secret key assuming that 3 or more of the events E1, . . . , E32
occur. We experimented with 10 million randomly chosen secret keys of length
16 bytes. We found that 3 or more of the events occur in 0.0028 proportion of
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cases, which is true for 0.0020 proportion of cases for random association. This
demonstrates a substantial advantage (40%) over random guess.

4 Further Biases When j Is Known During PRGA

In all the currently known biases as well as in all the new biases discussed in
this paper so far, it is assumed that the value of the pseudo-random index j is
unknown. In this section, we are going to show that the biases in the permutation
at some stage of the PRGA propagates to the keystream output bytes at a later
stage, if the value of the index j at the earlier stage is known.

Suppose that we know the value jG
t of j after the round t in the PRGA.

With high probability, the value V at the index jG
t will remain there until jG

t is
touched by the deterministic index i for the first time after a few more rounds
depending on what was the position of i at the t-th stage. This immediately
leaks V in keystream output byte. More importantly, if the value V is biased to
the secret key bytes, then that information will be leaked too.

Formally, let P (SG
t [jG

t ] = V ) = ηt for some V . jG
t will be touched by i in round

r, where r = jG
t or N + jG

t depending on whether jG
t > t or jG

t ≤ t respectively.
By Lemma 3, we would have P (SG

r−1[j
G
t ] = V ) = ηt·

[
(N−1

N )r−t−1− 1
N

]
+ 1

N . Now,

Lemma 4 immediately gives P (zr = r−V ) = 1
N ·

(
1+ηt ·

[
(N−1

N )r−t−1− 1
N

]
+ 1

N

)
.

For some special V ’s, the form of ηt may be known. In that case, it will
be advantageous to probe the values of j at particular rounds. For example,
according to Corollary 2, after the (t − 1)-th round of the PRGA, SG

t−1[t] is
biased to the linear combination ft of the secret key bytes with probability
ηt =

[
(N−t

N ) · (N−1
N )[

t(t+1)
2 +N ] + 1

N

]
·
[
(N−1

N )t−1 − 1
N

]
+ 1

N . Now, at round t, ft

would move to the index jt due to the swap, and hence SG
t [jt] will be biased to

ft with the same probability. So, the knowledge of jt will leak information about
ft in round jG

t or N + jG
t according as jG

t > t or jG
t ≤ t respectively.

If we know the values of j at multiple stages of the PRGA (it may be possible
to read some values of j through side-channel attacks), then the biases propagate
further down the keystream output bytes. The following example illustrates how
the biases propagate down the keystream output bytes when single as well as
multiple jG values are known.

Example 1. Suppose we know the value of jG
5 as 18. With probability η5, SG

4 [5]
would have remained f5 which would move to index 18 due to the swap in
round 5, i.e., SG

5 [18] = f5. With approximately η5 ·
[
(N−1

N )18−5−1 − 1
N

]
+ 1

N
probability, f5 would remain in index 18 till the end of the round 18-1 = 17. So,
we immediately get a bias of z18 with 18 − f5.

Moreover, in round 18, f5 would move from index 18 to jG
18. So, if the value of

jG
18 is also known, say jG

18 = 3, then we have SG
18[3] = f5. We can apply the same

line of arguments for round 256 + 3 = 259 to get a bias of z259 with 259 − f5.
Experiments with 1 billion random keys demonstrate that in this case the bias

of z18 towards 18 − f5 is 0.0052 and the bias of z259 towards 259 − f5 is 0.0044.
These conform to the theoretical values and show that the knowledge of j during
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the PRGA helps in finding non-random association (away from 1
256 = 0.0039)

between the keystream output bytes and the secret key.

5 Conclusion

In this paper, we present several new observations on weaknesses of RC4. It
is shown that biases towards the secret key exists at the permutation bytes
S[S[y]] for different y values. To our knowledge, this is the first attempt to
formally analyze the biases of S[S[y]] and its implications towards the security
of RC4. Moreover, a framework is built to analyze biases of the keystream output
bytes towards different linear combinations of the secret key bytes. Subsequently,
theoretical results are proved to show that RC4 keystream output bytes at the
indices 1 to 32 leak significant information about the secret key bytes. We also
discovered and proved new biases towards the secret key at the 256-th and the
257-th keystream output bytes. Moreover, we show that if one knows the value
of j during some rounds of the PRGA, then the biases propagate further down
the keystream.

Acknowledgment. The authors like to thank Mr. Snehasis Mukherjee, Indian
Statistical Institute, Kolkata for his support in the preparation of the graphs.
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Appendix A

Lemma 5. P
(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)

)
≈

( 1
N · (N−1

N )
y(y+1)

2
)

·(
y(N−2

N )y−1 + (N−1
N )y

)
, 0 ≤ y ≤ 31.

Proof. Sy+1[y] ≤ y means that it can take y+1 many values 0, 1, . . . , y. Suppose
Sy+1[y] = x, 0 ≤ x ≤ y − 1. Then Sy+1[x] can equal fy in the following way.

1. From round 1 (when i = 0) through x (when i = x − 1), j does not touch
the indices x and fy. Thus, after round x, Sx[x] = x and Sx[fy] = fy. This
happens with probability (N−2

N )x.
2. In round x + 1 (when i = x), jx+1 becomes equal to fy, and after the swap,

Sx+1[x] = fy and Sx+1[fy] = x. The probability of this event is P (jx+1 =
fy) = 1

N .

http://marcel.wanda.ch/Archive/WeakKeys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
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3. From round x + 2 (when i = x + 1) through y (when i = y − 1), again j
does not touch the indices x and fy. This, after round y, Sy[x] = fy and
Sy[fy] = x. This occurs with probability (N−2

N )y−x−1.
4. In round y + 1 (when i = y), jy+1 becomes equal to fy, and after the

swap, Sy+1[y] = Sy[fy] = x and Sy+1[Sy+1[y]] = Sy+1[x] = Sy[x] = fy.
This happens with probability P (jy+1 = fy) which is approximately equal
to (N−1

N )
y(y+1)

2 for small values of y as in the proof of [12, Lemma 1]. We
consider 0 ≤ y ≤ 31 for good approximation.

Considering the above events to be independent, we have
P

(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] = x)

)

= (N−2
N )x · 1

N · (N−2
N )y−x−1 · (N−1

N )
y(y+1)

2 = ( 1
N ) · (N−2

N )y−1 · (N−1
N )

y(y+1)
2 .

Summing for all x in [0, . . . , y − 1], we get P
(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤

y − 1)
)

= ( y
N ) · (N−2

N )y−1 · (N−1
N )

y(y+1)
2 .

If Sy+1[y] = y, then Sy+1[Sy+1[y]] can equal fy in the following ways: (a)
fy has to be equal to y; this happens with probability 1

N , (b) index y is not
touched by j in any of the first y rounds; this happens with probability (N−1

N )y,
and (c) in the (y +1)-th round, jy+1 = fy so that there is no swap; this happens
with probability (N−1

N )
y(y+1)

2 . Hence, P
(
(Sy+1[Sy+1[y]] = fy)∧ (Sy+1[y] = y)

)
=

( 1
N ) · (N−1

N )y · (N−1
N )

y(y+1)
2 .

Adding the above two contributions (one for 0 ≤ Sy+1[y] ≤ y − 1 and the
other for Sy+1[y] = y), we get P

(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)

)
=

( 1
N · (N−1

N )
y(y+1)

2
)

·
(
y(N−2

N )y−1 + (N−1
N )y

)
. ��

Lemma 6. Let pr(y) = P
(
(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 1)

)
, 0 ≤ y ≤ N − 1,

1 ≤ r ≤ N . Then pr(y) = (N−2
N )pr−1(y) + 1

N · (N−y
N ) · (N−1

N )
y(y+1)

2 +2r−3, 0 ≤
y ≤ 31, y + 2 ≤ r ≤ N .

Proof. Then event
(
(Sr[Sr[y]] = fy)∧(Sr [y] ≤ r−1)

)
, where r ≥ y+2, can occur

in two mutually exclusive and exhaustive ways:
(
(Sr[Sr[y]] = fy)∧(Sr [y] ≤ r−2)

)

and
(
(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)

)
. We compute the contribution of each

separately.
In the r-th round, i = r − 1 and hence does not touch the indices 0, . . . , r − 2.

Hence the event
(
(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 2)

)
occurs if we already had(

(Sr−1[Sr−1[y]] = fy) ∧ (Sr−1[y] ≤ r − 2)
)

and jr /∈ {y, Sr−1[y]}. Thus, the
contribution of this part is pr−1(y) · (N−2

N ).
The event

(
(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)

)
occurs if after the (r − 1)-th

round, Sr−1[r − 1] = r − 1, Sr−1[y] = fy and in the r-th round (i.e., when
i = r − 1), jr = y causing a swap involving the indices y and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the
rounds i = 0, . . . , r − 2. This happens with probability (N−1

N )r−1.
2. The event Sr−1[y] = fy happens with a probability which is approximately

equal to (N−y
N ) ·(N−1

N )[
y(y+1)

2 +r−2] for small values of y as in the proof of [12,
Theorem 1]. We consider 0 ≤ y ≤ 31 for good approximation.
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3. In the r-th round (when i = r − 1), jr becomes y with probability 1
N .

Thus, P
(
(Sr[Sr[y]] = fy)∧(Sr[y] = r−1)

)
= (N−1

N )r−1·(N−y
N )(N−1

N )[
y(y+1)

2 +r−2]·
1
N = 1

N · (N−y
N ) · (N−1

N )
y(y+1)

2 +2r−3.
Adding the above two contributions, we get
pr(y) = (N−2

N )pr−1(y) + 1
N · (N−y

N ) · (N−1
N )

y(y+1)
2 +2r−3. ��

The recurrence in Lemma 6 and the base case in Lemma 5 completely specify
the probabilities pr(y) for all y in [0, . . . , 31] and r in [y + 1, . . . , N ].

Theorem 2 (Section 2): After the complete KSA,
P (SN [SN [y]] = fy) ≈ y

N · (N−1
N )

y(y+1)
2 +2(N−2) + 1

N · (N−1
N )

y(y+1)
2 −y+2(N−1) +

(N−y−1
N ) · (N−y

N ) · (N−1
N )

y(y+1)
2 +2N−3, 0 ≤ y ≤ 31.

Proof. Using the approximation N−2
N ≈ (N−1

N )2, the recurrence in Lemma 6

can be rewritten as pr(y) = (N−1
N )2pr−1(y) + 1

N (N−y
N ) · (N−1

N )
y(y+1)

2 +2r−3, i.e.,

pr(y) = apr−1(y) + ar−1b, where a = (N−1
N )2 and b = 1

N (N−y
N ) · (N−1

N )
y(y+1)

2 −1.
The solution of this recurrence is pr(y) = ar−y−1py+1(y) + (r − y − 1)ar−1b,
r ≥ y + 1. Substituting the values of py+1(y) (from Lemma 5), a and b, we get
pr(y) = y

N · (N−1
N )

y(y+1)
2 +2(r−2) + 1

N · (N−1
N )

y(y+1)
2 −y+2(r−1) + ( r−y−1

N ) · (N−y
N ) ·

(N−1
N )

y(y+1)
2 +2r−3, y+1 ≤ r ≤ N , for initial values of y (0 ≤ y ≤ 31). Substituting

r = N and noting the fact that P
(
(SN [SN [y]] = fy) ∧ (SN [y] ≤ N − 1)

)
=

P (SN [SN [y]] = fy), we get the result. ��

Even after the approximation, our theoretical formula matches closely with the
experimental results for 0 ≤ y ≤ 31.
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