Open Rectangle-of-Influence Drawings of Inner Triangulated Plane Graphs

Kazuyuki Miura ${ }^{1}$, Tetsuya Matsuno ${ }^{2}$, and Takao Nishizeki ${ }^{3}$
${ }^{1}$ Faculty of Symbiotic Systems Science
Fukushima University, Fukushima 960-1296, Japan
${ }^{2,3}$ Graduate School of Information Sciences
Tohoku University, Sendai 980-8579, Japan
miura@sss.fukushima-u.ac.jp
matsuno@nishizeki.ecei.tohoku.ac.jp
nishi@ecei.tohoku.ac.jp

Abstract

A straight-line drawing of a plane graph is called an open rectangle-of-influence drawing if there is no vertex in the proper inside of the axis-parallel rectangle defined by the two ends of every edge. In an inner triangulated plane graph, every inner face is a triangle although the outer face is not always a triangle. In this paper, we first obtain a sufficient condition for an inner triangulated plane graph G to have an open rectangle-of-influence drawing; the condition is expressed in terms of a labeling of angles of a subgraph of G. We then present an $O\left(n^{1.5} / \log n\right)$-time algorithm to examine whether G satisfies the condition and, if so, construct an open rectangle-of-influence drawing of G on an $(n-1) \times(n-1)$ integer grid, where n is the number of vertices in G.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due to their broad applications, and as a consequence, a number of drawing methods have come out [13|4|5612|1314|15]. The most typical drawing of a plane graph G is a straight-line drawing in which all vertices of G are drawn as points and all edges are drawn as straight-line segments without any edge-intersection. A straight-line drawing is called a grid drawing if all vertices are put on grid points of integer coordinates. Figure 1 depicts three grid drawings of the same graph.

In this paper, we deal with a type of a grid drawing under an additional constraint, known as a "rectangle-of-influence drawing" 11]. A rectangle-of-influence of an edge e is an axis-parallel rectangle having e as one of its diagonals. In each of Figs. 1 (a)-(c) a rectangle-of-influence is shaded for an edge $e=(u, v)$ drawn by a thick line. We call a grid drawing a rectangle-of-influence drawing (or simply an RI-drawing) if there is no vertex in a rectangle-of-influence of any edge. Figures 1(a) and (b) depict RI-drawings, while Fig. (c) depicts a grid drawing which is not an RI-drawing. An RI-drawing often looks pretty, since vertices tend to be separated from edges.

Fig. 1. (a) A closed RI-drawing, (b) an open RI-drawing, and (c) a non-RI-drawing of an inner triangulated plane graph without filled 3-cycles

A rectangle-of-influence of an edge e is closed if it contains the boundary of a rectangle, and is open if it does not contain the boundary. In a closed RIdrawing every rectangle-of-influence is regarded as a closed one, while in an open RI-drawing every rectangle-of-influence is regarded as an open one. In a closed RI-drawing, there is no vertex except the ends not only in the proper inside of a rectangle-of-influence of each edge but also on the boundary, as illustrated in Fig. $\mathbb{1}(\mathrm{a})$. In an open RI-drawing, there may be a vertex other than the ends on the boundary of a rectangle, as illustrated in Fig. 1 (b). Thus a closed RIdrawing is an open RI-drawing, but an open RI-drawing is not always a closed RI-drawing.

Biedl et al. [1] showed that a plane graph G has a closed RI-drawing if and only if G has no filled 3 -cycle, that is, a cycle of three vertices such that there is a vertex in the proper inside. They also presented a linear-time algorithm to find a closed RI-drawing of G on an $(n-1) \times(n-1)$ grid if G has no filled 3-cycle, where n is the number of vertices in G. It is also known that every 4-connected plane graph with four or more vertices on the outer facial cycle has an open RI-drawing on a smaller grid, that is, a $W \times H$ grid with $W+H \leq n$, and such a drawing can be found in linear time [12], where W and H are the width and height of an integer grid, respectively. A plane graph G may have an open RI-drawing even if G has a filled 3 -cycle. However, a necessary and sufficient condition for an open RI-drawing has not been known.

In a triangulated plane graph, all facial cycles are 3-cycles. In an inner triangulated plane graph, all inner facial cycles are 3 -cycles although the outer facial cycle is not necessarily a 3 -cycle, as illustrated in Fig. 2(a). Every plane graph can be augmented to an inner triangulated plane graph under some constraint [2].

In this paper we deal with open RI-drawings of triangulated plane graphs and inner triangulated plane graphs. We first show that one can decide in linear time whether a given triangulated plane graph G has an open RI-drawing, and that if G has such a drawing then it can be constructed in linear time on a $W \times H$

Fig. 2. (a) An inner triangulated plane graph G with two maximal filled 3-cycles C_{1} and C_{2}, (b) an open RI-drawing of G, and (c) a graph G^{*} without filled 3-cycles
grid with $W+H=n$, where n is the number of vertices in G. (See Fig. 3.) We then obtain a sufficient condition for an inner triangulated plane graph G to have an open RI-drawing. (See Figs. 2(a) and (b).) Our condition is expressed in terms of a labeling of angles of a subgraph G^{*} of G with integers $0,1,2,3$ and 4 , where G^{*} is obtained from G by removing all vertices and edges in the proper inside of every maximal filled 3 -cycle of G. Figure 2(c) depicts G^{*} for G in Fig. 2(a). Note that G^{*} is an inner triangulated plane graph. We also present an $O\left(n^{1.5} / \log n\right)$-time algorithm to examine whether G satisfies the condition and, if so, construct an open RI-drawing of G on an $(n-1) \times(n-1)$ grid. The complexity $O\left(n^{1.5} / \log n\right)$ is due to a step where the algorithm finds a perfect matching in a bipartite graph. It would be interesting to know if the complexity can be improved. In the case where G has no filled 3-cycle, our algorithm provides a closed RI-drawing of G. It is an alternative algorithm to the algorithm of Biedl et al. [1] for the family of inner triangulated plane graphs with no filled 3-cycle.

Fig. 3. (a) A triangulated plane graph G, and (b) an open RI-drawing D of G

2 Drawing Triangulated Plane Graphs

Suppose that G is a triangulated plane graph with four or more vertices as illustrated in Fig. 3(a), and that G has an open RI-drawing D as illustrated in

Fig. [3(b). The outer facial cycle $C=u v w$ of G is a filled 3-cycle, and is drawn as a triangle T in D. A straight-line segment is oblique if it is neither horizontal nor vertical. Two or three sides of T are oblique; otherwise, T has exactly one oblique side, and hence T is a right-angled triangle having both a vertical side and a horizontal side; since the proper inside of such a triangle T is covered by the open rectangle-of-influence of the oblique side, the inner vertices of G could not be drawn. Thus there are the following three cases to consider.
(a) Two sides of T are oblique and the other side is horizontal, as illustrated in Fig. 4(a);
(b) Two sides of T are oblique and the other side is vertical, as illustrated in Fig. 4(b); and
(c) all the three sides of T are oblique, as illustrated in Fig. 4(c).

Only the line segments in T drawn by thick lines in Figs. 4(a)-(c) are not covered by the open rectangle-of-influences of three edges of C. Therefore, all inner vertices of G must be located on the thick line segments in Figs. 4 (a)-(c). Thus one can know that the graph G and the drawing D must have the structure illustrated in Fig. 4(f). More precisely, one of the three vertices u, v and w of C, say w, is adjacent to all the other vertices $z_{1}, z_{2}, \cdots, z_{n-1}$ in G. One may assume that $z_{1}=v, z_{n-1}=u$, and $z_{1}, z_{2}, \cdots, z_{n-1}$ is a path in the triangulated plane graph G. Then, for some index $c, 2 \leq c \leq n-2$, every edge of G, that is neither incident to w nor on the path $z_{1}, z_{2}, \cdots, z_{n-1}$, joins vertices z_{i} and z_{j} with $1 \leq i<c<j \leq n-1$. The drawings in Figs. 4(d) and (e) are particular cases in which exactly two of the three outer vertices, say v and w, are adjacent to all the other vertices in G and hence $c=2$. Note that $G=K_{4}$ if each of u, v and w is adjacent to all the other vertices in G.

Conversely, if G has the structure above, illustrated in Fig. 4(f), then G has an open RI-drawing on a $W \times H$ grid such that $W+H=n$. Note that $W=n-c$ and $H=c$ for the index c above.

We thus have the following theorem.
Theorem 1. One can decide in linear time whether a given triangulated plane graph G has an open RI-drawing or not. If G has such a drawing, then it can be constructed in linear time on a $W \times H$ grid such that $W+H=n$.

3 Drawing Inner Triangulated Plane Graphs

In this section, we first present a sufficient condition for an inner triangulated plane graph G to have an open RI-drawing, and then give an algorithm to examine whether G satisfies the condition and, if so, construct an open RIdrawing of G. We may assume that G is 2 -connected.

3.1 Sufficient Condition

If G has no filled 3-cycle, then G has a closed RI-drawing [1], which is an open RI-drawing. Therefore, we may assume without loss of generality that G has

Fig. 4. (a)-(c) Three shapes of triangle T, and (d)-(f) graphs G and drawings D
filled 3-cycles. Let $C_{1}, C_{2}, \cdots, C_{k}, k \geq 1$, be the maximal filled 3-cycles of G. The plane graph G in Fig. 2(a) has two maximal filled 3-cycles C_{1} and C_{2} drawn by thick lines, and hence $k=2$. We denote by $G\left(C_{i}\right)$ the inside graph induced by the vertices of C_{i} and the vertices inside $C_{i} . G\left(C_{i}\right)$ is a triangulated plane graph. (Figure 3(a) depicts $G\left(C_{1}\right)$ for the graph G and a maximal filled 3-cycle C_{1} in Fig. [2(a).) One may assume without loss of generality that the inside graph $G\left(C_{i}\right)$ for every maximal filled 3-cycle C_{i} has an open RI-drawing; otherwise, G has no open RI-drawing.

One can transform an arbitrary open RI-drawing of G in a way that every edge of G^{*} is oblique. (The proof is omitted in this extended abstract.) Thus, one may assume without loss of generality that, in an open RI-drawing D of G, every edge of G^{*} is oblique, as illustrated in Fig. 2(b). A vertex on the outer facial cycle of G^{*} is called an outer vertex, while a vertex not on the outer facial cycle is called an inner vertex. An angle of (a polygonal drawing of) a face of G^{*} is called an angle of G^{*}. (See Fig. 7.) An angle of an inner face is called an inner angle, while an angle of the outer face is called an outer angle. At each vertex v in G^{*}, draw two lines, one with slope 0 and one with slope ∞, as illustrated in Fig. 5. These two lines define four half-lines at v. We say that an angle at v contains a number i of the four half-lines, $0 \leq i \leq 4$, if the region of the plane defined by that angle contains i half-lines at v. Thus, in Fig. 5, angles $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} contain $0,1,2$ and 1 half-lines, respectively. In Fig. 6] the outer angles of outer vertices $v_{i}, 0 \leq i \leq 4$, contains i half-lines.

Our condition is expressed in terms of a labeling of G^{*}. A labeling L^{*} of G^{*} is an assignment of label $0,1,2,3$ or 4 to each angle of G^{*}, as illustrated in Fig. 7(a).

Fig. 5. Angles $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3}

Fig. 6. Non-convex outer polygon

Label $i, 0 \leq i \leq 4$, means that the angle with label i contains i half-lines. We say that a grid drawing D^{*} of G^{*} realizes the labeling L^{*} if every angle labeled i by L^{*} contains i half-lines in D^{*} for each $i, 0 \leq i \leq 4$. For a grid drawing D^{*} of G^{*}, we denote by $L\left(D^{*}\right)$ the labeling of G^{*} induced by D^{*}.

Let D^{*} be a drawing of G^{*} in an open RI-drawing D of G, and let $L\left(D^{*}\right)$ be a labeling of G^{*} induced by D^{*}. Clearly $L\left(D^{*}\right)$ satisfies the following condition:

Fig. 7. (a) A good labeling L^{*} of G^{*}, and (b) a good open RI-drawing D^{*} of G^{*} realizing L^{*}
(a) For each vertex v of G^{*}, the labels around v total to 4 .

We now claim that $L\left(D^{*}\right)$ satisfies the following condition:
(b) Every inner facial 3-cycle C of G^{*} has labels 0,1 and 1 . If C is a maximal filled 3-cycle in G, then the vertex labeled 0 in C is adjacent to all the other vertices of the inside graph $G(C)$ of C; (See Fig. 8.)

Since every edge of G^{*} is oblique in D^{*}, every inner facial 3-cycle C of G^{*} is drawn as a triangle T having three oblique sides. Furthermore, two angles in C

Fig. 8. Labelings of (a) a non-filled 3-cycle C and (b) a filled 3 -cycle C
contain exactly one half-line and the other angle does not contain any half-line as illustrated in Fig. 8 (b); if an angle in C contains two half-lines, then the vertex of the angle would be in the proper inside of the rectangle-of-influence of the longest edge of T as illustrated in Fig. 9. Hence C has labels 0,1 and 1 in the labeling $L\left(D^{*}\right)$. If C is a maximal filled 3-cycle in G, then $G(C)$ is a triangulated plane graph and the vertex of C labeled 0 is adjacent to all the other vertices of $G(C)$ as shown in Section 2, Thus $L\left(D^{*}\right)$ satisfies Condition (b).

Thus it is necessary for G to have an open RI-drawing that G^{*} has a labeling satisfying Conditions (a) and (b). However, the converse is not true. We will show in Section 3.2 that G has an open RI-drawing if G^{*} has a labeling satisfying Conditions (a), (b) and the following additional condition:
(c) Every outer angle has label 2, 3 or 4 .

A labeling of G^{*} satisfying Conditions (a)-(c) is called a good labeling. (The good labeling has a close relation with the regular edge-labeling of Kant and He [10].) We thus have the following theorem.

Theorem 2. An inner triangulated plane graph G has an open RI-drawing if G^{*} has a good labeling.

One may prefer to draw the outer facial cycle of G as a convex polygon, for which each outer angle contains two, three or four half-lines. We say that an open RI-drawing D of G is good if each outer angle contains two, three or four half-lines. For example, the drawings in Figs. [1(a), [1(b), 2(b) and 3(b) are good open RI-drawings, while an open RI-drawing having the non-convex outer facial polygon in Fig. 6 is not good. It should be noted that the outer facial polygon of a good open RI-drawing is not necessary a convex polygon. Indeed our result implies that G has a good open RI-drawing if and only if G^{*} has a good labeling.

3.2 Computing an Open RI-Drawing from a Good Labeling

Suppose that G^{*} has a good labeling L^{*} as illustrated in Fig. 7(a). Remember that we assume that each triangulated plane graph $G\left(C_{i}\right)$ has an open

RI-drawing. We first obtain an open RI-drawing D_{i} of each $G\left(C_{i}\right)$ as in Section 2. We then construct an open RI-drawing D^{*} of G^{*} from L^{*}, as illustrated in Fig. 7 (b). We finally embed in D^{*} each drawing D_{i} after adjusting the size of D_{i} to the triangular drawing of C_{i} in D^{*}, as illustrated in Fig. 2(b). We claim that the resulting drawing is an open RI-drawing of G.

Our algorithm for constructing D^{*} from L^{*} consists of the following three steps.
(Step 1) Directing each edge (u, v) of G^{*}, we construct a directed graph G_{x} as illustrated in Fig. 10(a); $u \rightarrow v$ if $x(u)<x(v)$ must hold in an open RI-drawing D^{*} of G^{*} realizing the labeling L^{*}, where $x(u)$ and $x(v)$ are x-coordinates of u and v, respectively. Similarly, we construct a directed graph G_{y} as illustrated in Fig. 10 (c). More precisely, we construct G_{x} and G_{y} as follows.

Let v_{1} and v_{2} be any two outer vertices consecutively appearing clockwise on the outer facial cycle of G^{*}. A drawing obtained from an open RI-drawing D^{*} of G by rotating it $90^{\circ}, 180^{\circ}$ or 270° is also an open RI-drawing. Therefore, one may assume without loss of generality that $x\left(v_{1}\right)<x\left(v_{2}\right)$ and $y\left(v_{1}\right)<y\left(v_{2}\right)$ in D^{*}. Let $C=v_{1} v_{2} v_{3}$ be the inner facial 3-cycle of G^{*} having the edge $\left(v_{1}, v_{2}\right)$. Then the good labeling L^{*} assigns label 0 to one of the vertices v_{1}, v_{2} and v_{3} of C and assigns label 1 to the other two vertices. If v_{1} has label 0 , then we decide that $x\left(v_{1}\right)<x\left(v_{2}\right)<x\left(v_{3}\right)$ and $y\left(v_{1}\right)<y\left(v_{3}\right)<y\left(v_{2}\right)$ and hence $v_{1} \rightarrow v_{2}$, $v_{1} \rightarrow v_{3}$ and $v_{2} \rightarrow v_{3}$ in G_{x} and $v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}$ and $v_{3} \rightarrow v_{2}$ in G_{y}, as illustrated in Fig. 11(a). If v_{2} has label 0 , then we decide that $v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}$ and $v_{3} \rightarrow v_{2}$ in G_{x} and $v_{3} \rightarrow v_{1}, v_{3} \rightarrow v_{2}$ and $v_{1} \rightarrow v_{2}$ in G_{y}. If v_{3} has label 0 , then we decide that $v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}$ and $v_{2} \rightarrow v_{3}$ in G_{x} and $v_{3} \rightarrow v_{1}, v_{3} \rightarrow v_{2}$ and $v_{1} \rightarrow v_{2}$ in G_{y}. Thus we direct each edge of C for G_{x} and G_{y}. We then direct the edges of each inner facial 3 -cycle sharing an edge with C for G_{x} and G_{y}. Repeating the operation for each inner facial 3-cycle of G, we obtain a directed graph G_{x} and G_{y}. One can show that each of G_{x} and G_{y} is acyclic and has exactly one vertex of in-degree zero, and every other vertex has in-degree one or more. (Condition (c) is crucial in this proof, which is omitted in this extended abstract, due to the page limitation.)
(Step 2) For each edge $e=u \rightarrow v$ of G_{x}, we assign an integer weight $w(e)$ to e. The weight $w(e)$ implies that $x(u)+w(e) \leq x(v)$ in D^{*}. We decide $w(e)$ as follows. If an inner facial cycle C of G^{*} is not filled in G, then we give, as a weight $w(e)$, either 1 or 2 to each edge e of C, as illustrated in Fig. 11(a). If C is filled in G, then we assign a weight $w(e)$ to each edge e of C, as illustrated in Fig. 11(b); the value $w(e)$ depends on both the number of vertices in $G(C)$ and the index c in Section 2. Since each inner edge e receives two weights from the two facial cycles containing e, we assign e the larger one as $w(e)$.
(Step 3) Let s_{x} be the source of G_{x}, that is, the vertex having in-degree zero. Since G_{x} is acyclic and every vertex u other than s_{x} has in-degree one or more, one can find in linear time the longest path from s_{x} to each vertex u in G_{x}. We decide the x-coordinate $x(u)$ of u to be the length of the longest path. Similarly, we compute the y-coordinate $y(u)$. Thus we obtain a drawing D^{*} of G^{*}, as illustrated in Fig. 7(b).

Fig. 10. (a) Directed graph G_{x}, (b) directed graph G_{y}, (c) weights in G_{x}, and (d) weights in G_{y}

In order to verify Theorem 2 it suffices to prove that the drawing D^{*} realizes a given good labeling L^{*} of G^{*}, that is, $L\left(D^{*}\right)=L^{*}$, and that the drawing D obtained from D^{*} and D_{i} is a good open RI-drawing of G. The proof is omitted in this extended abstract, due to the page limitation. One can easily show that D is drawn on an $(n-1) \times(n-1)$ grid.

One can construct in linear time a good open RI-drawing D^{*} of G^{*} from a given good labeling L^{*} of G^{*}. Therefore, one can construct a good open RIdrawing D of G from L^{*} in linear time.

3.3 Algorithm for Computing a Good Labeling

In this subsection we show how to find a good labeling of G^{*}.
We assign each angle of G^{*} with label $0,1, x$ or y as illustrated in Fig. 12 (a). Labels x and y are undecided at this moment; x will be decided to be 0 or 1 and y to be 2,3 or 4 . For every inner facial 3 -cycle C of G^{*} that is not filled in G, we assign a label x to each of the three angles in C. For every inner facial 3-cycle $C=u v w$ of G^{*} that is filled in G, we assign labels as follows: if exactly

Fig. 11. Directions and weights $w(e)$ of edges e in G_{x} and G_{y}; (a) non-filled 3-cycle C, and (b) filled 3-cycle C
one of u, v and w is adjacent to all the other vertices of $G(C)$ as the case of C_{1} in Fig. [2(a), then we assign 0 to the vertex and assign 1 to each of the other two vertices; if exactly two are adjacent to all the other vertices of $G(C)$ as the case of C_{2} in Fig. 2(a), then we assign label x to each of them and assign 1 to the other; if each of u, v and w is adjacent to all the other vertices of $G(C)$, then $G(C)=K_{4}$ and hence we assign a label x to each of u, v and w. We finally assign a label y to each of the outer angles. Our problem is to determine values of all x 's and y 's so that the resulting labeling of G^{*} satisfies Conditions (a)-(c).

Let G_{f} be a new graph constructed from G^{*} as illustrated in Fig. 12(b). (The detailed construction is omitted in this extended abstract.) Let f be an appropriately chosen function $V\left(G_{f}\right) \rightarrow\{0,1, \cdots, 4\} ; f(v)$ is attached to each vertex v in Fig. 12(b). An f-factor of G_{f}, drawn by solid lines in Fig. 12(b), is a spanning subgraph of G_{f} in which each vertex v has degree $f(v)$ 7]. We can show that G^{*} has a good labeling, as illustrated in Fig. 12 (d), if and only if G_{f} has an f-factor.

Let G_{d} be a new graph constructed from G_{f} and f, as illustrated in Fig. 12(c). We can show that G_{f} has an f-factor if and only if G_{d} has a perfect matching. A perfect matching of G_{d} is drawn by thick lines in Fig. 12(c). Since G_{d} is a bipartite graph and has $O(n)$ vertices and edges, one can determine in time $O\left(n^{1.5} / \log n\right)$ whether G_{d} has a perfect matching 89].

One can construct a good labeling of G^{*} from an f-factor of G_{f} or a perfect matching of G_{d} in linear time. We thus have the following theorem.

Theorem 3. For an inner triangulated plane graph G, one can determine whether G^{*} has a good labeling and, if so, compute a good labeling L^{*} of G^{*} in
time $O\left(n^{1.5} / \log n\right)$. From L^{*} one can construct an open RI-drawing of G on an $(n-1) \times(n-1)$ grid in linear time.

Fig. 12. (a) A labeling of G^{*} by labels $0,1, x$ and y, (b) an f-factor of G_{f}, (c) a perfect matching of a decision graph G_{d}, and (d) a good labeling of G^{*}

References

1. T. Biedl, A. Bretscher and H. Meijer, Rectangle of influence drawings of graphs without filled 3-cycles, Proceedings of Graph Drawing 1999, LNCS 1731, Springer, pp. 359-368, 2000.
2. T. Biedl, G. Kant, and M. Kaufmann, On triangulating planar graphs under the four-connectivity constraint, Algorithmica, 19, 4, pp. 427-446, 1997.
3. M. Chrobak and G. Kant, Convex grid darwings of 3-connected planar graphs, Int. J. Comput. Geom Appl., 7, 3, pp. 211-223, 1997.
4. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice-Hall, Upper Saddle River, NJ 07458, 1999.
5. G. Di Battista, W. Lenhart and G. Liotta, Proximity drawability:A survey, Proc. Graph Drawing 1994, Lect. Note in Computer Science, LNCS, Number 894, pp. 328339, Springer-Verlag, 1995.
6. H. de Fraysseix, J. Pach, R. Pollack, How to draw a graph on a grid, Combinatorica, 10, pp. 41-51, 1990.
7. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
8. D. S. Hochbaum, Faster pseudoflow-based algorithms for the bipartite matching and the closure problems, Abstract, CORS/SCRO-INFORMS Joint Int. Meeting, Banff, Canada, p. 46, May 16-19, 2004.
9. D. S. Hochbaum and B. G. Chandran, Further below the flow decomposition barrier of maximum flow for bipartite matching and maximum closure, Working paper, 2004.
10. G. Kant and X. He, Regular edge-labeling of 4-connected plane graphs and its applications in graph drawing problems, Theoretical Computer Science, 172, pp.175-193, 1997.
11. G. Liotta, A. Lubiw, H. Meijer and S. H. Whitesides, The rectangle of influence drawability problem, Comput. Geom. Theory and Applications, 10, 1, pp.1-22, 1998.
12. K. Miura and T. Nishizeki, Rectangle-of-influence drawings of four-connected plane graphs, Proc. of Information Visualisation 2005, Asia-Pacific Symposium on Information Visualisation (APVIS2005), ACS Vol 45, pp.71-76, 2005.
13. K. Miura, S. Nakano and T. Nishizeki, Grid drawings of four-connected plane graphs, Discrete \& Computational Geometry, 26, 1, pp.73-87, 2001.
14. T. Nishizeki and Md. S. Rahman, Planar Graph Drawing, World Scientific, Singapore, 2004.
15. W. Schnyder, Embedding planar graphs in the grid, Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, San Francisco, pp.138-147, 1990.
