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Abstract. A straight-line drawing of a plane graph is called an open
rectangle-of-influence drawing if there is no vertex in the proper inside
of the axis-parallel rectangle defined by the two ends of every edge. In
an inner triangulated plane graph, every inner face is a triangle although
the outer face is not always a triangle. In this paper, we first obtain
a sufficient condition for an inner triangulated plane graph G to have
an open rectangle-of-influence drawing; the condition is expressed in
terms of a labeling of angles of a subgraph of G. We then present an
O(n1.5/log n)-time algorithm to examine whether G satisfies the condi-
tion and, if so, construct an open rectangle-of-influence drawing of G on
an (n − 1) × (n − 1) integer grid, where n is the number of vertices in G.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [1,3,4,5,6,12,13,14,15]. The most typical drawing of a plane graph
G is a straight-line drawing in which all vertices of G are drawn as points and
all edges are drawn as straight-line segments without any edge-intersection. A
straight-line drawing is called a grid drawing if all vertices are put on grid points
of integer coordinates. Figure 1 depicts three grid drawings of the same graph.

In this paper, we deal with a type of a grid drawing under an additional con-
straint, known as a “rectangle-of-influence drawing” [11]. A rectangle-of-influence
of an edge e is an axis-parallel rectangle having e as one of its diagonals. In each
of Figs. 1(a)–(c) a rectangle-of-influence is shaded for an edge e = (u, v) drawn
by a thick line. We call a grid drawing a rectangle-of-influence drawing (or sim-
ply an RI-drawing) if there is no vertex in a rectangle-of-influence of any edge.
Figures 1(a) and (b) depict RI-drawings, while Fig. 1(c) depicts a grid drawing
which is not an RI-drawing. An RI-drawing often looks pretty, since vertices
tend to be separated from edges.
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Fig. 1. (a) A closed RI-drawing, (b) an open RI-drawing, and (c) a non-RI-drawing of
an inner triangulated plane graph without filled 3-cycles

A rectangle-of-influence of an edge e is closed if it contains the boundary of
a rectangle, and is open if it does not contain the boundary. In a closed RI-
drawing every rectangle-of-influence is regarded as a closed one, while in an open
RI-drawing every rectangle-of-influence is regarded as an open one. In a closed
RI-drawing, there is no vertex except the ends not only in the proper inside of
a rectangle-of-influence of each edge but also on the boundary, as illustrated in
Fig. 1(a). In an open RI-drawing, there may be a vertex other than the ends
on the boundary of a rectangle, as illustrated in Fig. 1(b). Thus a closed RI-
drawing is an open RI-drawing, but an open RI-drawing is not always a closed
RI-drawing.

Biedl et al. [1] showed that a plane graph G has a closed RI-drawing if and
only if G has no filled 3-cycle, that is, a cycle of three vertices such that there is
a vertex in the proper inside. They also presented a linear-time algorithm to find
a closed RI-drawing of G on an (n − 1) × (n − 1) grid if G has no filled 3-cycle,
where n is the number of vertices in G. It is also known that every 4-connected
plane graph with four or more vertices on the outer facial cycle has an open
RI-drawing on a smaller grid, that is, a W × H grid with W + H ≤ n, and
such a drawing can be found in linear time [12], where W and H are the width
and height of an integer grid, respectively. A plane graph G may have an open
RI-drawing even if G has a filled 3-cycle. However, a necessary and sufficient
condition for an open RI-drawing has not been known.

In a triangulated plane graph, all facial cycles are 3-cycles. In an inner trian-
gulated plane graph, all inner facial cycles are 3-cycles although the outer facial
cycle is not necessarily a 3-cycle, as illustrated in Fig. 2(a). Every plane graph
can be augmented to an inner triangulated plane graph under some constraint
[2].

In this paper we deal with open RI-drawings of triangulated plane graphs and
inner triangulated plane graphs. We first show that one can decide in linear time
whether a given triangulated plane graph G has an open RI-drawing, and that
if G has such a drawing then it can be constructed in linear time on a W × H
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Fig. 2. (a) An inner triangulated plane graph G with two maximal filled 3-cycles C1

and C2, (b) an open RI-drawing of G, and (c) a graph G∗ without filled 3-cycles

grid with W + H = n, where n is the number of vertices in G. (See Fig. 3.)
We then obtain a sufficient condition for an inner triangulated plane graph G to
have an open RI-drawing. (See Figs. 2(a) and (b).) Our condition is expressed
in terms of a labeling of angles of a subgraph G∗ of G with integers 0, 1, 2, 3
and 4, where G∗ is obtained from G by removing all vertices and edges in the
proper inside of every maximal filled 3-cycle of G. Figure 2(c) depicts G∗ for G
in Fig. 2(a). Note that G∗ is an inner triangulated plane graph. We also present
an O(n1.5/ logn)-time algorithm to examine whether G satisfies the condition
and, if so, construct an open RI-drawing of G on an (n − 1) × (n − 1) grid. The
complexity O(n1.5/ logn) is due to a step where the algorithm finds a perfect
matching in a bipartite graph. It would be interesting to know if the complexity
can be improved. In the case where G has no filled 3-cycle, our algorithm provides
a closed RI-drawing of G. It is an alternative algorithm to the algorithm of Biedl
et al. [1] for the family of inner triangulated plane graphs with no filled 3-cycle.

W+ H = n

u

v

w w

v

u

(a) (b)
W
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C

T

Fig. 3. (a) A triangulated plane graph G, and (b) an open RI-drawing D of G

2 Drawing Triangulated Plane Graphs

Suppose that G is a triangulated plane graph with four or more vertices as
illustrated in Fig. 3(a), and that G has an open RI-drawing D as illustrated in
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Fig. 3(b). The outer facial cycle C = uvw of G is a filled 3-cycle, and is drawn
as a triangle T in D. A straight-line segment is oblique if it is neither horizontal
nor vertical. Two or three sides of T are oblique; otherwise, T has exactly one
oblique side, and hence T is a right-angled triangle having both a vertical side
and a horizontal side; since the proper inside of such a triangle T is covered by
the open rectangle-of-influence of the oblique side, the inner vertices of G could
not be drawn. Thus there are the following three cases to consider.

(a) Two sides of T are oblique and the other side is horizontal, as illustrated
in Fig. 4(a);

(b) Two sides of T are oblique and the other side is vertical, as illustrated in
Fig. 4(b); and

(c) all the three sides of T are oblique, as illustrated in Fig. 4(c).

Only the line segments in T drawn by thick lines in Figs. 4(a)–(c) are not
covered by the open rectangle-of-influences of three edges of C. Therefore, all
inner vertices of G must be located on the thick line segments in Figs. 4(a)–(c).
Thus one can know that the graph G and the drawing D must have the structure
illustrated in Fig. 4(f). More precisely, one of the three vertices u, v and w of
C, say w, is adjacent to all the other vertices z1, z2, · · · , zn−1 in G. One may
assume that z1 = v, zn−1 = u, and z1, z2, · · · , zn−1 is a path in the triangulated
plane graph G. Then, for some index c, 2 ≤ c ≤ n − 2, every edge of G, that
is neither incident to w nor on the path z1, z2, · · · , zn−1, joins vertices zi and zj

with 1 ≤ i < c < j ≤ n − 1. The drawings in Figs. 4(d) and (e) are particular
cases in which exactly two of the three outer vertices, say v and w, are adjacent
to all the other vertices in G and hence c = 2. Note that G = K4 if each of u, v
and w is adjacent to all the other vertices in G.

Conversely, if G has the structure above, illustrated in Fig. 4(f), then G has
an open RI-drawing on a W ×H grid such that W +H = n. Note that W = n−c
and H = c for the index c above.

We thus have the following theorem.

Theorem 1. One can decide in linear time whether a given triangulated plane
graph G has an open RI-drawing or not. If G has such a drawing, then it can be
constructed in linear time on a W × H grid such that W + H = n.

3 Drawing Inner Triangulated Plane Graphs

In this section, we first present a sufficient condition for an inner triangulated
plane graph G to have an open RI-drawing, and then give an algorithm to
examine whether G satisfies the condition and, if so, construct an open RI-
drawing of G. We may assume that G is 2-connected.

3.1 Sufficient Condition

If G has no filled 3-cycle, then G has a closed RI-drawing [1], which is an open
RI-drawing. Therefore, we may assume without loss of generality that G has
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Fig. 4. (a)–(c) Three shapes of triangle T , and (d)–(f) graphs G and drawings D

filled 3-cycles. Let C1, C2, · · · , Ck, k ≥ 1, be the maximal filled 3-cycles of G.
The plane graph G in Fig. 2(a) has two maximal filled 3-cycles C1 and C2 drawn
by thick lines, and hence k = 2. We denote by G(Ci) the inside graph induced
by the vertices of Ci and the vertices inside Ci. G(Ci) is a triangulated plane
graph. (Figure 3(a) depicts G(C1) for the graph G and a maximal filled 3-cycle
C1 in Fig. 2(a).) One may assume without loss of generality that the inside graph
G(Ci) for every maximal filled 3-cycle Ci has an open RI-drawing; otherwise, G
has no open RI-drawing.

One can transform an arbitrary open RI-drawing of G in a way that every
edge of G∗ is oblique. (The proof is omitted in this extended abstract.) Thus,
one may assume without loss of generality that, in an open RI-drawing D of G,
every edge of G∗ is oblique, as illustrated in Fig. 2(b). A vertex on the outer
facial cycle of G∗ is called an outer vertex, while a vertex not on the outer facial
cycle is called an inner vertex. An angle of (a polygonal drawing of) a face of G∗

is called an angle of G∗. (See Fig. 7.) An angle of an inner face is called an inner
angle, while an angle of the outer face is called an outer angle. At each vertex
v in G∗, draw two lines, one with slope 0 and one with slope ∞, as illustrated
in Fig. 5. These two lines define four half-lines at v. We say that an angle at v
contains a number i of the four half-lines, 0 ≤ i ≤ 4, if the region of the plane
defined by that angle contains i half-lines at v. Thus, in Fig. 5, angles α0, α1, α2
and α3 contain 0,1,2 and 1 half-lines, respectively. In Fig. 6, the outer angles of
outer vertices vi, 0 ≤ i ≤ 4, contains i half-lines.

Our condition is expressed in terms of a labeling of G∗. A labeling L∗ of G∗ is
an assignment of label 0,1,2,3 or 4 to each angle of G∗, as illustrated in Fig. 7(a).
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Fig. 6. Non-convex outer polygon

Label i, 0 ≤ i ≤ 4, means that the angle with label i contains i half-lines. We
say that a grid drawing D∗ of G∗ realizes the labeling L∗ if every angle labeled
i by L∗ contains i half-lines in D∗ for each i, 0 ≤ i ≤ 4. For a grid drawing D∗

of G∗, we denote by L(D∗) the labeling of G∗ induced by D∗.
Let D∗ be a drawing of G∗ in an open RI-drawing D of G, and let L(D∗) be

a labeling of G∗ induced by D∗. Clearly L(D∗) satisfies the following condition:
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Fig. 7. (a) A good labeling L∗ of G∗, and (b) a good open RI-drawing D∗ of G∗

realizing L∗

(a) For each vertex v of G∗, the labels around v total to 4.

We now claim that L(D∗) satisfies the following condition:

(b) Every inner facial 3-cycle C of G∗ has labels 0, 1 and 1. If C is a maximal
filled 3-cycle in G, then the vertex labeled 0 in C is adjacent to all the other
vertices of the inside graph G(C) of C; (See Fig. 8.)

Since every edge of G∗ is oblique in D∗, every inner facial 3-cycle C of G∗ is
drawn as a triangle T having three oblique sides. Furthermore, two angles in C
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contain exactly one half-line and the other angle does not contain any half-line
as illustrated in Fig. 8(b); if an angle in C contains two half-lines, then the vertex
of the angle would be in the proper inside of the rectangle-of-influence of the
longest edge of T as illustrated in Fig. 9. Hence C has labels 0, 1 and 1 in the
labeling L(D∗). If C is a maximal filled 3-cycle in G, then G(C) is a triangulated
plane graph and the vertex of C labeled 0 is adjacent to all the other vertices of
G(C) as shown in Section 2. Thus L(D∗) satisfies Condition (b).

Thus it is necessary for G to have an open RI-drawing that G∗ has a labeling
satisfying Conditions (a) and (b). However, the converse is not true. We will
show in Section 3.2 that G has an open RI-drawing if G∗ has a labeling satisfying
Conditions (a), (b) and the following additional condition:

(c) Every outer angle has label 2, 3 or 4.

A labeling of G∗ satisfying Conditions (a)–(c) is called a good labeling. (The good
labeling has a close relation with the regular edge-labeling of Kant and He [10].)
We thus have the following theorem.

Theorem 2. An inner triangulated plane graph G has an open RI-drawing if
G∗ has a good labeling.

One may prefer to draw the outer facial cycle of G as a convex polygon, for
which each outer angle contains two, three or four half-lines. We say that an
open RI-drawing D of G is good if each outer angle contains two, three or four
half-lines. For example, the drawings in Figs. 1(a), 1(b), 2(b) and 3(b) are good
open RI-drawings, while an open RI-drawing having the non-convex outer facial
polygon in Fig. 6 is not good. It should be noted that the outer facial polygon
of a good open RI-drawing is not necessary a convex polygon. Indeed our result
implies that G has a good open RI-drawing if and only if G∗ has a good labeling.

3.2 Computing an Open RI-Drawing from a Good Labeling

Suppose that G∗ has a good labeling L∗ as illustrated in Fig. 7(a). Remem-
ber that we assume that each triangulated plane graph G(Ci) has an open
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RI-drawing. We first obtain an open RI-drawing Di of each G(Ci) as in Sec-
tion 2. We then construct an open RI-drawing D∗ of G∗ from L∗, as illustrated
in Fig. 7(b). We finally embed in D∗ each drawing Di after adjusting the size of
Di to the triangular drawing of Ci in D∗, as illustrated in Fig. 2(b). We claim
that the resulting drawing is an open RI-drawing of G.

Our algorithm for constructing D∗ from L∗ consists of the following three
steps.

(Step 1) Directing each edge (u, v) of G∗, we construct a directed graph Gx as
illustrated in Fig. 10(a); u → v if x(u) < x(v) must hold in an open RI-drawing
D∗ of G∗ realizing the labeling L∗, where x(u) and x(v) are x-coordinates of u
and v, respectively. Similarly, we construct a directed graph Gy as illustrated in
Fig. 10(c). More precisely, we construct Gx and Gy as follows.

Let v1 and v2 be any two outer vertices consecutively appearing clockwise on
the outer facial cycle of G∗. A drawing obtained from an open RI-drawing D∗

of G by rotating it 90◦, 180◦ or 270◦ is also an open RI-drawing. Therefore, one
may assume without loss of generality that x(v1) < x(v2) and y(v1) < y(v2) in
D∗. Let C = v1v2v3 be the inner facial 3-cycle of G∗ having the edge (v1, v2).
Then the good labeling L∗ assigns label 0 to one of the vertices v1, v2 and v3 of
C and assigns label 1 to the other two vertices. If v1 has label 0, then we decide
that x(v1) < x(v2) < x(v3) and y(v1) < y(v3) < y(v2) and hence v1 → v2,
v1 → v3 and v2 → v3 in Gx and v1 → v2, v1 → v3 and v3 → v2 in Gy, as
illustrated in Fig. 11(a). If v2 has label 0, then we decide that v1 → v2, v1 → v3
and v3 → v2 in Gx and v3 → v1, v3 → v2 and v1 → v2 in Gy. If v3 has label 0,
then we decide that v1 → v2, v1 → v3 and v2 → v3 in Gx and v3 → v1, v3 → v2
and v1 → v2 in Gy. Thus we direct each edge of C for Gx and Gy. We then direct
the edges of each inner facial 3-cycle sharing an edge with C for Gx and Gy.
Repeating the operation for each inner facial 3-cycle of G, we obtain a directed
graph Gx and Gy. One can show that each of Gx and Gy is acyclic and has
exactly one vertex of in-degree zero, and every other vertex has in-degree one or
more. (Condition (c) is crucial in this proof, which is omitted in this extended
abstract, due to the page limitation.)

(Step 2) For each edge e = u → v of Gx, we assign an integer weight w(e)
to e. The weight w(e) implies that x(u) + w(e) ≤ x(v) in D∗. We decide w(e)
as follows. If an inner facial cycle C of G∗ is not filled in G, then we give, as a
weight w(e), either 1 or 2 to each edge e of C, as illustrated in Fig. 11(a). If C
is filled in G, then we assign a weight w(e) to each edge e of C, as illustrated in
Fig. 11(b); the value w(e) depends on both the number of vertices in G(C) and
the index c in Section 2. Since each inner edge e receives two weights from the
two facial cycles containing e, we assign e the larger one as w(e).

(Step 3) Let sx be the source of Gx, that is, the vertex having in-degree
zero. Since Gx is acyclic and every vertex u other than sx has in-degree one or
more, one can find in linear time the longest path from sx to each vertex u in
Gx. We decide the x-coordinate x(u) of u to be the length of the longest path.
Similarly, we compute the y-coordinate y(u). Thus we obtain a drawing D∗ of
G∗, as illustrated in Fig. 7(b).
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Fig. 10. (a) Directed graph Gx, (b) directed graph Gy , (c) weights in Gx, and (d)
weights in Gy

In order to verify Theorem 2, it suffices to prove that the drawing D∗ realizes
a given good labeling L∗ of G∗, that is, L(D∗) = L∗, and that the drawing D
obtained from D∗ and Di is a good open RI-drawing of G. The proof is omitted
in this extended abstract, due to the page limitation. One can easily show that
D is drawn on an (n − 1) × (n − 1) grid.

One can construct in linear time a good open RI-drawing D∗ of G∗ from a
given good labeling L∗ of G∗. Therefore, one can construct a good open RI-
drawing D of G from L∗ in linear time.

3.3 Algorithm for Computing a Good Labeling

In this subsection we show how to find a good labeling of G∗.
We assign each angle of G∗ with label 0, 1, x or y as illustrated in Fig. 12(a).

Labels x and y are undecided at this moment; x will be decided to be 0 or 1
and y to be 2, 3 or 4. For every inner facial 3-cycle C of G∗ that is not filled in
G, we assign a label x to each of the three angles in C. For every inner facial
3-cycle C = uvw of G∗ that is filled in G, we assign labels as follows: if exactly
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Fig. 11. Directions and weights w(e) of edges e in Gx and Gy ; (a) non-filled 3-cycle
C, and (b) filled 3-cycle C

one of u, v and w is adjacent to all the other vertices of G(C) as the case of C1
in Fig. 2(a), then we assign 0 to the vertex and assign 1 to each of the other two
vertices; if exactly two are adjacent to all the other vertices of G(C) as the case
of C2 in Fig. 2(a), then we assign label x to each of them and assign 1 to the
other; if each of u, v and w is adjacent to all the other vertices of G(C), then
G(C) = K4 and hence we assign a label x to each of u, v and w. We finally assign
a label y to each of the outer angles. Our problem is to determine values of all
x’s and y’s so that the resulting labeling of G∗ satisfies Conditions (a)–(c).

Let Gf be a new graph constructed from G∗ as illustrated in Fig. 12(b).
(The detailed construction is omitted in this extended abstract.) Let f be an
appropriately chosen function V (Gf ) → {0, 1, · · · , 4}; f(v) is attached to each
vertex v in Fig. 12(b). An f -factor of Gf , drawn by solid lines in Fig. 12(b), is
a spanning subgraph of Gf in which each vertex v has degree f(v) [7]. We can
show that G∗ has a good labeling, as illustrated in Fig. 12(d), if and only if Gf

has an f -factor.
Let Gd be a new graph constructed from Gf and f , as illustrated in Fig. 12(c).

We can show that Gf has an f -factor if and only if Gd has a perfect matching.
A perfect matching of Gd is drawn by thick lines in Fig. 12(c). Since Gd is a
bipartite graph and has O(n) vertices and edges, one can determine in time
O(n1.5/ logn) whether Gd has a perfect matching [8,9].

One can construct a good labeling of G∗ from an f -factor of Gf or a perfect
matching of Gd in linear time. We thus have the following theorem.

Theorem 3. For an inner triangulated plane graph G, one can determine
whether G∗ has a good labeling and, if so, compute a good labeling L∗ of G∗ in
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time O(n1.5/ log n). From L∗ one can construct an open RI-drawing of G on an
(n − 1) × (n − 1) grid in linear time.
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Fig. 12. (a) A labeling of G∗ by labels 0,1,x and y, (b) an f -factor of Gf , (c) a perfect
matching of a decision graph Gd, and (d) a good labeling of G∗
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