*

Jakstab: A Static Analysis Platform for Binaries
Tool Paper

Johannes Kinder and Helmut Veith

Technische Universitit Darmstadt, 64289 Darmstadt, Germany

Abstract. For processing compiled code, model checkers require accurate model
extraction from binaries. We present our fully configurable binary analysis platform
JAKSTAB, which resolves indirect branches by multiple rounds of disassembly in-
terleaved with dataflow analysis. We demonstrate that this iterative disassembling
strategy achieves better results than the state-of-the-art tool IDA Pro.

Introduction. While most of today’s model checkers operate on source code, there
are various settings where we need to verify binary code. First, when source code is
not available, e.g., when a software manufacturer wants to verify the conformance of
third party modules, such as drivers or plugins, to the API specification. Second, to
be able to detect errors introduced in the compiling process [1l], which is of particular
importance in the field of embedded systems, where compilers can be unreliable. Third,
binary level analysis results can supplement execution traces collected by testing and
vice versa, as demonstrated by the SYNERGY algorithm [2]. And finally, our original
motivation for this research stems from using model checking to detect malicious code
inside executables [3]].

Extracting a control flow graph (CFG) from an executable is not simply a matter of
implementing a language front-end for assembly. Compiled code lacks many comfort-
able properties of structured high level languages and poses several challenges for anal-
ysis tools. Function pointers are only seldom handled by source-level verification tools,
but on assembly level, calls and jumps to pointers are too abundant to be ignored. The
treatment of function pointers requires dataflow analysis on an incomplete CFG. Thus,
the traditional sequence, in which an analyzer builds the CFG first and only then per-
forms dataflow analysis, has to be replaced by an iterative process. Another challenge is
the loss of structure in compiled code. For accurate analysis results, procedures, along
with their calling conventions, need to be explicitly detected. Compiler optimizations
and, worse, obfuscation techniques can further mangle the control flow structure of an
executable and impede correct disassembly and control flow extraction [4]].

Existing disassemblers can be divided into two categories [4]]: Linear sweep disas-
semblers, such as GNU objdump, simply sequentially translate machine code into as-
sembly instructions. Recursive traversal disassemblers, such as IDA Pro, follow direct
branches and decode the program by depth first search. We extend this classification by
defining an iterative disassembler as one that interleaves multiple disassembly rounds
with dataflow analysis to achieve accurate and complete CFG extraction.

* Supported by DFG grant FORTAS — Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1) and the European Commission under Contract IST-2002-507932 ECRYPT.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 423 2008.
(© Springer-Verlag Berlin Heidelberg 2008

424 J. Kinder and H. Veith

Disassembly Intermediate Representation Control Flow Graph
mov esi, [0x38498] est := memgo[0x38498];
jmp Ox1fae2 goto L.2;
push [ebp - 4] L1: memgo[esp — 4] := memgo[ebp — 4];
esp := esp — 4;
call [0x38588] esp 1= esp — 4;
memgofesp| := Ox1FAE2;
goto mem32[0x38588];
lea eax, [ebp - 4] L2: eax := ebp — 4;
push eax memgoesp — 4] 1= eax;
esp := esp — 4;
push [ebp + 8] memgolesp — 4] := memgo[ebp + 8];
esp := esp — 4;
call esi esp := esp — 4;
memga|esp] := Ox1FAEB;
goto esi;
cmp [ebp - 4], 0 tmp := memgg[ebp — 4] — 0;

CF := tmp@31&(!memgolebp — 4]@31);

OF := memga[ebp — 4]@Q31& (Itmp@31);

NF := tmp@31;

if (tmp = 0) then ZF := 1else ZF := 0;
jne Ox1fad9 if (ZF = 0) then goto L1;

Fig. 1. Part of procedure Ox1FACA in fwdrv.sys. The second call is not resolved by IDA Pro.

Our tool JAKSTAB/] (Java toolkit for static analysis of binaries) serves as a flexible
front end to make executables accessible to static analysis and model checking. To this
end, JAKSTAB contains an iterative disassembler and a library of semantic descriptions
that translates assembly instructions to an RTL-style intermediate representation. Dis-
assembler and semantic descriptions are fully configurable to support multiple target
platforms. Using the intermediate representation, JAKSTAB iteratively creates the CFG,
calculating and resolving indirect branch targets using results from dataflow analysis.
JAKSTAB is implemented in Java and can be either used as a library or via its command
line interface, which outputs plain disassembly or the intermediate representation as a
CFG in graphviz-format. The intermediate representation, consisting of assignments,
if, and goto statements, is independent of the target hardware and provides a natural
interface to model checkers and program analysis tools.

Today’s de facto industry standard for disassembly is IDA Pro. Its heuristic matches
common prologue bytes to identify procedures and assumes that every call returns to
its original site, regardless of the call target, which can lead to erroneous fall-through
edges. Furthermore, the CFG is usually incomplete, since IDA Pro has only a very ba-
sic ability to resolve indirect branch instructions (function pointers): It propagates con-
stants just within a basic block, and decorates calls to such constants with comments
containing the actual target. While this is enough to aid human engineers, it is insuf-
ficient for automated analysis. Figure [l shows an exemplary piece of assembly code
from a Windows driver executable (fwdrv.sys from Sunbelt Personal Firewall), where
IDA Pro (v4.7) fails to identify an indirect call to an imported function, whose address
is stored at a memory location pointed to by the register esi. Finally, even though IDA
Pro offers an (unsupported) SDK for plugin development, it is closed source software
and thus cannot be easily integrated with an analysis tool.

! Project page online at http://www. jakstab.org

http://www.jakstab.org

Jakstab: A Static Analysis Platform for Binaries 425

To the best of our knowledge, the most successful approach to static analysis of ex-
ecutables currently is the CodeSurfer/x86 project [3]. CodeSurfer/x86 uses IDA Pro
to access binaries, and combines two program analysis algorithms, value set analy-
sis (VSA) and aggregate structure identification (ASI). In recent work, they combined
VSA with a property automaton that encodes certain usage rules for the Windows driver
API [6]. Generally, they assume a standard compilation model for binaries, which guar-
antees correct disassembly by IDA Pro. They acknowledge that IDA Pro’s output can be
incomplete and do connect missing edges from indirect calls, yet they lack a complete
loop to disassemble previously unprocessed branch targets.

Closely related to executable analysis is the idea of building a decompiler, which
transforms an executable back to source code [7U8]. Chang et al. describe an architecture
of communicating decompilers at different language levels [9]. Their implementation
propagates static analysis facts through all language levels one instruction at a time,
instead of strictly separating decompilation stages by language level. The prototype
targets assembly source files generated by a set of compilers, and thus requires access to
source code. We believe that JAKSTAB would fit nicely into this tool-chain as a provider
of well-formed CFGs from generic executables.

Control Flow Reconstruction. In most assembly languages, instructions can affect
multiple registers and status flags. The x86 architecture, which we first focused on,
features an especially rich instruction set where instructions often represent non-trivial
operation sequences. To fully capture instruction semantics and enable easy extensibil-
ity, JAKSTAB is designed to read Semantic Specification Language (SSL) files supplied
with the Boomerang decompiler, which are available for several architectures including
x86, PowerPC, 68K, and SPARC [10[8]. Figure [I] shows the intermediate representa-
tion JAKSTAB produces from the assembly snippet using SSL definitions for the x86
architecture. Mapping every assembly instruction to its semantic specification creates
a program representation with obvious pieces of dead code. In particular, most of the
status flags are not used but simply overwritten by later instructions. To reduce the pro-
gram size, our tool executes a live variable analysis and afterward removes any dead
code. In our experiments, usually about 30% of the statements are identified as dead
code and removed from the control flow graph. In the example in Figure [T three flag
updates are removed (crossed out text), and only one relevant update remains.

JAKSTAB recreates the control flow graph in an iterative process. Starting from the
entry point of the executable, it propagates and folds constants through registers and
memory cells to resolve indirect branch targets. JAKSTAB supports indirect memory
access, which is common for local variables stored on the stack. Whenever Jakstab can-
not resolve the address of an indirect write, it currently assumes that every memory
cell can become undefined. Calls to shared libraries, which, in the Windows PE-format,
appear as indirect calls to memory locations, are handled by creating stub procedures
in the control flow graph. Constant propagation and folding is performed on all parts of
the CFG already known, which allows JAKSTAB, in contrast to IDA Pro, to successfully
recover the CFG of the example in Figure[Il Note that the results of constant propaga-
tion can theoretically be incorrect if incoming edges to existing nodes are discovered in
later iterations. In such cases, the CFG reconstruction process has to be restarted.

426 J. Kinder and H. Veith

cmd.exe dnsrslvr.dll faultrep.dll ftp.exe nmnt.sys rcp.exe svchost.exe

IDA Pro 74% 9.4s 81% 36.2s 73% 5.4s 88% 2.4s 74% 3.1s 42% 1.4s 56% 1.5s
JAKSTAB 91% 32.4s 92% 3.2s 98% 9.0s 94% 2.7s 96% 4.5s 100% 1.1s 88% 1.0s

Fig. 2. Success rates and processing times for resolving indirect branches in executables

Any target location that has been successfully resolved in one iteration is scheduled
for disassembly in the next one. Newly detected procedures are inlined to ensure correct
interprocedural results in the next round of constant propagation. Figure [T] shows the
CFG extracted from the example code, including stubs for imported library functions.
The stubs non-deterministically assign those registers which might be overwritten by
library functions (eax, ecx, edx according to the Intel application binary interface).

We compared JAKSTAB’s and IDA Pro’s capabilities in resolving indirect branches
on Microsoft Windows system binaries. The results we present in Fig. [2| clearly show
that JAKSTAB 1is able to provide significantly more accurate CFGs than IDA Pro at
similar, and in some cases even faster, execution speeds.

Applications and Future Work. Our goal is to use JAKSTAB as a versatile platform for
different verification tasks on binary level. Currently, we are building a bounded model
checker on top of the existing framework to allow better resolution of indirect jumps and
the extraction of all targets from jump tables. Besides the internal use of the bounded
model checker for improving the CFG, we will investigate what kind of specifications
can be verified on binary level, with particular focus on API usage specifications.

JAKSTAB, unlike IDA Pro, does not assume a standard compilation model. Therefore
it is well suited to process code protected against disassembly, in particular malicious
code. Anti-disassembly patterns that obscure the control flow of a program will thwart
traditional recursive traversal disassemblers [4]]. For example, return instructions are
commonly misused as generic jumps by pushing the desired target address on the stack
immediately beforehand. Since JAKSTAB supports local constant propagation through
the stack, it can retarget disassembly correctly in these cases and is able to recover the
real control flow. A CFG extracted from such a potentially malicious program can then
be used as input to a semantic malware detector [3].

References

1. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You See Is Not
What You eXecute. In: VSTTE, Zurich, Switzerland (2005)

2. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: a new algorithm
for property checking. In: SIGSOFT FSE 2006, pp. 117-127. ACM, New York (2006)

3. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Kriigel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174-187.
Springer, Heidelberg (2005)

4. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disas-
sembly. In: CCS 2003, pp. 290-299. ACM, New York (2003)

5. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5-23. Springer, Heidelberg (2004)

10.

Jakstab: A Static Analysis Platform for Binaries 427

. Balakrishnan, G., Reps, T.: Analyzing stripped device-driver executables. In: TACAS 2008.

LNCS, pp. 124-140. Springer, Heidelberg (2008)

. Cifuentes, C.: Reverse Compilation Techniques. PhD thesis, Queensland University of Tech-

nology (1994)

. van Emmerik, M., Waddington, T.: Using a decompiler for real-world source recovery. In:

WCRE 2004, pp. 27-36. IEEE Computer Society, Los Alamitos (2004)

Chang, B., Harren, M., Necula, G.: Analysis of low-level code using cooperating decompil-
ers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 318-335. Springer, Heidelberg (2006)
Cifuentes, C., Sendall, S.: Specifying the semantics of machine instructions. In: International
Workshop on Program Comprehension (IWPC 1998), pp. 126—-133. IEEE Computer Society,
Los Alamitos (1998)

	Jakstab: A Static Analysis Platform for Binaries

