Singularity: Designing Better Software
(Invited Talk)

James R. Larus

Microsoft Research
One Microsoft Way
Redmond WA 98052
larus@microsoft.com
http://research.microsoft.com/~larus

Five years ago, frustrated by the never-ending process of finding bugs that de-
velopers had cleverly hidden throughout our software, I started a new project
with Galen Hunt to rethink what software might look like if it was written, from
scratch, with the explicit intent of producing more robust and reliable software
artifacts. The Singularity project [I] in Microsoft Research pursued several novel
strategies to this end. It has successfully encouraged researchers and product
groups to think beyond the straightjacket of time-tested software architectures,
to consider new solutions that cross the bounds of academic disciplines such as
programming languages, operating systems, and tools.

Singularity built a new operating system using a new programming language,
new software architecture, and new verification tools. The Singularity OS incor-
porates a system architecture based on software isolation of processes. Sing#,
the programming language is an extension of C# that provides pre- and post-
conditions; object invariants; verifiable, first-class support for OS communication
primitives; and strong support for systems programming and code factoring.

From its start, the Singularity project was driven by the question of what
would a software platform look like if it was designed with the primary goal of
improving the reliability and robustness of software? To this end, we adopted
three strategies. First, Singularity is almost entirely written in a safe, modern
programming language, which eliminates many serious defects such as buffer
overruns. Second, the system architecture limits the propagation of runtime er-
rors by providing numerous, inexpensive, well-defined failure boundaries, thereby
making it easier to achieve robust and correct system behavior, even in the pres-
ence of imperfect software. Finally, Singularity was designed from the start to
facilitate the widespread use of sound program verification tools, with the belief
that these tools could provide strong guarantees that entire classes of errors were
eliminated.

The success of Singularity raises the possibility that it is time to rethink the
traditional design, architecture, and construction practices for software in light
of its increasingly central role in the world and the unprecedented threats to its
security and integrity. It also poses interesting questions about today’s balance

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 J.R. Larus

of effort between finding defects in existing software and developing the next
generation of languages and tools, which could make a qualitative improvement
in software robustness. The advent of parallel programming, occasioned by the
Multicore revolution, makes these changes even more relevant, as this sea change
opens the door for other radical changes in software.

References

1. Hunt, G., Larus, J.: Singularity: Rethinking the Software Stack. Operating System
Review 41, 37-49 (2007)



	Singularity: Designing Better Software

