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Abstract. Supervised attribute relevance detection using cross-compar-
isons (SARDUX), a recently proposed method for data-driven metric
learning, is extended from dimension-weighted Minkowski distances to
metrics induced by a data transformation matrix 2 for modeling mutual
attribute dependence. Given class labels, parameters of §2 are adapted
in such a manner that the inter-class distances are maximized, while the
intra-class distances get minimized. This results in an approach similar
to Fisher’s linear discriminant analysis (LDA), however, the involved dis-
tance matrix gets optimized, and it can be finally utilized for generating
discriminatory data mappings that outperform projection pursuit meth-
ods with LDA index. The power of matrix-based metric optimization is
demonstrated for spectrum data and for cancer gene expression data.

Keywords: Supervised feature characterization, adaptive matrix met-
rics, attribute dependence modeling, projection pursuit, LDA.

1 Introduction

Learning metrics constitute one of the most exciting topics in machine learn-
ing research [ITUI7/T8]. The potential of metric adaptation needs exploration for
facing challenges connected to the curse of dimensionality in high-throughput
biomedical data sets. Mass spectra, gene expression arrays, or 2D electrophoretic
gels, given as vectors of real-value measurements, are often characterized by only
a low number of available experiments as compared to their huge dimensionality.
Data-driven adaptation of a data metric can be used in many helpful ways. Ap-
plications of metric optimization range from attribute weighting via dimension
reduction to data transformations into task-specific spaces.

The adaptive Euclidean distance dx(z,y) = (37, \i(x; —y:)?)'/2, for exam-
ple, relates attribute characterization to the choice of attribute scaling factors
A; beneficial for the separation of labeled and unlabeled data in supervised and

* Corresponding author.

L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, LNAT 5064, pp. 78{89] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics 79

unsupervised manners. This aim is shared with projection pursuit methods for
which matrix parameters of a linear projection mapping are optimized with
respect to criteria of data spreading and clusterability of the low-dimensional
projections [4]. In this work, evaluation takes place in a space of original di-
mensionality where only the comparison criterion, the metric, is changed. If
desired, attribute-related parameters with low impact, for example expressed as
low scaling factors, can be pruned for dimension reduction, after adaptation. For
the parametric Euclidean distance, small attribute scaling factors \; would indi-
cate negligible attributes. Scaling factors can be also used for transforming the
data to the non-adapted Euclidean space for further utilization of standard Eu-
clidean methods. This kind of attribute characterization is different from many
other methods for feature extraction [6], such as the recently suggested Itera-
tive Relief algorithm [I6] for which the attribute weights do not coincide with a
canonic rescaling of the data space.

Matrix-based metrics help to extend the view of individual attribute process-
ing to a model of dependence between pairs of attributes. Generally, matrix
methods can be used for optimizing linear data transformations aiming at crite-
ria related to the data spreading. In the unsupervised case, interesting transforms
include sphering of the data covariance matrix to the unity matrix, or the projec-
tion of data to directions of maximum variance (PCA) or to directions along max-
imum non-Gaussianity (ICA) [10]. The projection pursuit method [4] is a very
flexible approach to extract projections of interest by optimizing a target func-
tion, called the index of the projection. Such indices exist for unsupervised cases
alming at mappings to continuous or sharply clustered views. In addition, there
are supervised indices like projection entropy and class separability according to
linear discriminant analysis (LDA) criteria. A good environment for the study of
projection pursuit and other matrix methods is, for example, provided by the free
R statistical language with rGGobi and classPP packages [2[12], an application
of classPP for the visualization of gene expression data, is provided in [3].

An alternative view on seeking optimum data transformations is data-driven
adaptation of the data metric or, more generally, of a data similarity measure.
Learning vector quantization (LVQ), for example, can implement metric adap-
tation for better data classification by boosting class-separating attributes be-
tween data prototype vectors. The generalized relevance LVQ method (GRLVQ)
realizes such metric adaptation by using a misclassification cost function — mini-
mized by gradient descent — making use of data labels for attribute rescaling [§].
For Euclidean distances, large-margin optimization is realized, but also non-
Euclidean similarity-measures profit from parameter adaptation [7J14]. Recently,
matrix learning has been integrated into the GRLVQ framework for modeling
attribute-attribute dependencies by generalized Mahalanobis distance [I3]. This
allows to express scalings of the data space along arbitrary directions, and very
good classification accuracies are obtained on difficult classification problems
ranging from spectrum classification to image segmentation.

The success of matrix metric adaptation in GRLVQ classifiers initiated the
present work. Here, no classifier will be build though, but the data space will
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be transformed: directions in the data space relevant to data label separation
will be emphasized, while within-class variations will be damped. After all, rel-
evant combinations of attributes, trained and expressed in form of a matrix, are
identified for the discrimination task. Since only few data samples per class can
be expected in costly and time-consuming biomedical studies, prototype-based
data abstraction, like provided by GRLVQ), is avoided in order to keep maximum
information. For the analyzed data sets it turned out that the transform matrix
could be effectively compressed to only a few prominent eigenvectors, possibly
only one, without significant loss of metric structure. After all, we are able to
compute relatively compact discriminatory data models that allow hypotheses
generation for supporting biomedical experts.

2 Method

Data. The ¢-dimensional row input vector x € R'*? is taken from a data set
containing n data vectors {x!,x?,...,x"}. The proposed metric adaptation re-
quires that each vector x* is labeled with one class-specific index c(k), assuming
at least two unique classes in the whole data set.

Metric. Most essential is the definition of the matrix-based metric dg € [0; 00)
between data vectors x’ and x:

A = do(x',x) = (x' —x/) - A-(x —x))', (A=02-2)eR™. (1)

Choosing the identity matrix A = 2 = I induces the special case of the squared
Euclidean distance; other diagonal matrices yield weighted squared Euclidean
distances as discussed in [I5]. Generally, metrics are obtained for arbitrary
positive-definite matrices A. Then the value expressed by A-A- AT > 0, getting
zero only for trivial difference vectors A = 0, is a metric. It is known that in
context of metrics non-symmetric positive-definite matrices can be replaced by
equivalent symmetric positive-definite matrices. Since any symmetric positive-
definite matrix A can be decomposed by Cholesky decomposition into a product
of a lower triangular matrix and its transposed, it is in principle sufficient to
learn a lower triangular matrix §2 for expressing A. Alternatively, symmetric
positive-definite A can be represented by the self-product A = £2 - £2 of a sym-
metric £2 [I3]. Here, we consider products A = £2- 2" with arbitrary 2 € R9%4,
These full matrices £2, possess more adaptive matrix elements than degrees of
freedom needed for expressing the product solution space of A. For the data sets
discussed, the interaction of matrix element pairs (2;; and {2;; leads to a faster
convergence of A during optimization, compared to the convergence properties
obtained for symmetric or triangular matrices 2.

Note that for some the data A might become positive-semidefinite during
optimization, i.e. A- A+ AT = 0 with difference vectors A # 0. Then, the met-
ric property gets relaxed to a mathematical distance with vanishing self-scalar
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product (A - £2)- (A -2)" = (A 2, A 2) = 0 becoming zero for certain
configurations of £2 with A - £2 = 0, else positive.

Adaptation. Driven by the goal to minimize within-class differences while max-
imizing between class differences, the following cost function is minimized over
pairs of all n data items:

TS do(x, x7) -6 d BN
s(92) == 2 i1 Z]—l a( )+ 9ij _ Yo b= {O.C(Z)75C(J)

. = ’ / 2
S S da(xixi) - (1- ) dp o= (2

Distances d%, between data vectors x’ and x/ depend on the adaptive matrix
parameters 2 = () k=1..q of interest. The numerator represents within-class
data scatter, which should be small; the denominator is related to inter-class
distances, which should be large. Thus, optimization of s(§2) handles both parts
of the fraction simultaneously. Compromise solutions must be found in cases
when within-class variation, potentially caused by outliers, needs compression,
while inter-class separability would require inflation.

Using the chain rule, the cost function s(42) is iteratively optimized by gra-
dient descent §2 «— 2 — - 82(3 ), which requires adaptation of the matrix £2 in
small steps 7 into the direction of steepest gradient

0s(£2 ad’
Z Z ij : (3)
=1 j=1 d
The quotient rule applied to the fraction s(£2) = d¢/dp in Eqn. 2l yields

Js(82) &y -dp N (6;; —1)-de _ { 1/dp : c(z) = c(j) 1)

ad?, dp d3 —dc/d} (i) # ()
The right factor in Eqn. Blis obtained by matrix derivative of Eqn. [Ik
Bdg _ i Y i J
&Q—Z(x —x)) - (x*=x7)- 2. (5)

If desired, adaptation can be restricted to certain structures of 2, such as to
the lower triangular elements. In that case, undesired elements must be initially
masked out by zeros in 2. Additionally, the same zero masking pattern must
be applied to the matrix resulting from Eqn. [, because the equation calculates
ddy, /082 correctly only for full adaptive matrices 2. By consistent masking op-
erations, though, the matrix of derivatives is mathematically correct. In practice,
the gradient from Eqn. [ is computed and reused as long the cost function de-
creases. Potential increase of s(£2) triggers a recomputation of the gradient. The
step size 7 is dynamically determined as the initial size g, being exponentially
cooled down by rate 7, divided by the maximum absolute element in the matrix

9s(12)/082.

Initialization. Empirically, the initial step size 7y can be chosen from the inter-
val [0.05; 1), such as 0.75 in the conducted experiments. The number of iterations
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should be set to a value between 50 and 1000, depending on the saturation
characteristics of the cost function. The exponential cooling rate should diminish
the original step size by some orders of magnitude during training, for example,
set to n = 0.995 for 1000 iterations.

The initialization of matrix £2 is of particular interest. If chosen as identity
matrix 2 = I, the algorithm starts from the usual squared Euclidean distance.
For data sets with strong mutual attribute dependencies, i.e. prominent non-
diagonal elements, the uniform structure of the identity matrix might lead to
unnecessary iterations required for the symmetry breaking, as often encountered
in neural network adaptations. Therefore, the alternatively proposed method is
random matrix element sampling from uniform noise in the interval [—0.5;0.5].
This noise matrix A € R?*? is broken by QR-decomposition into A = Q - R, of
which the Q-part is known to form an orthonormal basis with Q - Q" = I. This
makes £2 = Q our preferred initial candidate.

Relation to LDA. At first glance, the proposed cost function looks quite similar
to the inverse fraction of the LDA cost function for C' classes that is maximized:

CE [Z% ng - (ps — )" (s —u)] =

v [28, =m0 C o= e =i} (6)

Sipa =

The numerator contains the between-class variation as the squared difference
between class centers p; of all vectors x/ belonging to class i and the overall
center g = 1/n->";_, x¥. The denominator describes the within-class variation
over all classes i expressed by the sum of squared differences from class centers
wi contained in the covariance matrices X; = Zj:c(j):i(xj — )" (X — ).

LDA seeks an optimum direction vector v representing a good compromise of
being collinear along the class centers (numerator, separating) and orthogonal
to maximum within-class variation (denominator, compressing).

If multiple directions V' = (vy)" are computed simultaneously, the products
in the numerator and denominator of Eqn. [ involving the matrices in square
brackets, become matrices as well. In order to circumvent the problem of valid
ratio calculation with matrices, determinants of the obtained matrices can be
taken, as discussed in the LDA-based projection pursuit approach [12]. As a
result, the LDA ratio optimizes low-dimensional projections onto discriminatory
directions.

Our approach is structurally different, because the (inverse) LDA ratio in
Eqn. 2l operates in the original data space, subject to the dynamically optimized
metric. This explains the higher computational demands compared to LDA for
which covariance matrices and class centers can be initially computed and then
reused. As a benefit of the new approach, numerator and denominator of the
new ratio in Eqn.[2naturally contain sums of real-valued distances, which avoids
problems of handling singular determinants in low-rank matrices.
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3 Experiments

3.1 Tecator Spectral Data Set

The benchmark spectral data set, taken from the UCI repository of machine
learning [I], contains 215 samples of 100-dimensional infrared absorbance spec-
tra recorded on a Tecator Infratec Food and Feed Analyzer working in the wave-
length range 850-1050nm by the Near Infrared Transmission (NIT) principle.
The original regression problem accompanying the data set is reformulated as
attribute identification task for explaining the separation of 183 samples with
low fat content and 77 high fat meat probes.

View 1. An exploratory data view is obtained from the left panel of Fig. [Iland
from the PCA projection shown in the left scatter plot of Fig.Bl As expected, the
strong spectrum overlap cannot be resolved by PCA projection. After application
of the matrix learning all spectra were transformed according to z = x- §2, which
realizes the left transformation part of the metric given in Eqn. [} the right part
is just z". The result of this data transformation leads to a good separation with

Original Tecator spectra Tecator spectra transformed by QQ'
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Fig. 1. Tecator spectra, raw (left) and transformed (right). Low fat content is reflected
by dashed lines, high fat content by solid lines.
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Fig. 2. Scatter plots of Tecator data. Bullets (o) denote low-fat samples, squares (O)
high fat content. Left: PCA projection of original data. Right: PCA projection of data
transformed by (2.
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almost no overlap in the PCA projection. This is shown in the right panel of
Fig.

View 2. By reformulating the metric definition in Eqn. [l according to

a9 = (xi—xj)~.(2-(2T~(xi—xj)T = <xi-.Q~QT —xj-.Q~QT7xi—xj>. (7)
another interesting perspective on the data is obtained. This is a formal metric
decomposition into a static part of difference vectors of the original data (right
part of the scalar product) and a dynamically adapted transformation space of
the data (left argument of the scalar product). A look into this space is obtained

by the transformation to x* = x- §2- 2. The resulting transformed spectra with
their amazingly separated attributes are shown in the right panel of Fig. [l

The learned metric can be nicely presented by the matrices {2 and A shown
in the left and right panel of Fig. Bl respectively. As displayed for A, attribute
dependence is most prominent in the channel range 35-45. Strong emphasis of
these channels around the diagonal is accompanied by simultaneous repression
of the off-diagonal channels 5-30.

Matrix reduction. Since full matrices are quite big models, the study of their
compressibility is important. Eigen decomposition of A =8 - W - W™ into the
diagonal eigenvalue matrix S and the eigenvectors matrix W helps to reach sub-
stantial compressions. In the current case, the highest eigenvalue contributes an
amount of 95.3%, thus most variation in the learned matrix 2 can be explained
by the corresponding eigenvector w, a column vector. Therefore, up to a scaling
factor, a very good reconstruction of A by w-w" is obtained, as confirmed in the
left matrix plot of Fig. @ If the spectra are projected onto w, still a very good
class separation is obtained, as demonstrated by the corresponding class-specific
box plot in the right panel of Fig. @

The computational demands are quite high, though, requiring roughly one
hour for 1000 updates of the matrix gradient. In contrast to that, the classPP [12]
package is much faster, if only a class-separating projection is desired. In prin-
ciple, classPP takes only several seconds or minutes, depending on the choice of

20 40 60 80 100

Fig. 3. Matrix representation of optimum metric for the 100-D Tecator data set. The
learned matrix £2 is shown on the left, its squared counterpart A = §2 - £27 on the
right. Interesting dependencies are found around channel index 40.
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20 40 60 80 100

Fig. 4. Representation of A by its first eigenvector. Left: plot of reconstructed matrix.
Right projection of Tecator spectra to the eigenvector.

Tecator spectra projection to1 st eigenvector of Q'

— e

0.2

0.0
1

value

-0.4
1
o

|

fat category

annealing parameters. However, no stable solution could be obtained, because of
the degeneration of the projection vectors, probably caused by near-singular ma-
trix determinants during the computation. Training with our proposed method
showed very stable results, converging to the presented solution for different
random initializations of 2. Projection displays are just a by-product of our
method. It is important to remember that the original dimensionality of the
data space is preserved by the transformation, enabling further utilization with
any classification or projection method.

3.2 Gene Expression Analysis of AML/ALL Cancer

Many well-documented and deeply investigated data sets are freely available
in cancer research. Since its publication in 1999 the leukemia gene expression
dataset [5] used here has become a quasi-benchmark for testing feature selection
methods. The original research aimed at the identification of the most informa-
tive genes for modeling and classification of two cancer types, acute lymphoblas-
tic leukemia (ALL) and acute myeloid leukemia (AML). The training data covers
7129 genes by 27 cases of ALL and 11 cases of AML. The test data set contains
20 cases of ALL and 14 cases of AML.

The projection of the complete set of training and test data to the first two
principal components yields the scatter plot shown in the left panel of Fig.
It is worth noticing that a systematic difference between AML training set and
test set is indicated by the unbalanced distribution of closed and open bullets.
Thus, a training set specific bias is induced during training. Matrix learning is
computationally very expensive, because §2 is a 7129x7129 matrix. Thus, it takes
roughly 40 hours on a 2.4 GHz system in order to achieve 500 gradient changes
expressed by Eqn. Bl Yet, gradients are reused until first cost function degrada-
tion, creating several thousand updates, after all. Since experiment preparation
in lab requires much more time, a two day calculation period is no principal
problem.
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PCA projection of AML/ALL data Scatter plot of projected AML/ALL data
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Fig. 5. Scatter plots of AML/ALL gene expression data. Bullets (o) denote expression
samples of AML, squares (O) are related to ALL cancer. Closed symbols indicate train-
ing data, open symbols test data. Left panel: principal component projection without
distinction between training and test data. Right panel: data projected to the first two
eigenvectors of the trained interaction matrix §2 - £27. The training data is perfectly
arranged, being very distinct and almost contracted to points.
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Fig. 6. Eigenvalues of the interaction matrix £2-£27 (left) for the AML/ALL data, and
the distribution of values in the most prominent eigenvector (right)

Several interesting results are obtained after training. The top ten eigenvalues
of £2- 827, displayed in the left panel of Fig.[d point out a very strong explicative
power of roughly 70% explained variance of the first eigenvector, dominating the
all other eigenvectors. The right panel in Fig. [0 further indicates that only a
small fraction of extreme values in that first eigenvector really contains interest-
ing attribute magnifications. In case of data projection, many other attributes
are transformed to near zero values, i.e. only few differentiating genes become
emphasized.

The projection to the first two eigenvectors of the interaction matrix already
yields a perfect separation of the training data into AML and ALL, as shown
in the right panel of Fig. Bl Also a very strong compression of the within-class
scatter almost to points is obtained. The test data, projected the same way
and added to the plot, is still well-separated, but shows much larger variability.
This is a clear indication of over-fitting. Sure, a huge 7129x7129 model has been
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trained; yet, the displayed projection only contains several hundred effective
parameters, because the first two eigenvectors are much dominated by the few
most prominent entries of the first eigenvector. A simple center-of-gravity model
of the data, for example, would already be much larger.

For comparison, LDA indices of the projections shown in the right panel of
Fig. Bl were calculated according to Eqn. [( using the classPP package. An almost
perfect near-one value of Sy pa = 1 —7.894-10'2 was achieved for the projected
training data and good value of Sy p4 = 0.8298 for the test data. Using the built-
in simulated annealing strategy, the classPP package itself reported a best seen
index value of S;p4 = 1—2.825-107° for the optimized projections of the training
data. Since the corresponding projection matrix is not returned correctly from
the classPP package, an application to the test set was not possible. The authors
of classPP have identified internal rounding errors in their package.

Individual gene variances correspond to gene-specific scaling factors, compen-
sated by the cost function by adaptation of the related matrix entries. As a
consequence, components in the most prominent eigenvector show low correla-
tion with the variance in the original data set and, accordingly, systematically
separating low-variance genes were able to gain high rankings in the eigenvector.

The real benefit of the proposed method is the possibility to infer putative
gene-gene interactions responsible for cancer type separation. For that purpose
the indices i, j corresponding to the most extreme (high and low) values in the
matrix £2 - 27 are extracted and associated with the genes i and j. Because of
symmetry, only the lower triangular matrix, including diagonal, is considered.
The top 100 pairs extracted this way are compiled in Tab.[Il After all, 14 promi-
nent self-dependent genes are detected as individual factors on the diagonal,
three of them are coinciding with the list of Golub et al. of 50 genes. Three
more genes of that study are detected on non-diagonal elements as dependent.

Table 1. Table of genes specific to separation of AML/ALL cancer in alphabetic
reading order. The listed genes correspond to the 100 most extreme entries in the lower
triangular part of the obtained symmetric matrix §2 - £27. As single genes participate
multiple times in combination with others, only 30 different out of 200 possible genes
appear in the table. Numbers indicate the frequencies of occurrence. Underlined genes
appear also on the diagonal, stressing their individual importance. For illustration
purposes, bold face genes are those acting in combination with M19507 which is the
overall top-ranked gene. Asterisks mark genes coinciding with top-rated genes from the
study of Golub et al.

D49824 HG3576-HT3779 L06797 L20688 L20941 M11147
6 13 3 1 1 1
M14328 M17733 M19507 M24485 M27891* M28130 rnal*
1 1 26 1 3 1
M33600 M69043* M77232 rnal M91036 rnal M91438 M96326 rnal*
4 1 1 13 1 14
S73591 U01317 cds4 U14968 V00594 X14046 X17042*
1 13 1 1 1 12
X78992 Y00433 YO0078T7* 719554 748501 Z70759

13 14 14 14 11 13
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The most prominent gene found by the new method is M19507, which is not
mentioned in the Golub study. Yet, the gene is confirmed as relevant in more
recent publications, such as [9]. As this gene is connected to more than 20 other
top-rated genes, its central role in the discriminatory transcriptome is clearly
pointed out. Yet, the whole potential of the analysis, including proper interpre-
tation of the findings, must be thoroughly worked out together with biological
experts.

4 Conclusions and Outlook

A data-driven metric in flavor of a generalized Mahalanobis distance has been
proposed that makes use of label information for emphasizing or repressing
class-specific attribute combinations. Similar to LDA, metric optimization of
A = 2. 027 seeks improved inter-class separation with simultaneous minimiza-
tion of within-class variation. In contrast to LDA, it is not the low-dimensional
projection to be optimized, but a transformation in the data space. The new
method is not primarily designed for visual projection or classification, but it
is a first step towards, because the resulting transformed data can be used as
a preprocessing step for subsequent standard methods. As illustrated, visual
data exploration is easily possible by projecting the data to the most prominent
eigenvectors of A. No sophisticated optimization method is required, simple gra-
dient descent works very reliably on the inverse LDA-like cost function. Both
investigated data sets led to convergence to very useful label-specific metrics for
different initializations of 2. The main drawback of the new method is its long
runtime for handling the potentially large matrices. Yet, as the discussed cases
showed a strong dominance of only the first principal direction, future work will
focus on the development of a sparse learning scheme for computing only the
k most prominent eigenvectors instead of the whole matrix. This will help to
reduce the model size and to speed up the optimization procedure. Finally, a
better control of intra- and inter-class contributions to the cost function will be
investigated.
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