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Abstract. Recursive Feature Elimination RFE combined with feature-ranking is 
an effective technique for eliminating irrelevant features. In this paper, an 
ensemble of MLP base classifiers with feature-ranking based on the magnitude 
of MLP weights is proposed. This approach is compared experimentally with 
other popular feature-ranking methods, and with a Support Vector Classifier 
SVC. Experimental results on natural benchmark data and on a problem in 
facial action unit classification demonstrate that the MLP ensemble is relatively 
insensitive to the feature-ranking method, and simple ranking methods perform 
as well as more sophisticated schemes. The results are interpreted with the 
assistance of bias/variance of 0/1 loss function. 

1   Introduction 

Consider a supervised learning problem, in which many features are suspected to be 
irrelevant. To ensure good generalisation performance dimensionality needs to be 
reduced, otherwise there is the danger that the classifier will specialise on features 
that are not relevant for discrimination, that is the classifier may over-fit the data. It is 
particularly important to reduce the number of features for small sample size 
problems, where the number of patterns is less than or of comparable size to the 
number of features [1]. To reduce dimensionality, features may be extracted (for 
example Principal Component Analysis PCA) or selected. Feature extraction 
techniques make use of all the original features when mapping to new features but, 
compared with feature selection, are difficult to interpret in terms of the importance of 
original features.  

Feature selection has received attention for many years from researchers in the 
fields of pattern recognition, machine learning and statistics. The aim of feature 
selection is to find a feature subset from the original set of features such that an 
induction algorithm that is run on data containing only those features generates a 
classifier that has the highest possible accuracy [2]. Typically with tens of features in 
the original set, an exhaustive search is computationally prohibitive. Indeed the 
problem is known to be NP-hard [2], and a greedy search scheme is required. For 
problems with hundreds of features, classical feature selection schemes are not greedy 
enough, and filter, wrapper and embedded approaches have been developed [3]. 

Although feature-ranking has received much attention in the literature, there has 
been relatively little work devoted to handling feature-ranking explicitly in the 
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context of Multiple Classifier System (MCS). Most previous approaches have focused 
on determining feature subsets to combine, but differ in the way the subsets are 
chosen. The Random Subspace Method (RSM) is the best-known method, and it was 
shown that a random choice of feature subset, (allowing a single feature to be in more 
than one subset), improves performance for high-dimensional problems. In [1], 
forward feature and random (without replacement) selection methods are used to 
sequentially determine disjoint optimal subsets. In [4], feature subsets are chosen 
based on how well a feature correlates with a particular class. Ranking subsets of 
randomly chosen features before combining was reported in [5]. 

In this paper an MLP ensemble using Recursive Feature Elimination RFE [12] is 
experimentally compared for different feature-ranking methods. Ensemble techniques 
are discussed in Section 2, and feature-ranking strategies in Section 3. The datasets, 
which include a problem in face expression recognition, are described in Section 4, 
with experimental results in Section 5. 

2   Ensembles, Bootstrapping and Bias/Variance Analysis 

In this paper, we assume a simple parallel Multiple Classifier System (MCS) 
architecture with homogenous MLP base classifiers and majority vote combiner. A 
good strategy for improving generalisation performance in MCS is to inject 
randomness, the most popular strategy being Bootstrapping. An advantage of 
Bootstrapping is that the Out-of-Bootstrap (OOB) error estimate may be used to tune 
base classifier parameters, and furthermore, the OOB is a good estimator of when to 
stop eliminating features [6]. Normally, deciding when to stop eliminating irrelevant 
features is difficult and requires a validation set or cross-validation techniques. 

Bootstrapping is an ensemble technique which implies that if μ training patterns 
are randomly sampled with replacement, (1-1/μ))μ ≅ 37% are removed with remaining 
patterns occurring one or more times. The base classifier OOB estimate uses the 
patterns left out of training, and should be distinguished from the ensemble OOB. For 
the ensemble OOB, all training patterns contribute to the estimate, but the only 
participating classifiers for each pattern are those that have not been used with that 
pattern for training (that is, approximately thirty-seven percent of classifiers). Note 
that OOB gives a biased estimate of the absolute value of generalisation error [7], but 
for tuning purposes the estimate of the absolute value is not important [8]. Bagging, 
that is Bootstrapping with majority vote combiner, and Boosting (Section 3.3) are 
probably the most popular MCS methods. 

The use of Bias and Variance for analysing multiple classifiers is motivated by 
what appears to be analogous concepts in regression theory. The notion is that 
averaging a large number of classifiers leads to a smoothing out of error rates. 
Visualisation of simple two-dimensional problems appears to support the idea that 
Bias/Variance is a good way of quantifying the difference between the Bayes decision 
boundary and the ensemble classifier boundary. However, there are difficulties with 
the various Bias/Variance definitions for 0/1 loss functions. A comparison of 
Bias/Variance definitions [9] shows that no definition satisfies all properties that 
would ideally be expected for 0/1 loss function.  In particular, it is shown that it is 
impossible for a single definition to satisfy both zero Bias and Variance for Bayes 
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classifier, and additive Bias and Variance  decomposition of error (as in regression 
theory). 

Also, the effect of bias and variance on error rate cannot be guaranteed. It is easy to 
think of example probability distributions for which bias and variance are constant but 
error rate changes with distribution, or for which reduction in variance leads to 
increase in error rate [9] [11]. Besides these theoretical difficulties, there is the 
additional consideration that for real problems the Bayes classification needs to be 
known or estimated. Although some definitions, for example [10], do not require this, 
the consequence is that the Bayes error is ignored. 

In our experiments, we use Breiman’s definition [11] which is based on defining 
Variance as the component of classification error that is eliminated by aggregation. 
Patterns are divided into two sets, the Bias set B containing patterns for which the 
Bayes classification disagrees with the aggregate classifier and the Unbias set U 
containing the remainder. Bias is computed using B patterns and Variance is 
computed using U patterns, but both Bias and Variance are defined as the difference 
between the probabilities that the Bayes and base classifier predict the correct class 
label. Therefore, the reducible error (what we have control over) with respect to a 
pattern is either assigned to Bias or Variance, an assumption that has been criticised 
[9]. However, this definition has the nice property that the error of the base classifiers 
can be decomposed into additive components of Bayes error, Bias and Variance. 

3   Feature-Ranking and RFE 

RFE  is a simple algorithm [12], and operates recursively as follows: 

1) Rank the features according to a suitable feature-ranking method 
2) Identify and remove the r least ranked features  

If r≥2, which is usually desirable from an efficiency viewpoint, this produces a 
feature subset ranking. The main advantage of RFE is that the only requirement to be 
successful is that at each recursion the least ranked subset does not contain a strongly 
relevant feature [13]. In this paper we use RFE with MLP weights, SVC weights 
(Section 3.1), and noisy bootstrap (Section 3.2). 

The issues in feature-ranking can be quite complex, and feature relevance, 
redundancy and irrelevance has been explicitly addressed in many papers. As noted in 
[13] it is possible to think up examples for which two features may appear irrelevant 
by themselves but be relevant when considered together. Also adding redundant 
features can provide the desirable effect of noise reduction.  

One-dimensional feature-ranking methods consider each feature in isolation and 
rank the features according to a scoring function Score(j) where j=1…p  is a feature, 
for which higher scores usually indicate more influential features. One-dimensional 
functions ignore all p-1 remaining features whereas a multi-dimensional scoring 
function considers correlations with remaining features. According to [3] one-
dimensional methods are disadvantaged by implicit orthogonality assumption, and 
have been shown to be inferior to multi-dimensional methods that consider all 
features simultaneously. However, there has not been any systematic comparison of 
single and multi-dimensional methods in the context of ensembles. 
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In this paper, the assumption is that all feature-ranking strategies use the training 
set for computing ranking criterion (but see Section 5 in which the test set is used for 
best case scenario). In Sections 3.1-3.4 we describe the ranking strategies that are 
compared in Section 5, denoted as rfenn, rfesvc (Section 3.1) rfenb (Section 3.2) boost 
(Section 3.3) and SFFS, 1dim (Section 3.4). Note that SVC, Boosting and statistical 
ranking methods are well-known so that the technical details are omitted. 

3.1   Ranking by Classifier Weights (rfenn, rfesvc) 

The equation for the output O of a single output single hidden-layer MLP, assuming 
sigmoid activation function S is given by 

21)( jij
j i

i WWxSO ∗= ∑ ∑  (1) 

where i,j are the input and hidden node indices, xi is input feature, W1 is the first layer 
weight matrix and W2 is the output weight vector. In [14], a local feature selection 
gain wi is derived form equation (1) 

∑ ∗=
j

jiji WWw 21  (2) 

This product of weights strategy has been found in general not to give a reliable 
feature-ranking [15]. However, when used with RFE it is only required to find the 
least relevant features. The ranking using product of weights is performed once for 
each MLP base classifier. Then individual rankings are summed for each feature, 
giving an  overall ranking that is used for eliminating the set of least relevant features 
in RFE. 

For SVC the weights of the decision function are based on a small subset of 
patterns, known as support vectors. In this paper we restrict ourselves to the linear 
SVC in which linear decision function consists of the support vector weights, that is 
the weights that have not been driven to zero.  

3.2   Ranking by Noisy Bootstrap (rfenb) 

Fisher’s criterion measures the separation between two sets of patterns in a direction 
w, and is defined for the projected patterns as the difference in means normalised by 
the averaged variance. FLD is defined as the linear discriminant function for which 
J(w) is maximized 

wWSTw

wBSTw

wJ =)(  
(3) 

where, SB is the between-class scatter matrix and SW is the within-class scatter matrix 
(Section 3.4). The objective of FLD is to find the transformation matrix w* that 
maximises J(w) in equation (3) and w*  is known to be the solution of the following 
eigenvalue problem  SB - SWΛ = 0   where Λ is a diagonal matrix whose elements are 
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the eigenvalues of matrix SW
-1SB. Since in practice SW is nearly always singular, 

dimensionality reduction is required. The idea behind the noisy bootstrap [16] is to 
estimate the noise in the data and extend the training set by re-sampling with 
simulated noise. Therefore, the number of patterns may be increased by using a re-
sampling rate greater than 100 percent. The noise model assumes a multi-variate 
Gaussian distribution with zero mean and diagonal covariance matrix, since there are 
generally insufficient number of patterns to make a reliable estimate of any 
correlations between features. Two parameters to tune are the noise added γ and the 
sample to feature ratio s2f. We set for our experiments γ = 0.25 and s2f = 1 [17]. 

3.3   Ranking by Boosting (boost) 

Boosting, which combines with a fixed weighted vote is more complex than Bagging 
in that the distribution of the training set is adaptively changed based upon the 
performance of sequentially constructed classifiers. Each new classifier is used to 
adaptively filter and re-weight the training set, so that the next classifier in the 
sequence has increased probability of selecting patterns that have been previously 
misclassified. The algorithm is well-known and has proved successful as a 
classification procedure that ‘boosts’ a weak learner, with the advantage of minimal 
tuning. More recently, particularly in the Computer Vision community, Boosting has 
become popular as a feature selection routine, in which a single feature is selected on 
each Boosting iteration [18]. Specifically, the Boosting algorithm  is modified so that, 
on each iteration, the individual feature is chosen which minimises the classification 
error on the weighted samples [19]. In our implementation, we use Adaboost with 
decision stump as weak learner. 

3.4   Ranking by Statistical Criteria (1dim, SFFS) 

Class separability measures are popular for feature-ranking, and many definitions use 
SB and SW (equation (3)) [20]. Recall that SW is defined as the scatter of samples 
around respective class expected vectors and SB as the scatter of the expected vectors 
around the mixture mean. Although many definitions have been proposed, we use 
trace(SW

-1 * SB), a one-dimensional method. 
A fast multi-dimensional search method that has been shown to give good results 

with individual classifiers is Sequential Floating Forward Search (SFFS). It improves 
on (plus l – take away r) algorithms by introducing dynamic backtracking. After each 
forward step, a number of backward steps are applied, as long as the resulting subsets 
are improved compared with previously evaluated subsets at that level. We use the 
implementation in [21] for our comparative study. 

4   Datasets 

The first set of experiments use natural benchmark two-class problems selected from 
[22] and [23] and are shown in Table 1. For datasets with missing values the scheme 
suggested in [22] is used. The original features are normalised to mean 0 std 1 and the 
number of features increased to one hundred by adding noisy features (Gaussian std  
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Table 1. Benchmark Datasets showing numbers of patterns, continuous and discrete features 
and estimated Bayes error rate 

DATASET #pat #con #dis %error 
cancer 699 0 9 3.1 
card 690 6 9 12.8

credita 690 3 11 14.1
diabetes 768 8 0 22.0

heart 920 5 30 16.1
ion 351 31 3 6.8 
vote 435 0 16 2.8 

 
0.25). All experiments use random training/testing splits, and the results are reported 
as mean over twenty runs. Two-class benchmark problems are split 20/80 (20% 
training, 80% testing) 10/90, 5/95 and use 100 base classifiers. 

The second set of experiments addresses a problem in face expression recognition, 
which has potential application in many areas including human-computer interaction, 
talking heads, image retrieval, virtual reality, human emotion analysis, face 
animation, biometric authentication [24]. The problem is difficult because facial 
expression depends on age, ethnicity, gender, and occlusions due to cosmetics, hair, 
glasses. Furthermore, images may be subject to pose and lighting variation. There are 
two approaches to automating the task, the first concentrating on what meaning is 
conveyed by facial expression and the second on categorising deformation and motion 
into visual classes. The latter approach has the advantage that the interpretation of 
facial expression is decoupled from individual actions. In FACS (facial action coding 
system) [25], the problem is decomposed into forty-four facial action units (e.g. au1 
inner brow raiser). The coding process requires skilled practitioners and is time-
consuming so that typically there are a limited number of training patterns. These 
characteristics make the problem of face expression classification relevant and 
suitable to the feature-ranking techniques proposed in this paper.  

The database we use is Cohn-Kanade [26], which contains posed (as opposed to 
the more difficult spontaneous) expression sequences from a frontal camera from 97 
university students. Each sequence goes from neutral to target display but only the 
last image is au coded. Facial expressions in general contain combinations of action 
units (aus), and in some cases aus are non-additive (one action unit is dependent on 
another).  To automate the task of au classification, a number of design decisions 
need to be made, which relate to the following a) subset of image sequences chosen 
from the database b) whether or not the neutral image is included in training c) image 
resolution d) normalisation procedure e) size of window extracted from the image, if 
at all f) features chosen for discrimination, g) feature selection or feature extraction 
procedure h) classifier type and parameters, and i) training/testing protocol. 
Researchers make different decisions in these nine areas, and in some cases are not 
explicit about which choice has been made. Therefore it is difficult to make a fair 
comparison with previous results. 

We concentrate on the upper face around the eyes, (involving au1, au2, au4, au5, 
au6, au7) and consider the two-class problem of distinguishing images containing 
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inner brow raised (au1), from images not containing au1. The design decisions we 
made were  

a) all image sequences of size 640 x 480 chosen from the database  
b) last image in sequence (no neutral) chosen giving 424 images, 115 containing 

au1 
c) full image resolution, no compression 
d) manually located eye centres plus rotation/scaling into 2 common eye 

coordinates 
e) window extracted of size 150 x 75 pixels centred on eye coordinates 
f) Forty Gabor filters [18], five special frequencies at five orientations with top 4 

principle components for each Gabor filter, giving 160-dimensional feature 
vector 

g) Comparison of feature selection schemes described in Section 3 
h) Comparison of MLP ensemble and Support Vector Classifier 
i) Random training/test split of 90/10 and 50/50 repeated twenty times and 

averaged 

With reference to b), some studies use only the last image in the sequence but 
others use the neutral image to increase the numbers of non-aus. Furthermore, some 
researchers consider only images with single au, while others use combinations of 
aus. We consider the more difficult problem, in which neutral images are excluded 
and images contain combinations of aus. With reference to d) there are different 
approaches to normalisation and extraction of the relevant facial region. To ensure 
that our results are independent of any eye detection software, we manually annotate 
the eye centres of all images, and subsequently rotate and scale the images to align the 
eye centres horizontally. A further problem is that some papers only report overall 
error rate. This may be mis-leading since class distributions are unequal, and it is 
possible to get an apparently low error rate by a simplistic classifier that classifies all 
images as non-au1. For the reason we report area under ROC curve, similar to [18]. 

5   Experimental Evidence 

The purpose of the experiments is to compare the various feature-ranking schemes 
described in Section 3, using an MLP ensemble and a Support Vector Classifier. The 
SVC is generally recognised to give superior results when compared with other single 
classifiers. A difficulty with both MLPs and SVCs is that parameters need to be 
tuned. In the case of SVC, this is the kernel and regularisation constant C. For MLP 
ensemble, it is the number of hidden nodes and number of training epochs. There are 
other tuning parameters for MLPs, such as learning rate but the ensemble has been 
shown to be robust to these parameters [8]. When the number of features is reduced, 
the ratio of the number of patterns to features is changing, so that optimal classifier 
parameters will be varying. In general, this makes it a very complex problem, since 
theoretically an optimisation needs to be carried out after each feature reduction. To 
make a full comparison between MLP and SVC, we would need to search over the 
full parameter space, which is not feasible. For the two-class problems in table 1, we 
compare linear SVC with linear perceptron ensemble. We found that the differences  
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Fig. 1. Mean test error rates, Bias, Variance for RFE perceptron ensemble with Cancer  Dataset 
80/20, 10/90. 5/95  train/test split 

between feature selection schemes were not statistically significant (McNemar test 
5% [27]), and we show results graphically and report the mean over all datasets.  

Random perturbation of the MLP base classifiers is caused by different starting 
weights on each run, combined with bootstrapped training patterns, Section 2. The 
experiment is performed with one hundred single hidden-layer MLP base classifiers, 
using the Levenberg-Marquardt training algorithm with default parameters. The 
feature-ranking criterion is given in equ. (2). In our framework, we vary the number 
of hidden nodes, and use a single node for linear perceptron. We checked that results 
were consistent for Single layer perceptron (SLP), using absolute value of orientation 
weights to rank features. 

In order to compute bias and variance we need to estimate the Bayes classifier for 
the 2-class benchmark problems. The estimation is performed for 90/10 split using 
original features in Table 1, and a SVC with polynomial kernel run 100 times. The 
polynomial degree is varied as well as the regularisation constant. The lowest test 
error found is given in Table 1, and the classifications are stored for the bias/variance 
computation. All datasets achieved minimum with linear SVC, with the exception of 
‘Ion’ (degree 2). 

Figure 1 shows RFE linear MLP ensemble results for ‘Cancer’ 20/80, 10/90, 5/95 
which has 140, 70, 35 training patterns respectively. With 100 features the latter two 
splits give rise to small sample size problem, that is number of patterns less than 
number of features [1]. The recursive step size for RFE is chosen using a logarithmic 
scale to start at 100 and finish at 2 features. Figure 1 (a) (b) show base classifier and 
ensemble test error rates, and (c) (d) the bias and variance as described in Section 2. 
Consider the 20/80 split for which Figure 1 (a) shows that minimum base classifier 
error is achieved with 5 features compared with figure (b) 7 features for the ensemble. 
Notice that the ensemble is more robust than base classifiers with respect to noisy  
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Fig. 2. Mean test error rates, Bias, Variance for RFE MLP ensemble over seven 2-class  
Datasets 80/20, 10/90. 5/95  train/test split 

features. In fact, Figure 1 (c) shows that bias is minimised at 27 features, demonstrat-
ing that the linear perceptron with bootstrapping benefits (in bias reduction) from a 
few extra noisy features. Figure 1 (d) shows that Variance is reduced monotonically 
as number of features is reduced, and between 27 and 7 features the Variance 
reduction more than compensates for bias increase. Note also that according to 
Breiman’s decomposition (Section 2), (c) + (d) + 3.1 (Bayes )  equals (a).  

Figure 2 shows RFE linear MLP ensemble mean test error rates, bias and variance 
over all seven datasets from table 1. On average, the base classifier achieves 
minimum error rate at 5 features and the ensemble at 7 features. Bias is minimised at 
11 features and Variance at 3 features. For the 5/95 split there appears to be too few 
patterns to reduce bias, which stays approximately constant as features are reduced. 
Note that for SVC (not shown) the error is due entirely to bias, since variance is zero. 

The comparison for various schemes defined in Section 3 can be found in Table 2. 
It may be seen that the ensemble is fairly insensitive to the ranking scheme and the 
linear perceptron ensemble performs similarly to SVC. In particular, the more 
sophisticated schemes of SFFS and Boosting are slightly worse on average than the 
simpler schemes. Although the 1-dimensional method (Section 3.4) is best on average 
for 20/80 split, as number of training patterns decreases, performance is slightly 
worse than RFE methods. We also tried MLP base classifier with 8 nodes 7 epochs 
which was found to be the best setting without added noisy features [8]. The mean 
ensemble rate for 20/80, 10/90 5/95 was 14.5%,15.7%, 17.9% respectively the 
improvement due mostly to ‘ion’ dataset which has a high bias with respect to Bayes 
classifier.  

To determine the potential effect of using a validation set with a feature selection 
strategy, we chose SVC plus SFFS with the unrealistic case of full test set for tuning. 
The mean ensemble rate for 20/80, 10/90 5/95 was 13.3%, 14.0%, 15.0% for SVC  
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Table 2. Mean best error rates (%)/number of features for seven two-class problems (20/80) 
with five feature-ranking schemes (Mean 10/90, 5/95 also shown) 

perceptron-ensemble classifier SVC-classifier 

rfenn rfenb 1dim SFFS boost rfesvc rfenb 1dim SFFS boost 

diab 24.9/2 25.3/2 25.3/2 25.8/2 25.6/2 24.5/3 24.8/5 24.9/2 25.3/2 25.3/2 

credita 16.5/5 15.7/3 14.6/2 15.6/2 15.5/2 15.7/2 15.1/2 14.6/2 15.4/2 15.1/2 

cancer 4/7 4/5 4.1/5 4.4/3 4.9/7 3.7/7 3.7/7 3.8/11 4.2/5 4.5/7 

heart 21/27 21/18 21/11 23/5 23/18 20/18 20/11 20/18 22/7 24/18 

vote 5.5/5 5.3/7 5.6/18 5.7/2 5.5/2 4.8/2 4.8/2 4.7/2 4.3/3 4.7/2 

ion 18/11 16.7/3 14.8/3 15.8/3 18.1/2 15/11 15.9/7 15.3/5 17.9/5 19.5/5 

card 15.7/7 15/2 14.7/2 16.9/2 14.8/2 15.5/2 14.8/2 14.5/2 16.6/2 14.5/2 

Mean20/80 15.1 14.6 14.2 15.4 15.4 14.2 14.2 13.9 15.1 15.3 

Mean10/90 16.3 16.3 16.6 18.0 17.6 15.5 15.7 15.8 17.5 17.3 

Mean5/95 18.4 18.5 20.0 21.3 21.3 17.0 17.7 18.4 20.3 20.7 
 

Table 3. Mean best error rates (%)/number of features for au1 classification 90/10  with five 
feature ranking schemes 

MLP-ensemble classifier SVC-classifier 

rfenn rfenb 1dim SFFS boost rfesvc rfenb 1dim SFFS boost 

10.0/28 10.9/43 10.9/43 12.3/104 11.9/43 11.6/28 12.1/28 11.9/67 13.9/67 12.4/43 
 

 
and 13.5%, 14.1%, 15.4% for MLP. We also repeated rfenn without Bootstrapping, 
showing that although variance is lower, bias is higher and achieved 15.7%, 17.6%, 
20.0% respectively, demonstrating that Bootstrapping has beneficial effect on 
performance. 

Table 3 shows feature-ranking comparison for au1 classification from the Cohn-
Kanade database as described in Section 4. It was found that lower test error was 
obtained with non-linear base classifier and Figure 3 shows test error rates, using an 
MLP ensemble with 16 nodes 10 epochs. The minimum base error rate for 90/10 split 
is 16.5% achieved for 28 features, while the ensemble is 10.0% at 28 features. Note 
that for 50/50 split there are too few training patterns for feature selection to have 
much effect. Since class distributions are unbalanced, the overall error rate may be 
mis-leading, as explained in Section 4. Therefore, we show the true positive rate in 
Figure 3 c) and area under ROC in Figure d). Note that only 71% of au1s are 
correctly recognised. However, by changing the threshold for calculating the ROC, it 
is clearly possible to increase the true positive rate at the expense of false negatives. 
Nevertheless, it is believed that the overall ensemble rate of 10% is among the best 
for au1 on this database (recognising the difficulty of making fair comparison as 
explained in Section 4). We did try SVC for degree 2,3,4 polynomials with C varying,  
 



 Feature Ranking Ensembles for Facial Action Unit Classification 277 

160 104  67  43  28  18  12   8   5   3

17

18

19

20

E
rr

or
 R

at
es

 %

(a) Base 

90
50

160 104  67  43  28  18  12   8   5   3

12

14

16

(b) Ensemble

160 104  67  43  28  18  12   8   5   3
55

60

65

70

 R
at

e 
%

number of features

(c) true pos

160 104  67  43  28  18  12   8   5   3
0.82

0.84

0.86

0.88

0.9

0.92

C
oe

ffi
ci

en
t

number of features

(d) Area under ROC 

 

Fig. 3. Mean test error rates, True Positive and area under ROC for RFE MLP ensemble for au1 
classification  90/10. 50/50  train/test split 

but did not improve on degree 1 results. The results are not presented but the 
performance of SVC was very sensitive to regularisation constant C, which makes it 
difficult to tune and we did not try different kernels. 

6   Discussion  

There is conflicting evidence over whether an SVC ensemble gives superior results 
compared with single SVC, but in [28] it is claimed that an SVC ensemble with low 
bias classifiers gives better results. However, it is not possible to be definitive, 
without searching over all kernels and regularisation constants C. In our experiments, 
we chose to consider only linear SVC, and found the performance to be sensitive to C. 
In contrast, the ensemble is relatively insensitive to number of nodes and epochs [8], 
and this is an advantage of the MLP ensemble. However, we believe it is likely that 
we could have achieved comparable results to MLP ensemble by searching over 
different kernels and values of C for SVC. 

The feature-ranking approaches have been applied to a two-class problem in facial 
action unit classification. The problem of detecting action units is naturally a multi-
class problem, and the intention is to employ multi-class approaches that decompose 
the problem into two-class problems, such as Error-Correcting Output Coding 
(ECOC) [29]. 

7   Conclusion 

A bootstrapped MLP ensemble, combined with RFE and product of weights feature-
ranking, is an effective way of eliminating irrelevant features. The accuracy is 
comparable to SVC but has the advantage that the OOB estimate may be used to tune 
parameters and to determine when to stop eliminating features. Simple feature-
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ranking techniques, such as 1-dimensional class separability measure or product of 
MLP weights plus RFE, perform at least as well as more sophisticated techniques 
such as multi-dimensional methods of SFFS and Boosting.  
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