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Abstract. This paper presents a generative model and its estimation
allowing to visualize binary data. Our approach is based on the Bernoulli
block mixture model and the probabilistic self-organizing maps. This
leads to an efficient variant of Generative Topographic Mapping. The
obtained method is parsimonious and relevant on real data.

1 Introduction

Linear methods for exploratory visualization [1] are very powerful and contribute
effectively to data analysis every days, but large datasets require new efficient
methods. Indeed, the algorithms based on the matricial decomposition become
useless for large matrices; moreover, the construction of many maps due to high-
dimensionality makes the task of interpretation difficult from the information
disseminated on the different maps. Finally a great quantity of data implies a
great quantity of information to be synthesized and complex relations between
individuals and studied variables. It is then relevant, in this context, to use a
self-organizing map (SOM) of Kohonen [2]. SOM is a clustering method with a
vicinity constraint on the cluster centers to give a topological sense to the ob-
tained final partition. The SOM can be seen like an alternative of the k-means
algorithm integrating a topological constraint on the centers. Bishop et al. [3]
has re-formulated SOM within a probabilistic setting to give the Generative To-
pographic Mapping (GTM). GTM is a method similar to the self-organizing map
with constraints of vicinity embedded in a mixture model of gaussian densities.
In contrast to SOM, GTM is based on a well-defined criterion; the model im-
plements an EM algorithm [4] which guarantees the convergence. Recently, to
tackle the visualization of binary data, we have proposed a variant of GTM based
on the classical Bernoulli mixture model [5]. The obtained results are encour-
aging but when the number of parameters increases with the high-dimensional
data, the projection is therefore problematic. To cope with this problem, we
propose in this work to use a parsimonious model in order to overcome the
high-dimensionality problem.

When the data matrix x is defined on a set I of objects (rows, observations)
and a set J of variables (columns, attributes), the block clustering methods,
in contrast to the classical clustering methods, consider the two sets I and J
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simultaneously [6],[7,8],[9]. Recently, these kind of methods were embedded in
the mixture approach [10],[11],[12] and a parsimonious model called Block La-
tent Model has been proposed [13,14]. The developed hard and soft algorithms
appeared more profitable than the clustering applied separately on I and J [15].
For these reasons, we propose to tackle the problem of visualization of I, by
combining the block mixture model and the probabilistic self-organizing maps.
This leads to propose a new generative topographic model.

This paper is organized as follows. In Section 2, to give the necessary back-
ground of the block clustering approach under the mixture model, we review the
block latent model. In Section 3, we focus on the binary data and we propose
a Block Generative Topographic Mapping based on a block Bernoulli model. In
Section 4 devoted to the numerical experiments, we illustrate our method with
three binary benchmarks. Finally, the last section summarizes the main points
of work and indicates some perspectives.

Hereafter, the partition z into g clusters of a sample I will be represented by
the classification matrix (zik, i = 1, . . . , n, k = 1, . . . , g) where zik = 1 if i belongs
to cluster k and 0 otherwise. A similar notation will be used for a partition w
into m clusters of the set J . Moreover, to simplify the notation, the sums and
the products relating to rows, columns, row clusters and column clusters will
be subscripted respectively by the letters i, j, k and �, without indicating the
limits of variation which will be implicit. So, for example, the sum

∑
i stands

for
∑n

i=1, and
∑

i,j,k,� stands for
∑n

i=1

∑d
j=1

∑g
k=1

∑m
�=1.

2 The Latent Block Model

2.1 Block Clustering

In the following, the n× d matrix data is defined by x = {(xij); i ∈ I and ∈ J}
where xij ∈ {0, 1}. The aim of block clustering is to try to summary this matrix
by homogeneous blocks. This problem can be studied under the simultaneous
partition approach of two sets I and J into g and m clusters respectively. Go-
vaert [7,8] has proposed several algorithms which perform block clustering on
contingency tables, binary, continuous and categorical data. These algorithms
consist in optimizing a criterion E(z,w, a), where z is a partition of I into g
clusters, w is a partition of J into m clusters and a is a g × m matrix which
can be viewed as a summary of the data matrix x. A more precise definition of
this summary and criterion E will depend on the nature of data. The search of
the optimal partitions z and w was made using an iterative algorithm. This one
is based on the alternated k-means with appropriate metric applied on reduced
intermediate g×d and n×m matrices. In [13,14], these methods were modeled in
the mixture approach. Hard and soft algorithms were then developed. Efficient
and scalability are the advantages of these new methods. Next, we review this
approach.
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2.2 Definition of the Model

Some of the most popular heuristic clustering methods can be viewed as ap-
proximate estimations of probability models. For instance, the inertia crite-
rion optimized by the k-means algorithm corresponds to the hypothesis of a
population arising from a gaussian mixture. For the classical mixture model,
the probability density function (pdf) of a mixture sample x = (x1, . . . , xn)
can be also written [13] f(x; θ) =

∑
z∈Z p(z; θ)f(x|z; θ) where Z denotes the

set of all possible assignments z of I into g clusters, p(z; θ) =
∏

i,k pzik

k and
f(x|z; θ) =

∏
i,k ϕ(xi; αk)zik . In the context of the block clustering problem,

this formulation can be extended to propose a latent block model defined by the
following pdf f(x; θ) =

∑
u∈U p(u; θ)f(x|u; θ) where U denotes the set of all

possible assignments of I × J , and θ is the parameter of this mixture model.
In restricting this model to a set of assignments of I ×J defined by a product

of assignments of I and J , assumed to be independent, we obtain the following
decomposition

f(x; θ) =
∑

(z,w)∈Z×W
p(z; θ)p(w; θ)f(x|z,w; θ),

where Z and W denote the sets of all possible assignments z of I and w of
J . Now, as in latent class analysis, the n × d random variables generating the
observed xij cells are assumed to be independent once z and w are fixed; we
then have

f(x|z,w; θ) =
∏

i,j,k,�

ϕ(xij ; αk�)zikwj� ,

where ϕ(.; αk�) is a pdf defined on the real set R and αk� an unknown parameter.
The parameter θ is formed by α = (α11, . . . , αgm), p and q; p = (p1, . . . , pg)
and q = (q1, . . . , qm) are the vectors of probabilities pk and q� that a row and a
column belong to the kth component and to the �th component respectively.

For instance, for binary data, we obtain a Bernoulli latent block model defined
by the following pdf

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,k

pzik

k

∏

j,�

q
wj�

�

∏

i,j,k,�

(αk�)xij (1 − αk�)1−xij ,

where xij ∈ {0, 1}, and αk� ∈ (0, 1). Using this block model is dramatically
more parsimonious than using a classical mixture model on each set I and J :
for instance, with n = 1000 objects and d = 500 variables and equal class
probabilities pk = 1/g and q� = 1/m, if we need to cluster the binary data
matrix into g = 4 clusters of rows and m = 3 clusters of columns, the Bernoulli
latent block model will involve the estimation of 12 parameters α = (αk�, k =
1, . . . , 4, � = 1, . . . , 3), instead of (4 × 500 + 3 × 1000) parameters with two
Bernoulli mixture models applied on I and J separately.

2.3 Estimation of the Parameters

Now we focus on the estimation of an optimal value of θ by the maximum
likelihood approach associated to this block mixture model. For this model, the
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complete data are taken to be the vector (x, z,w) where unobservable vectors z
and w are the labels; the classification log-likelihood

LC(z,w, θ) = L(θ;x, z,w) = log f(x, z,w; θ)

can then be written

LC(z,w, θ) =
∑

i,k zik log pk +
∑

j,� wj� log q� +
∑

i,j,k,� zikwj� log ϕ(xij ; αk�).

The EM algorithm [4] maximizes the log-likelihood LM (θ) w. r. to θ iteratively
by maximizing the conditional expectation of the complete data log-likelihood
LC(z,w, θ) w. r. to θ given a previous current estimate θ(t) and the observed
data x

Q(θ, θ(t))=
∑

i,k c
(t)
ik log pk +

∑
j,� d

(t)
j� log q� +

∑
i,j,k,� e

(t)
ikj� log ϕ(xij ; αk�), (1)

with
c
(t)
ik = P (Zik = 1|θ(t),X = x),

d
(t)
j� = P (Wj� = 1|θ(t),X = x),

e
(t)
ikj� = P (ZikWj� = 1|θ(t),X = x),

where the upper case letters X, Zik and Wj� denote the random variables.
Unfortunately, difficulties arise owing to the dependence structure among the

variables Xij of the model, and more precisely, to the determination of e
(t)
ikj�.

To solve this problem a variational approximation by the product c
(t)
ik d

(t)
j� and

a use of the Generalized EM algorithm (GEM) provide a good solution in the
clustering and estimation contexts [14].

Next we develop the Generative Topographic Mapping which is based on a
constrained block Bernoulli mixture whose parameters can be optimized by using
a Generalized EM algorithm.

3 Block Generative Topographic Mapping

The Generative Topographic Mapping is a method similar to SOM but based
on a constrained gaussian mixture density estimation. The clusters are typically
arranged in a regular grid, which is the latent discretized space. The parameters
are parameterized as a linear combination of g vectors of h smooth nonlinear
basis functions φ evaluated on g coordinates of a rectangular grid {sk}k=g

k=1, so
for k = 1, · · · , g we note

ξk = Φ(sk) = (φ1(sk), φ2(sk), · · · , φh(sk))T ,

where each basis function φ is a kernel-like function,

φ(sk) = exp
(
− ||sk − μφ||2

2ν2
φ

)
,



The Block Generative Topographic Mapping 17

with μφ ∈ R
2 a mean center and νφ a standard deviation. More formally, we

parameterize the αk�’s of the block latent model by using the latent space pro-
jected into a higher space of h dimensions and we obtain m new h-dimensional
unknown vectors noted w� to be estimated. To keep the dependence on � and k of
αk�, we use the inner product wT

� ξk which is then normalized to a probability by
the sigmoid function σ(.) as a parameter of the Bernoulli pdf. With this formu-
lation, the g×m matrix α is replaced by the h×m matrix Ω = [w1|w2| · · · |wm].
As h is small in practice, as several tens, the model remains parsimonious. In the
previous example where the binary data consists of 1000 rows and 500 columns,
we end to about several hundred h × m parameters because h is typically less
than 40 and m less than 10. The number of parameters is still less than in the
case of a classical mixture approach applied to the both sets separately. Our
model has a good foundation to avoid overfitting and its estimation may be less
prone to fall into local optima thanks to the small number of parameters: alter-
native models have a linear increasing of the number of their parameters when
the dimension of the data space becomes higher, contrary to the Block GTM.
The following figure 1 shows how the discretized plane becomes a non linear
space of probability with the constraints of vicinity.

sk

ξk

Fig. 1. The graphic illustrates the parameterization of the non linear sigmoid with
transformation from a bidimensional Euclidean space to a space of parametric proba-
bilities. In the left the rectangular mesh of the sk’s coordinates is drawn, and in the
right the distribution space from ϕ. Each coordinate of the mesh sk, k = 1, · · · , g, is
mapped in order to become a Bernoulli pdf by writing σ(wT

� ξk), � = 1, · · · , m.

The maximization of the new expression of (1) depending on Ω can also be per-
formed by the alternated maximization of conditional expectations Q(θ, θ(t)|d)
and Q(θ, θ(t)|c) [14]. When the proportions are supposed equal, the two criteria
take the following form

Q(θ, θ(t)|d) =
∑

i,k c
(t)
ik

{∑
� ui�w

T
� ξk − d� log(1 + ewT

� ξk)
}

,

Q(θ, θ(t)|c) =
∑

j,� d
(t)
j�

{∑
k vjkwT

� ξk − ck log(1 + ewT
� ξk)

}
,
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with ui� =
∑

j d
(t)
j� xij , d� =

∑
j dj� and c

(t)
ik ∝ ∏

�(σ(wT
� ξk))ui�(1−σ(wT

� ξk))d�−ui� ,

and vjk =
∑

i c
(t)
ik xij , ck =

∑
i cik and d

(t)
j� ∝ ∏

k(σ(wT
� ξk))vjk (1−σ(wT

� ξk))ck−vjk .
A closed form for maximizing these two expectations does not exist yet because
of the non linearities from the sigmoid functions, so we use a gradient approach
to calculate

w(t+ 1
2 ) = argmaxw Q(θ, θ(t)|d) and w(t+1) = argmaxw Q(θ, θ(t+ 1

2 )|c).

By derivative of the two criteria, we get the gradient vectors Q(t)
u , Q(t)

v , and
the Hessian matrices H(t)

u , H(t)
v . As the Hessian are block diagonal matrices, we

are able to increase the log-likelihood at each step of EM, by two consecutive
Newton-Raphson ascents for � = 1, . . . , m. This leads to the Generalized EM
algorithm. If we note Φ = [ξ1|ξ2| · · · |ξg]T the g × h matrix of basis functions,
each w� is then expressed as

w
(t+ 1

2 )

� = w
(t)
� + 1

d(�)

(
ΦT GF�Φ

)−1(
ΦT Cu� − d(�) ΦT Gα�

)
,

w
(t+1)
� = w

(t+ 1
2 )

� + 1
d(�)

(
ΦT GF�Φ

)−1(
ΦT V d� − d(�) ΦT Gα�

)
,

where C = (c(t)
ik ) is a g × n matrix of posterior probabilities, V = (v(t)

jk ) a

g × d matrix of sufficient statistics, G = (c(t)
k ) and F� = (α(t)

k� (1 − α
(t)
k� )) are

g × g diagonal matrices, α� = (α(t)
k� ) a g × 1 vector, u� = (u(t)

i� ) a n × 1 vector,
d� = (d(t)

j� ) a d × 1 vector, and d(�) = d
(t)
� is a scalar.

Finally, for each �, the current parameters w
(t)
� ∈ R

h converges towards the
solution ŵ�. To avoid overfitting and bad numerical solutions, we use a bayesian
gaussian prior [16] inducing the bias −η�||w�||2/2 for each w�. The correction
of the estimates is then done by adding −η�w� to the gradient and −η�Ih to
the diagonal of the Hessian, where Ih is the h-dimensional identity matrix. The
value of the hyperparameters η� can be manually chosen or estimated.

This Newton-Raphson process in a matrix form sounds like an IRLS [17]
step, a crude alternative is a simple gradient with training constant ρu and ρv

instead of the Hessian inverse. Finally, one can notice that the symmetry of the
two original mirrored formulas for each side of the matrix is lost because only
rows are mapped. Next we illustrate the proposed model on several datasets and
demonstrate its good behavior in practice.

4 Numerical Experiments

We experiment our new mapping method on three classical datasets to illustrate
the approach. The initialization of the map is done with the help of the first
factorial plane from Correspondence Analysis [18], by drawing a mesh over this
plane and constructing the initial Bernoulli parameters α

(0)
k� according to this

crude clustering.
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Fig. 2. The Block GTM mapping of the 2000×240 image matrix from binarized digits

The first dataset is compound of 2000 binarized images from a database of
handwritten digits. For each of the 10 digits ’0’, ’1’ and ’9’, there are 200 images
which were digitalized into 240 multi-dimensional vectors, so the data matrix
is 2000 × 240 with 10 classes for the row side. No information about class for
the column side is provided. The mapping of these data is presented in figure 2
which shows quite good separation of the classes, close to that of the early work
of [19,20]. We used a map of size 10 by 10, and 9 nonlinear basis functions plus
one intercept and the linear position of the node over the plane, so h = 12, and
g = 100. We choose empirically the value of m = 20 as a good number of classes
for columns after several manual trials. On the figure 2, the posterior means,∑

k ĉiksk, are visualized by a different symbol and color plot for each different
class label.

To check more easily the block latent model property and the behavior of the
proposed algorithm, two textual datasets are studied with m = 10, g = 81 and
h = 28.

The second dataset is compound of 400 selected documents from a textual
database of 20000 news. Four newsgroups among the twenty existing ones were
kept: ”sci.cryp”, ”sci.space”, ”sci.med”, ”soc.religion.christian”. For each news-
group, 100 mails were chosen randomly. The data matrix was then constructed
as following. From all the texts, the whole vocabulary of the stemmed words is
sought for the entire corpus. Then, a first matrix is constructed with its rows
corresponding to texts, and columns corresponding to terms. The value of a cell
in this matrix is the number of occurrence of the word in the text. The final
list of words is chosen by evaluating mutual information to maximize separa-
tion between classes of document thanks to known labels. The final matrix is
400 × 100 with 4 clusters of documents [19,20]. The mapping of this texts on



20 R. Priam, M. Nadif, and G. Govaert

Fig. 3. The Block GTM mapping of the 400×100 textual matrix from four newsgroups

Fig. 4. The Block GTM mapping of the 449× 167 textual matrix from three scientific
datasets

figure 3 reveals the four topics of discussion which are easily recognizable. The
classes are well separated with precise frontiers and we were able to interpret
clusters of words too.

The third dataset is a sample of the Classic3 [21] matrix which is a bag of
words coding of scientific articles. They come from the three bases Medline,
Cisia, Cranfield. We select 450 documents from this file, by randomly drawing
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150 documents from each cluster. We select the more frequent words over 30
from all the vocabulary of 4303 terms and we end to a random matrix with
approximately 450 rows and 170 columns while discarding the empty rows. One
of these matrices was then mapped. Our approach permits us to observe the
behavior of the algorithm and we noticed that the solution was stable with only
some few outliers badly placed over the plane. The reason is that the clusters
are not perfectly separated and that binary coding is not the optimal way to
see textual contents. Moreover, we observe quite similar mapping by our binary
solution when comparing with the state of art multinomial model-based mapping
for the newsgroups file. In future, a contingency table should be modeled to get
an even better result in the textual case. Despite this remark, we are still able
to visualize the three classes almost perfectly well separated by the non linear
mapping in the Figure 4.

5 Conclusion

Considering clustering and visualization within the mixture model approach, we
have proposed a new generative self-organizing map for binary data. The pro-
posed Block Generative Topographic Mapping achieves topological organization
of the cluster centers basing on a parsimonious block latent model. It counts far
fewer parameters than the previously existing models based on a multivariate
Bernoulli mixture model [19], a multinomial pLSA [22] or a Bernoulli pLSA [5].
In table 1, when we consider the clustering only on the rows and the proportions
pk and q� being equal, we report the number of parameters used from the cited
models. We note that with our model, the number of parameters increases only
with the number of column clusters.

In the visualization context, our variant of GTM gives encouraging results
on three applications in two real domains (images and texts). While the linear
correspondence analysis is not able to show separately the different clusters over
this first plane, our algorithm appears more efficient. Furthermore, the number of
parameters of an alternative of the multinomial model in [23,24] for binary data
remains the same as for the unconstrained model. So the Block GTM appears
clearly as the best candidate to scale for data mining problems.

A first appealing perspective of the model is in domain of textual analysis.
Thanks to the clustering of the columns, we are able to map clusters for texts

Table 1. The number of parameters for Bernoulli probabilistic SOMs with m � d

Model unconstrained constrained

Bernoulli mixture model gd hd

Bernoulli pLSA (n + d)g ng + dh

Multinomial pLSA gd hd

Block latent model gm hm



22 R. Priam, M. Nadif, and G. Govaert

and words together, by evaluating the new heuristic probability that the j-st
word belongs to the k-st class, with the following formula

djk ∝
∑

�

dj�αk�

which appears as a crude marginalization over an hidden random variable classi-
fying the columns. The first experiments provide promising results. The vocab-
ulary from each topic appears clearly more probable where each corresponding
topic lies on the map. This clustering is very different from the usual one: in
the literature, it is usually shown the most probable terms for each cluster of
document. A distribution over the map is learned for rows and indirectly for
columns, so an original perspective is to construct a non linear biplot as [25] by
a fully probabilistic and automatic method.
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