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Abstract. In the biometric verification system of a smart gun, the rightful user of
a gun is recognized based on grip-pattern recognition. It was found that the veri-
fication performance of this system degrades strongly when the data for training
and testing have been recorded in different sessions with a time lapse. This is
due to the variations between the probe image and the gallery image of a sub-
ject. In this work the grip-pattern verification has been implemented based on
both classifiers of the likelihood-ratio classifier and the support vector machine.
It has been shown that the support vector machine gives much better results than
the likelihood-ratio classifier if there are considerable variations between data for
training and testing. However, once the variations are reduced by certain tech-
niques and thus the data are better modelled during the training process, the sup-
port vector machine tends to lose its superiority.

1 Introduction

We develop a prototype recognition system as part of a smart gun, where the hand-
grip pattern recognition ensures that the gun can only be fired by the rightful user. This
system is intended to be used by the police, since carrying a gun in public brings con-
siderable risks. In the US, for example, vital statistics show that about 8% of the law-
enforcement officers killed in a shooting incident were shot by their own weapons [1].

Figure 1 shows both the prototype of the smart gun and an example of the grip-
pattern image. One can see from the right-side figure the pressure pattern of the thumb
in the upper-left corner of the image, and those of fingers in the remaining part. Note
that only three fingers are present, because the index finger is near the trigger of the
gun. We collected the grip-pattern data from a group of police officers in three sessions
with a time lapses in between [2]. The data were processed for verification based on a
Likelihood-Ratio Classifier (LRC) described in [3]. Initial experimental results indicate
that if data for training and testing come from the same collection session, the verifi-
cation results are fairly good, with an equal-error rate (EER) below 1%; otherwise the
results are unsatisfactory, i.e., about 15% EER on average. Since in practice there will
always be a time interval between data enrollment and verification, the across-session
results are more relevant and, therefore need to be improved.

Having analyzed the data collected all sessions, we found that the data of one sub-
ject collected across sessions vary greatly, even though the grip-pattern images of this
subject from one same session look fairly similar [2]. There are mainly two types of
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Fig. 1. Left: prototype of the smart gun. Right: an example of grip-pattern image.

across-session variations. First, a variation of pressure distributions occurs between grip
patterns from a subject collected in different sessions. A second type of variation results
from the hand shift of a subject across sessions [2]. Figure 2 shows two images collected
from one subject in two different sessions, respectively. One can see that these two im-
ages have quite different pressure distributions. Besides, the hand-grip pattern in the
image on the right side is located higher, than that in the image on the left side. Fur-
ther research showed that these variations are the main reason for the unsatisfactory
across-session verification results [2].

Fig. 2. Grip-pattern images of a subject in different collection sessions

Based on the characteristics of the grip-pattern images mentioned above, the verifica-
tion results can be improved by reducing the across-session variations of data. In earlier
work we applied three methods, each of which effectively improved the verification re-
sults, respectively. Firstly, we used template-matching registration (TMR) to reduce the
across-session variation due to the hand shift [4][5]. By doing this the EER was reduced
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to about 13% from about 15%. The second technique that we applied was the double-
trained model (DTM), where the data from two out of three collection sessions were
combined for training, and those of the remaining session were used for testing. With
DTM, the across-session variations of data were much better modelled in the training
procedure, compared to the case where only one collection session of data were used for
training. The verification results proved to be greatly improved by DTM, with the EER
reduced from 15% to about 8% on average. Thirdly, we applied an image preprocess-
ing approach, Local Absolute Binary Patterns (LABP), prior to classification [6]. This
technique can reduce the across-session variation of hand-pressure distribution. Specif-
ically, with respect to a certain pixel in an image, the LABP processing quantifies how
its neighboring pixels fluctuate. It was found that the application of LABP improved the
verification results significantly, with the EER reduced from 15% to about 9% on aver-
age. Finally, the verification results were improved greatly when all these three methods
were applied together, with an average EER of about 3% approximately.

Note that all the verification results given above are based on LRC, which requires
estimation of the probability density function (PDF) of the data [3]. Therefore, if there
exist large variations between data for training and testing, the verification results will
be greatly degraded. To further improve the verification results and also to set a ref-
erence for evaluation of the results obtained so far, we decided to implement another
classifier which is more capable to cope with the across-session variations of data. With
these motives, we chose the Support Vector Machine (SVM). As a contrast to LRC,
SVM does not estimate the data’s distribution. Instead, it tries to maximize the margin
between different classes. Therefore, it is expected to be more robust to across-session
data variations than the PDF-based classifiers in a many cases.

This paper presents and compares the verification results by using SVM and LRC. The
remainder of this paper is organized as follows: Section 2briefly describes the verification
algorithms based on LRC and SVM, respectively. Subsequently, Section 3 presents and
discusses the experimental results. Finally, conclusions are given in Section 4.

2 Verification Algorithms

2.1 Likelihood-Ratio Classifier

In classification by the LRC, it is assumed that the data is Gaussian [7],[8]. The pixel
values of a grip-pattern image are arranged into a (in this case 44 × 44 = 1936-
dimensional) column vector x. The feature vector x is normalized, i.e. ‖x‖2 = 1, prior
to classification. A measured image originates either from a genuine user, or from an
impostor. The grip-pattern data of a certain subject is characterized by a mean vector
μW and a covariance matrix ΣW, where the subscript W denotes ‘Within-class’; while
the impostor data is characterized by μT and ΣT, where the subscript T denotes ‘To-
tal’. The matching score of a measurement x with respect to this subject is derived from
the log-likelihood ratio. It is computed by

S(x) = −(x − μW)TΣ−1
w (x − μW)

+ (x − μT)TΣ−1
T (x − μT). (1)
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If S(x) is above a preset threshold, the measurement is accepted as being from the
genuine user. Otherwise it is rejected [3]. The threshold determines the false reject rate
(FRR) and the false acceptance rate (FAR) of verification.

In practice the mean vectors and covariance matrices are unknown, and need to be
estimated from a set of training data. In our case, the number of training samples from
each subject should be much greater than 1936. Otherwise, the algorithm would become
overtrained [3]. However, we cannot make this large number of measurements, for it
would be very impractical for the training of the classifier. In addition, the estimated
values of the covariance matrices would be rather inaccurate if the feature dimension-
ality is too large.

This problem can be solved by the following steps prior to classification. Firstly, we
project all the data into a whitened PCA (Principal Component Analysis) space, such that
ΣT becomes an identity matrix with a lower dimensionality of NPCA. At this point, we
make a simplifying assumption that each subject shares the same within-class covariance
matrix with each other, so that it can be estimated more accurately from the data of all
the subjects. It was proved in [3], that in this new feature space, the number of modes
of variations contributing to the verification, is not more than Nuser − 1, where Nuser is
the number of subjects for training. Besides, these modes of variations have the smallest
variances of each individual subject’s data. A further dimensionality reduction can then
be achieved by applying another PCA to the data, and discarding all the modes of varia-
tions except the Nuser − 1 ones with the smallest variances. This last operation is in fact
a dimensionality reduction by means of the LDA (Linear Discriminant Analysis). The
whole procedure of dimensionality reduction can be represented by a transformation ma-
trix F. After the LDA, the total covariance matrix becomes an identity matrix, while the
within-class covariance matrix becomes diagonal. Both of them have a dimensionality
of Nuser − 1 [3]. As a result, (1) can be rewritten as

S(x) = −(Fx − FμW)TΛ−1
w (Fx − FμW)

+ (Fx − FμT)T(Fx − FμT), (2)

where ΛW denotes the resulting diagonal, within-class covariance matrix. Equation (2)
shows that four entities in total need to be estimated from the training data: μW, μT,
F, and ΛW.

2.2 Support Vector Machine

The SVM is a binary classifier that maximizes the margin between two classes. At-
tributed to this characteristic, the generalization performance (i.e. error rates on test
sets) of SVM usually either matches or is significantly better than that of competing
methods [9],[10].

Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and
yi ∈ {1, −1}l, SVM requires the solution of the following optimization problem:

min
w,b,ξ

1
2wT w + C

l∑

i=1
ξi (3)

subject to yi(wT φ(xi) + b) ≥ 1 − ξi, (4)

ξi ≥ 0. (5)
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Here training vectors xi are mapped into a higher (maybe infinite) dimensional space
by the function φ. Then SVM finds a linear separating hyperplane with the maximal
margin in this higher dimensional space. C > 0 is the penalty parameter of the error
term, a larger C corresponding to assigning a higher penalty to errors. Furthermore,
K(xi,xj) ≡ φ(xi)T φ(xj) is called the kernel function.

We applied SVM to the grip-pattern verification, where multiple users are involved,
by using the method proposed by [11]. Specifically, the problem is formulated in a
difference space, which explicitly captures the dissimilarities between two grip-pattern
images. In this difference space, we are interested in the following two classes: the
dissimilarities between images of the same individual, and the dissimilarities between
images of different people. These two classes are the input to a SVM algorithm, and the
SVM algorithm generates a decision surface separating the two classes.

The data are transformed by both PCA and LDA in exactly the same way as in the
case of the LRC, prior to the classification. In SVM we used the Gaussian radial basis
function kernel.

3 Experiments, Results and Discussion

We recorded the grip-pattern data from a group of police officers in three sessions, with
approximately one month and four months in between. In total, 39 subjects participated
in both the first and the second collection sessions with 25 grip-pattern images recorded
for each subject. In the third session, however, the data were collected from 22 subjects
out of the same group, and each subject contributed 50 images. The verification per-
formance is evaluated by the overall EER of all the subjects. It is computed from the
matching scores of all the genuine users and impostors.

The experimental results obtained by using the SVM and the LRC are compared
in five cases. In the first case, none of the three methods of TMR, DTM and LABP
described in Section 1 is in use (see Table 1). Only one of these methods is applied in
the second, third, and fourth case, respectively (see Table 2, 3, and 4). In the last case,
all of the three methods are implemented (see Table 5).

Table 1. Original verification results in EER(%)

Train Test LRC SVM

1 3 24.09 17.55
2 3 18.95 14.73
1 2 7.94 4.36
3 2 20.16 11.64
2 1 5.53 4.00
3 1 14.70 11.45

Average 15.2 10.6

One can see from Table 1 that if none of the methods of TMR, DTM and LABP is
applied, the verification results based on SVM are much better on average, than those
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Table 2. Verification results in EER(%) with data preprocessed by TMR

Train Test LRC SVM

1 3 18.36 10.55
2 3 18.88 13.24
1 2 5.98 5.84
3 2 17.82 15.45
2 1 3.90 4.07
3 1 12.91 10.73

Average 12.9 9.9

Table 3. Verification results in EER(%) with DTM

Train Test LRC SVM

1+2 3 13.73 12.73
1+3 2 5.09 5.27
2+3 1 4.00 4.47
Average 7.6 7.4

obtained by LRC. This suggests that SVM is more capable in coping with large across-
session variations of data, compared to LRC. This may be attributed to the different
characters of these two classifiers. Since the SVM tries to maximize the margin between
different classes, it seems to have better generalization performance compared to the
LRC, which is based on the PDF estimation of data.

However, Table 2, 3, and 4 show that if one of TMR, DTM or LABP is applied, the
SVM is not as much superior to the LRC as in Table 1, even though the verification
results based on both classifiers become improved on average. That is, LRC benefits
more from these methods than SVM. It is quite interesting to note that LRC actually
outperforms SVM, if all three preprocessing methods are combined in use (see Table 5).
To summarize, SVM seems to lose its superiority to LRC once the data are better mod-
elled in the training session. What’s more, the better the data are modelled, the more
superiority SVM tends to lose. Since the best verification results are obtained by using
LRC (see Table 5), we shall continue our future work based on LRC, instead of SVM.

Table 4. Verification results in EER(%) with data preprocessed by LABP

Train Test LRC SVM

1 3 9.98 6.91
2 3 16.73 9.81
1 2 5.23 3.09
3 2 11.91 10.31
2 1 4.82 3.57
3 1 8.55 8.76

Average 9.5 7.0
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Table 5. Verification results in EER(%) with TMR, DTM and LABP

Train Test LRC SVM

1+2 3 4.86 7.64
1+3 2 3.64 5.82
2+3 1 2.02 3.67
Average 3.5 5.7

4 Conclusions

The grip-pattern verification has been implemented based on both classifiers of LRC and
SVM, and the results have been compared under different conditions. It has been shown
that SVM gives much better results than LRC, when there are considerable data varia-
tions between training and testing. That is, in the situation where data are improperly
modelled during the training process, SVM seems to be able to capture the character-
istics of data better than LRC. However, once the variations are reduced and thus the
data are better modelled during the training process, SVM tends to lose its superiority.
Besides, the better the data are modelled, the less SVM tends to outperform LRC.
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