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Abstract. Automated annotation of the web documents is a key challenge of the 
Semantic Web effort. Web documents are structured but their structure is 
understandable only for a human that is the major problem of the Semantic Web. 
Semantic Web can be exploited only if metadata understood by a computer reach 
critical mass. Semantic metadata can be created manually, using automated 
annotation or tagging tools. Automated semantic annotation tools with the best 
results are built on different machine learning algorithms requiring training sets. 
Another approach is to use pattern based semantic annotation solutions built on 
NLP, information retrieval or information extraction methods. Most of developed 
methods are tested and evaluated on hundreds of documents which cannot prove 
its real usage on large scale data such as web or email communication in 
enterprise or community environment. In this paper we present how a pattern 
based annotation tool can benefit from Google’s MapReduce architecture to 
process large amount of text data. 
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1   Introduction 

Automated annotation tools can provide semantic metadata for semantic web as well 
as for knowledge management [4] or other enterprise applications [11]. 

Pattern based automatic or semi-automatic solutions for semantic annotation or 
tagging are usually based on NLP, information retrieval or information extraction 
fields or minimally method algorithms common in the mentioned fields are applied. 

Information Extraction - IE [1] is closed to semantic annotation or tagging by 
Named Entity recognition – NE defined by series of MUC conferences. 

Semi automatic annotation approaches can be divided into two groups with regards 
to produced results [1]: 

 identification of concept instances from the ontology in the text 
 automatic population of ontologies with instances in the text 

One of pattern based solutions for semi-automatic annotation is Ontea [2] [3] that 
uses regular expression patterns to detect or create instances in ontology. In our previous 
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works [2] [3] we compared Ontea with other annotation methods and we conducted  
experiments to demonstrate its success rate above 60% that is comparable to well 
known annotation methods with easier applicability on concrete domain specific appli-
cation due to relatively simple method built on regular expressions. This is another rea-
son behind our decision to port Ontea into MapReduce architecture. We believe other 
well known semantic annotation or IE solutions such as C-PANKOW, KIM, GATE or 
different wrappers can be ported into MapReduce architecture. For survey on semantic 
annotation please see [4] [5] [14].  

To our best knowledge the only semantic annotation solution which runs on dis-
tributed architecture is SemTag [6]. It uses the Seeker [6] information retrieval plat-
form to support annotation tasks. SemTag annotates web pages using Stanford TAP 
ontology [7]. However, SemTag is able to identify but not create new instances in the 
ontology. Moreover, its results as well as TAP ontology are not available on the web 
for a longer period of time.  

In our previous work we ported semantic annotation into Grid [3] with good results 
but with no easy and direct implementation and results integration. Thus we have fo-
cused on different parallel and distributed architectures.  

Google’s MapReduce [8] architecture seems to be a good choice for several reasons: 

 Information processing tasks can benefit from parallel and distributed archi-
tecture with simply programming of Map and Reduce methods 

 Architecture can process Terabytes of data on PC clusters with handling failures 
 Most of information retrieval and information extraction tasks can be ported 

into MapReduce architecture, similar to pattern based annotation algorithms. 
E.g. distributed grep using regular expressions, one of basic examples for 
MapReduce, is similar to Ontea pattern approach using regular expressions 
as well.  

 
 

Fig. 1. MapReduce Architecture figure (source: Hadoop website) 

 
On Figure 1 we can see main components of the MapReduce architecture: Map and 

Reduce methods, data in distributed file system (DFS), inputs and outputs. Several 
replicas of data are created on different nodes, when data are copied to DFS. Map 
tasks are executed on the nodes where data are available. Results of Map tasks are key 
value pairs which are reduced to results produced by Reduce method. All developer 
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need to do is implement Map and Reduce method and architecture will take care of 
distribution, execution of tasks as well as fault tolerance. For more details on MapRe-
duce please see [8]. 

Two open source implementation of MapReduce are available: 

 Hadoop [9], developed as Apache project with relation to Lucene and Nuch 
information retrieval systems, implemented in Java. Hadoop is well tested on 
many nodes. Yahoo! is currently running Hadoop on 10,000 nodes [15] in 
production environment [16].  

 Phoenix [10], developed at Stanford University, implemented in C++. 

In this paper we discuss work in progress - porting of pattern based semantic anno-
tation solution Ontea into MapReduce architecture and its Hadoop implementation. We 
provide preliminary results on 8 nodes Hadoop cluster on email documents. 

2   Ontea 

The method used in Ontea [2] [3] is comparable particularly with methods such as 
those used in GATE, C-PANKOW, KIM, or SemTag. It process texts or documents 
of an application domain that is described by a domain ontological model and uses 
regular expressions to identify relations between text and a semantic model. In addi-
tion to having pattern implementation over regular expressions, created Ontea’s archi-
tecture allows simply implementation of other methods based on patterns such as 
wrapers, solutions using document structure, language patterns similar to GATE, C-
PANKOW and many others. Ontea [17] is being created as an Open source project 
under Sourceforge.net. 

2.1   Ontea Scenarios and Results Examples 

Current Ontea implementation can be executed in 3 different scenarios: 

 Ontea: searching relevant individuals in knowledge base (KB) according to 
generic patterns 

 Ontea creation: creating new individuals of objects found in text 
 Ontea IR: Similar as previous with the feedback of information retrieval 

methods and tools (e.g. Lucene) to get relevance computed above word oc-
currence and decide weather to create instance or not. 

Table 1. Examples of Instances and Patterns 

# Text  Instance Patterns – regular expressions 
1 Apple, Inc. Company: Apple Company: ([A-Za-z0-9]+)[, ]+(Inc|Ltd) 
2 Mountain View, CA 94043 

 
Settlement: Mountain View Settlement: ([A-Z][a-z]+[ ]*[A-Za-z]*)[ 

]+[A-Z]{2}[ ]*[0-9]{5} 
3 laclavik.ui@savba.sk Email: laclavik.ui@savba.sk Email:  

[-_.a-z0-9]+@[-_.a-zA-Z0-9]+\.[a-z]{2,8} 
4 Mr. Michal Laclavik Person: Michal Laclavik Person: 

(Mr.|Mrs.|Dr.) ([A-Z][a-z]+ [A-Z][a-z]+) 

New application scenarios can be created by combination of Result Transformers, 
which is discussed in next chapter.  
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2.2   Ontea Architecture 

The fundamental building elements of the tool are the following java interfaces and 
extended and implemented objects: 

 ontea.core.Pattern: interface for adaptation for different pattern search. Cur-
rently implemented pattern search uses regular expressions PatternRegExp. 

 onetea.core.Result: a class representing annotation results by means object 
instance of defined type/class. Its extensions are different types of instances 
depending on implementation in ontology (Jena, Sesame) or as value and 
type pairs.  

 ontea.transform.ResultTransformer: interface that after implementation con-
tains different types of transformations among annotation results. Thus it can 
transforms set of results and include in transformation various scenarios of 
annotation such as relevance, result lemmatization, transformation of found 
value/type pairs (Table 1) into OWL instances in sesame or Jena API im-
plementation. It is used to transform type value pairs into different type value 
pairs represented e.g. by URI or lemmatized text value. It can be also used to 
eliminate irrelevant annotation results.  

 

Fig. 2. Basic classes of Ontea platform 

On the Figure 2 you can see Result class, Pattern and ResultTransformer inter-
faces. Such design allows extending Ontea for different patterns implementations or 
for the integrations of existing pattern annotation solutions. Also it is possible to im-
plement various result transformations by implementing ResultTransformer, which 
can be used also as inputs and outputs between Map tasks in MapReduce architecture. 
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2.3   Integration of Ontea with External Tools 

Ontea tool can be easily integrated with external tools. Some tools can be integrated 
by implementation of result transformers and other need to be integrated directly. 

 MapReduce: Large scale semantic annotation using MapReduce Architecture 
– is main topic of this article. Integration with Hadoop requires implementa-
tion of Map and Reduce methods as described in next chapter. 

 Language Identification: In order to use correct regexes or other patterns, of-
ten we need to identify language of use. For this reason it is convenient to in-
tegrate Ontea with language detection tool. We have tested Ontea with Nalit 
[11]. Nalit is able to identify Slovak and English texts as well as others if 
trained. 

As already mentioned some integration can be done by implementing Result  
transformers: 

 Lemmatization: When concrete text is extracted as representation of an indi-
vidual, often we need to lemmatize found text to found or create correct  
instance. For example capital of Slovakia can be identified in different mor-
phological forms: Bratislava, Bratislave, Bratislavu, or Bratislovou and by 
lemmatization we can identify it always as individual Bratislava. We have 
tested Ontea with Slovak lemmatizer Morphonary [12]. It is also possible to 
use lemmatizers or stemmers from Snowball project [18], where java code 
can be generated.  

 Relevance Identification: When new instance is being created or found, it is 
important to decide on instance relevance. This can be solved using informa-
tion retrieval methods and tools such as Lucene [19]. When connecting with 
Lucene, Ontea asks for percentage of occurrence of matched regular expres-
sion pattern to detected element represented by word on used document set. 
Document set need to be indexed by Lucene. Example can be Google, Inc. 
matched by pattern for company search: \\s+([-A-Za-z0-9][ ]*[A-Za-z0-
9]*),[ ]*Inc[.\\s]+”, where relevance is computed as “Google, Inc.” occur-
rence divided by “Google” occurrence. Use of Lucene is related to Ontea IR 
scenario and LuceneRelevance implementation of ResultTransformer inter-
face. Similarly, other relevance algorithms such as cosine measure can be 
implemented. This was used for example in SemTag [6].   

 OWL Instance Transformation: Sesame, Jena: Transformation of found key – 
value pairs into RDFS or OWL instances in Sesame or Jena API. With this  
integration, Ontea is able to find existing instances in knowledge base if exist-
ing and create new once if no instance found in DB. Ontea also use inference 
to found appropriate instance. For example if Ontea process sentence “Slova-
kia is in Europe.” using pattern for location detection (in|near) 
+(\\p{Lu}\\p{L}+) following type value pair is detected Location: Europe. If 
we have Location ontology with Subclasses as Continents, Settlements, Coun-
tries or Cities and Europe is already present as instance of continent, Ontea 
can detect existing Europe instance in knowledge base using inference.  
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3   Ontea Ported into Hadoop 

For porting Ontea or any semantic annotation solution it is important to understand 
results of annotations as well as how they can correspond to key/value pairs - outputs 
of Map and Reduce methods to be implemented in MapReduce architecture. In table 1 
we show a simple example of Ontea possible annotation results such as settlements, 
company names, persons or email addresses. Used regular expressions are simplified 
to be more readable and understandable.  

In the Map method, input is a text line which is processed by Ontea’s regex pat-
terns and outputs are key value pairs: 

 Key: string starting with detected instance type and continue with instance 
value similar to instance row in table 1. This can be extended to return also 
instance properties e.g. address, phone or email as properties of company.  

 Value: File name with detection of instance. It can be extended with position 
in file e.g. line number and character line position if needed. 

 

Basic building blocks of Ontea are the following java classes and interfaces de-
scribed earlier, which can be extended. Here we describe them in scope of MapRe-
duce architecture: 

 ontea.core.Pattern: interface for adaptation of pattern based searching in text. 
Main Pattern method Pattern.annotate() runs inside of Map method in MapRe-
duce implementation. 

 onetea.core.Result: a class which represents the result of annotation – an ontol-
ogy instance. It is based on the type and value pairs as in table 1, instance col-
umn. Ontology results extension contains also URI of ontology individual created 
or found in ontology. Results are transformed into text keys as output of Map 
method in MapReduce implementation. 

 ontea.transform.ResultTransformer: interface which transform results of annota-
tion. Transformers are used in Map or Reduce methods in MapReduce implemen-
tation to transform individuals into OWL file or eliminate some results using  
Ontea IR scenario.  

3.1   Ontea Running on Hadoop MapReduce Cluster 

We wrapped up Ontea functionality into Hadoop MapReduce library. We tested it on 
Enron email corpus [20] containing of 88MB of data and our personal email contain-
ing of 770MB of data. We run same annotation patterns on both email data sets, on 
single machine as well as 8 node Hadoop cluster. We have used Intel(R) Core(TM)2 
CPU 2.40GHz with 2GB RAM hardware on all machines. 

As you can see from Table 2, the performance increased 12 times on 16 CPUs in 
case of large data set. In case of smaller data set it was only twice faster then on single 
machine and MapReduce overhead is much more visible. In the table 2 we present 
only 2 concrete runs on 2 different datasets, but in reality we have executed several 
runs on these datasets and computational time was very similar so we can conclude 
that times presented in table 2 are very close to average. 
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Table 2. Performance and execution results 

Description Enron corpus (88MB) Personal email (770MB)

Time on single machine 2min, 5sec 3hours, 37mins, 4sec
Time on 8 nodes hadoop 

      cluster 1min, 6sec 18mins, 4sec

Performance increased  1.9 times 12 times

Launched map tasks 45 187

Launched reduce tasks 1 1

Data-local map tasks 44 186

Map input records 2,205,910 10,656,904

Map output records 23,571 37,571

Map input bytes 88,171,505 770,924,437

Map output bytes 1,257,795 1,959,363

Combine input records 23,571 37,571

Combine output records 10,214 3,511

Reduce input groups 7,445 861

Reduce input records 10,214 3,511

Reduce output records 7,445 861

 
In our tests we run only one Map method implementation and one Reduce method 

implementation. We would like to implement also passing Map results to another 
Map method as an input and thus fully exploit potential of ResultTransformers in On-
tea architecture. However, we believe that this new tests does not change – decrees 
performance of semantic annotation on MapReduce architecture.   

4   Conclusion and Future Work 

In this paper we discussed briefly how pattern based semantic annotation could bene-
fit from MapReduce architecture to process a large collection of data. We demon-
strated how Ontea pattern solution could be ported to implement basic Map and Re-
duce methods. Furthermore we provided preliminary results on 8 node Hadoop clus-
ter. As we can see from preliminary results, performance on large datasets is very 
reasonable on Hadoop. MapReduce architecture is scalable to thousands machines. 
We believe semantic annotation can be successful only if able to annotate or tag large 
collections of documents.  

In our future work we would like to test MapReduce also on several Map tasks in a 
row and publish implemented code under Ontea.sourceforrge.net project. We also 
want to use MapReduce architecture to solve concrete application domains such as 
geographical location identification of web pages and large scale email processing to 
improve automated email management and semantic searching. 
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