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Abstract. In this paper we present a High Level Architecture (HLA)
component model, particularly suitable for distributed multiscale simula-
tions. We also present a preliminary implementation of HLA components
and the CompoHLA environment that supports setting up and manag-
ing multiscale simulations built in the described model. We propose to
integrate solutions from High Level Architecture (such as advanced time
and data management) with possibilities given by component technolo-
gies (such as reusability and composability) and the Grid (such as joining
geographically distributed communities of scientists). This approach will
allow users working on multiscale applications to more easily exchange
and join the simulations already created. The particular focus of this
paper is on the design of a HLA component. We show how to insert sim-
ulation logic into a component and make it possible to steer from outside
its connections with other components. Its functionality is shown through
example of multiscale simulation of dense stellar system.

Keywords: Components, Grid computing, HLA, distributed multiscale
simulation, problem solving environments.

1 Introduction and Motivation

Building a simulation system from modules of different scale is an interesting,
but non-trivial issue. There are many approaches to combine different models
and scales in one problem solution, which is difficult and depends on actual
models being combined. When designing problem solving environments for sim-
ulation of multiphysics multiscale systems, one can identify issues related to
actual connection of two or more models together (this includes support for
joining models of different internal time management, efficient data exchange
between two modules of different scale etc.). Apart from that, there are also
issues related to reusing existing models and their composability. For scientists
working on multiscale systems it could be useful to find already existing models
needed and connect them either together or to their own models. To facilitate
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that, there is a need to wrap their simulations into recombinant components
that can be selected and assembled in various combinations to satisfy specific
requirements. Also, there is a need for an infrastructure that allows to exchange
these components between scientists in relatively easy way across administrative
domains.

To summarize, there is a need for a component based model with support spe-
cific for multiscale simulations (complex time interactions, efficient data transfer
between modules of different scale etc) and for an environment that would allow
to build and reuse such components across administrative domains. For the first
requirement, we decided to use solutions provided by High Level Architecture
(HLA) [0, especially because of its advanced time management mechanism that
allows to connect modules of different internal time management. Together with
time management, other HLA services (data management, ownership manage-
ment etc.) give a powerful tool for multiscale simulations [2].

Additionally, HLA partially supports the second requirement — interoperabil-
ity and composability of simulation models, as it separates actual simulations
from the communication infrastructure. Also, each simulation (federate) when
connecting to simulation system (federation) is required to have description of
objects and events exchanged with others. HLA even provides Management Ob-
ject Model (MOM) that allows one of the federates in the federation manage
connections of the others. However, for a component approach this is not enough,
as dynamic joining federates in the federation and easy manipulating their con-
nections from outside by the third party is not directly possible. To satisfy this
requirement we propose a HLA-based component model that allows an external
module (e.g. builder) to define and control particular behavior of components
and their connections on the user request. A user is able not only to dynami-
cally set up multiscale simulation system comprised of chosen HLA components
residing on the Grid [3], but also to decide how components will interact with
each other by setting up appropriate HLA data and time management and to
change nature of their interactions during simulation runtime. To make HLA
components more user friendly for their developers, we have designed them in a
way that they do not require full knowledge of the quite complicated HLA API.

The third requirement — ability to manipulate components across administra-
tive domains — can be fulfilled by using a Grid infrastructure. As a Grid platform
hosting HLA components we have chosen the H20 environment [4].

The main purpose of our approach is to facilitate joining simulations of dif-
ferent scale, so it is directed to the users that want to create new multiscale
simulation systems from existing components or join their own new component
to the multiscale system. For the users that have their own HLA application and
want to run it almost unaltered efficiently using the Grid, we suggested using our
previous work [5], where we have focused on execution management of existing
legacy HLA applications and the best usage of available Grid resources, which
can be achieved by using provided migration and monitoring services.

In this paper we focus on a dynamic change of the component’s time policy
and on manipulating objects’ exchange between simulation modules (which is
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done by switching on/off publish-subscribe mechanism). The functionality of
the system will be shown through an example of multiscale simulation of dense
stellar systems. The paper is organized as follows: in Section Bl we outline related
work, in Section [B] we describe the HLA component model and prototype of its
implementation. Section Ml presents the idea of a Grid support system for such
model. Section [ presents an example multiscale simulation from which we have
taken the simulation logic for two components used in our experiment as well
as the results of the experiment. Summary and future plans are described in
Section

2 Related Work

Multiscale simulations are an important and an interesting field of research. Ex-
amples include multiphysics capillary growth [6] or modeling colloidal dynamics
[7]. The vastly growing number of papers in this area shows the need for an
environment that facilitates exchange of developed models between scientists
working in that field and for a reusable component solution. Among compo-
nent standards worth to be mentioned are: Common Component Architecture
(CCA) [§ (with its implementations like XCAT [9] or MOCCA [I0]), Corba
Component Model [II] or Grid Component Model [12] (with its implementa-
tion ProActive [13]). However, none of this models provide advanced features
for distributed multiscale simulations (in particular they do not support ad-
vanced time management mechanism). An important approach to using services
and component technology to distributed simulations is described in [I4] and is
general on distributed simulations, without special focus on multiscale simula-
tions systems. Another important component framework for simulations [15] is
specifically designed for partial differential equations.

3 HLA Component Model

The HLA component model differs from popular component models (e.g. CCA
[8]), where the federates are not using direct connections (e.g. in CCA one com-
ponent is connected with other component, when its uses port is connected with
partner’s provides port as shown in the Fig. [Th). Instead, all federates within a
federation are connected together and can communicate using HLA mechanisms
like time, data, ownership management etc. This is illustrated in the Fig. Ib.

The difference between the component view proposed in this paper and the
original HLA approach is that the particular behavior of the component and
it’s connections are defined and set by an external module on the user request.
The main advantage of this approach over original HLA is that it facilitates the
user to create federations from federates developed by others. The particular
federation, in which a federate is going to take part, does not need to be defined
by the federate developer, but can be created later — from outside — in the process
of setting up a distributed simulation system. Therefore the presented approach
increases reusability and composability of simulations.
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Fig. 1. CCA and HLA component models

Dynamic interactions in the HLA component model. All federates within
a federation are connected together using a tuple space, which they can use for
subscribing and publishing events and data objects. The tuple space takes care
of sending the appropriate data from the publisher to the subscriber (in most
HLA implementations objects and interactions to be exchanged have to be spec-
ified before federation creation, but there exists an HLA implementation based
on Grid Services [I6] which does not have this limitation). HLA also includes
advanced time management mechanisms that allows to connect federates with
different internal time management. There is no single time for all simulations,
but every simulation has its own internal time and some federates can regu-
late the time of the others (called constrained) if necessary. The communication
between federates is done by exchanging time stamped objects and interactions.

In the HLA component model, as shown in the Fig. b, it is possible not only
to dynamically join federate to a federation from outside [I7], but also to steer
the connections between federates. Therefore, it is possible to pose a request
to one of the components to subscribe to the particular object class (from the
objects declared in its description) and to another to publish this object class.
In this way one can steer the data flow between simulations during runtime. It is
also possible to set one federate to be constrained and another to be regulating.
Section B provides an example that illustrates this.

HLA component implementation. As a Grid framework we have chosen the
H20 [] platform as it is lightweighted and enables dynamic remote deployment.
The HLA component is implemented as a H20 pluglet. In our prototype we
have implemented basic requests to start — stop the simulation and requests for
federation management: join and resign described in more detail in [I7]. In this
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Fig. 2. Relationship between component’s developer code (simulation logic), HLA RTT
implementation and compoHLA library

paper we focus on chosen requests for time and data management: set time policy
for regulating or constrained, subscribe and publish for object class. The set of
requests can be easy extended according to HLA possibilities in the future. The
component developer has to provide a simulation logic code which is connected
with a pluglet by interfacing with the compoHLA library as shown in the Fig.

The CompoHLA library introduces two classes with abstract methods that
should be overridden by a component developer. One is the CompoHLASimulator
class, from which the developer has to inherit and point to the main function
starting simulation. There is also the CompoHLADataObject class that has to be
inherited for each data object that is going to be published by the federate and
be visible outside for external user (who is going to chose this component to be
connected to his simulation system). The developer has to specify how actual
simulation data fits into HLA data objects that could possibly be exchanged
with other federates. Also, a developer has to override FederateAmbassador
class callbacks (there are used by RTI to communicate with developer code
e.g. when receiving data from other federates) as in the original RTI federate.
The simulation developer can also call methods of the CompoHLAFederate class
which, in turn, uses the HLA RTIambassador class (main class providing HLA
services). The methods include getting info about federate time and requests of
time advance as well as checking if stop request came (in order to perform final
operations before the simulation exit).

The use of the compoHLA library does not free the developer from under-
standing HLA time management and data exchange mechanisms, but simplifies
use of them and allows the HLA component to be steered from outside (by
external requests as described above).

4 CompoHLA — Environment Supporting HLA
Component Model

Fig. [ shows the proposed CompoHLA environment that supports setting and
managing applications consisting of HLA components and consists of following
elements:

HLA Component Description Repository — stores description of com-
ponents — including information about data objects and interactions that the
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Fig. 3. Collaboration diagram illustrating interactions between basic elements of Com-
poHLA environment. Simulation Object Model (SOM) contains the description of ob-
jects and events that can be exchanged by a HLA component. Fedaration Object Model
(FOM) consists of SOMs and describes a federation of HLA Components.

component can exchange with others (which is called Simulation Object Model
— SOM), the type of time management that makes sense for this component
and additional information that may be useful for user that wants to set up
multiscale system (e.g. units of produced data, scale of simulation time, if roll-
back is possible, how subscription for particular data affects simulation, average
execution time etc.).

HLA Components Description Assembler — produces Federation Object
Model (FOM) needed to start federation from given SOMs of components that
will comprise simulation system.

Builder — sets up a simulation system on behalf of the user. It uses Federation
Management Component to create federation and instructs HLA Components
to join it. It also can instruct chosen components to set appropriate time man-
agement mechanism and subscribe or publish chosen data objects or events.

Federation Manager Component — manages whole federation on the compo-
nent level and sets up connection with RTI coordination process for federations
(RTIExec in HLA RTI DoD implementation, rtig in Certi RTI)

HLA Components — wrap actual functionality of federates into components.
In this paper we particularly focus on this part of the system.
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The collaboration between system elements is shown in the Fig. Bl A user can
search the HLA Components Description Repository to find HLA components
of interest to him. Then he can use the HLA Components Description Assem-
bler to build a federation description (FOM) from the available components’
descriptions (SOMs) and pass it to the Builder that sets up the federation from
appropriate HLA components. The user than can dynamically change the nature
of connections between components using a Builder that makes direct requests
(described in this paper) to HLA components.

5 Experiments with an Example Application — Multiscale
Multiphysics Scientific Environment (MUSE)

For the purposes of this research we have used simulation modules of different
time scale taken from Multiscale Multiphysics Scientific Environment (MUSE)
[18] for simulating dense stellar systems like globular clusters and galactic nuclei.
However, the presented HLA component approach can be applied to modules
of any other multiscale simulation system. Section Bl describes in datail how to
wrap new simulation kernels into components.

The original MUSE consists of the Python scheduler and three simulation
modules of different time scale: stellar evolution (in macro scale), stellar dy-
namics (nbody simulation — in meso scale) and hydro dynamics (simulation of
collisions — in micro scale). Also, there are plans to add: radiative transfer, 3D
gas and dust density distribution and stellar spectral energy distribution. In [2]
we have shown that distribution of MUSE modules using HLA on the Grid can
be beneficial for such applications. In particular, we have shown the usefulness
of HLA advanced time management for this kind of simulations.

For the purposes of this paper, we have chosen to make components from two
MUSE modules: evolution (macro scale) and dynamics (meso scale) that run
concurrently. The data are sent from macro scale to meso scale as star evolution
data (change of star mass) is needed by dynamics. In that particular case, no
data is needed from dynamics to evolution.

The simulation system has to make sure that dynamics will get update from
evolution before it actually passes the appropriate point in time. The HLA time
management mechanism [I] offers many useful features there. The mechanism
of regulating federate (evolution) that controls time flow in constrained federate
(dynamics) is essential. It’s main advantage is that it does not require to specify
explicitly the period in which the constrained federate should stop and wait for
the regulating federate. Instead, the maximal point in time which the constrained
federate can reach at certain moment is calculated dynamically according to the
position of the regulating federate on the time axis. HLA data management is the
second important mechanism useful here. Used together with time management,
it allows federates to exchange data objects and interactions with time stamps
and assures that objects arrive in appropriate order at the appropriate time of
the simulation. To achieve data from evolution, the dynamics federate subscribes
to data object containing information about stars published by evolution.
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This HLA component model allows these mechanisms to be accessible to the
external user who sets up the simulation system from existing dynamics and
evolution components created by someone else. This will allow users working on
multiscale simulations to more easily exchange the models already created.

Performance Results. We have created two prototype HLA components for
dynamics and evolution simulations and measured execution time of requests to
them. The dynamics component was asked to set its time policy to be constrained
and to subscribe to the star object class. The evolution component was asked to
set its time policy to regulating and to publish the star object class. In our pro-
totype, publication and subscription is done to the whole object class, but it is
easy to extend it to support subscription and publication of a subset of class at-
tributes. In our implementation we have used H20 v2.1 and HLA Certi imple-
mentation v3.2.4. Experiments were done on Dutch Gride DAS3 [19]. The RTI
control process was run on a Grid node at the Amsterdam Free University (dual
CPU, dual-core, 2.4 GHz AMD Opteron, 4GB RAM), the client was run at Lei-
den University (dual CPU, single-core, 2.6 GHz AMD Opteron, 4GB RAM). In
the first experiment the dynamics component was run at University of Amsterdam
(dual CPU, dual-core, 2.2 GHz AMD Opteron, 4GB RAM) and the evolution com-
ponent at Delft (dual CPU, single-core, 2.4 GHz AMD Opteron, 4GB RAM). As
the requests to evolution and dynamics were of different kind, in the second ex-
periment we switched locations of dynamics (run at Delft) and evolution (run at
Amsterdam) to compare time of all kinds of requests made to components residing
on the same site. The network bandwith between Grid sites is 10 Gbps.

Table [ shows results of experiments (average of 10 runs) in miliseconds. In
both experiments, the time of requests to components residing on the Amster-
dam site was slightly shorter then to these in Delft. This is probably because of
a slightly different architecture of both sites (see above). It is worth notice that
for both sites, the overhead of CompoHLA component layer is rather small — for
all requests order of a few milliseconds. Time elapsed of the pure RTI execution
depends on the particular HLA implementation. In [2] we have shown that the
execution time of sequential and distributed version of MUSE (evolution and
dynamics modules) are comparable and that synchronisation between those two
modules does not produce much overhead. In [2] we have also discussed different
types of time interactions that can appear between components in multiscale

Table 1. Time of HLA component request execution for evolution and dynamics com-
ponents measured from MUSE

Amsterdam Delft
action whole request RTI time whole request RTI time
avr, ms o avr, ms ¢ avr, ms o avr, ms o
set time constrained 4.5 0.5 0.1 0.02 7 0.3 0.1 0.02
set time regulating 5 0.3 0.1 0.02 7.5 0.5 0.1 0.03
publish 6 0.4 1 0.1 10 0.5 2 0.1

subscribe 6 0.4 1 0.1 10 0.4 3 0.1
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simulation system. Although they are described on the example of MUSE, in
general they can appear in applications from any other domain knowledge. We
have shown that such systems can benefit from being distributed using HLA. Ad-
ditionally, using HLA component approach presented in this paper will increase
reusability and interoperability of multiscale modules.

6 Summary and Future Work

The main objective of the research presented in this paper was to offer scientists
working with multiscale simulations a component model that facilitates joining
elements of different scale and providing them with an environment supporting
applications in that model. The novelty of proposed approach consists in inte-
grating solutions from HLA, component technologies and the Grid to support
multiscale applications. As any of the existing component models does not explic-
itly address requirements of multiscale simulations, we have presented the idea of
a model based on HLA, which enables users to dynamically compose/decompose
distributed simulations from multiscale components residing on the Grid. Using
the proposed CompoHLA environment a user is able to decide how compo-
nents will interact with each other (e.g. by setting up appropriate HLA sub-
scription/publication and time management mechanism) and to change nature
of their interactions during simulation runtime. This approach differs from that
in original HLA, where all decisions about actual connections are made by fed-
erates themselves. The functionality of the prototype is shown in the example of
multiscale simulation of dense stellar system — the MUSE environment [I8]. The
results of experiments show that the execution time of requests are relatively
low and that the component layer does not introduce much overhead.

In the future we plan to fully design and implement other modules of the
presented support system. Also, we plan to extend the prototype of HLA Com-
ponent to allow to insert plugins (e.g. build by physicist whom wants to join two
already existing components together) that can scale output from one federate
to be appropriate an input for another federate.
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