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Abstract. We present MUSE, a software framework for tying together
existing computational tools for different astrophysical domains into a sin-
gle multiphysics, multiscale workload. MUSE facilitates the coupling of
existing codes written in different languages by providing inter-language
tools and by specifying an interface between each module and the frame-
work that represents a balance between generality and computational effi-
ciency.This approach allows scientists to use combinations of codes to solve
highly-coupled problems without the need to write new codes for other
domains or significantly alter their existing codes. MUSE currently incor-
porates the domains of stellar dynamics, stellar evolution and stellar hy-
drodynamics for a generalized stellar systems workload. MUSE has now
reached a “Noah’s Ark” milestone, with two available numerical solvers
for each domain. MUSE can treat small stellar associations, galaxies and
everything in between, including planetary systems, dense stellar clusters
and galactic nuclei. Here we demonstrate an examples calculated with
MUSE: the merger of two galaxies. In addition we demonstrate the work-
ing of MUSE on a distributed computer. The current MUSE code base is
publicly available as open source at http://muse.li.
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1 Introduction

The Universe is a multi-physics environment in which, from an astrophysical
point of view, Newton’s gravitational force law, radiative processes, nuclear re-
actions and hydrodynamics mutually interact. Astrophysical problems are gen-
erally multi-scale, with, in the extreme, spatial and temporal scales ranging from
104 meters and 10−3 seconds on the small end to 1020m and 1017s on the large
end. The combined multi-physics, multi-scale environment presents a tremen-
dous theoretical challenge for modern science. While observational astronomy
fills important gaps in our knowledge by harvesting ever wider spectral coverage
with continuously increasing resolution and sensitivity, our theoretical under-
standing lags behind these exciting developments in instrumentation.

Computational astrophysics is situated between observations and theory. The
calculations generally cover a wider range of physical phenomena, whereas purely
theoretical studies are often tailored to a relatively limited range of spectral cov-
erage. On the other hand, extensive calculations can support observational as-
tronomy by mimicking observations and support the interpretation by enabling
wide parameter space studies. They can elucidate complex consequences of phys-
ical theories. But extensive computer simulations in order to deepen our knowl-
edge of the physics require large programming efforts and a good fundamental
understanding of the underlying physics.

Where modern instruments are generally built by tens or hundreds of people,
the development of theoretical models and software environments are generally
one-person endeavors. Theory lends itself excellently for this relatively individ-
ualistic approach, but scientific computing is in a less favorable position. De-
veloping a simulation environment suitable for multi-physics scientific research
is not a simple task. In contrast to purely theoretical studies computer models
often require a much broader scope which non-linear couplings between vari-
ous physical domains. As long as the physical scope remains relatively limited
the software only needs to address the problem of solving sets of differential
equations in a single physical domain and with a limited range in size scales
and time scales. Such software can be built by a single scientific programmer or
a numerically well educated astronomer. Regretfully, these packages are often
“single-written single-use”, and thus single purpose: reuse of scientific software
within astronomy is still rarely done.

Problems which encompass multiple time or size scales are sometimes coded
by small teams of astronomers. There are several examples of successful projects,
such as FLASH [1], GADGET [2] and starlab [3], in which a team of several scien-
tists collaborates in writing a large scale simulation environment. The resulting
software of these projects has a broad user base and is applied several times for
a variety of problems. These packages, however, address one very specific task,
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and their use is limited to the type of physics that is addressed and the solver
that is used. In addition, it requires considerable expertise to use these packages.

In this paper we describe a software framework that targets multi-scale, multi-
physics problems in a hierarchical and somewhat consistent implementation. The
development of this framework is based on the philosophy of “open knowledge” 1.

2 The Concept of MUSE

The development of MUSE was initiated during the MODEST-6a 2 workshop in
Lund (Sweden [12]), but the first lines of code were written during MODEST-
6d/e in Amsterdam (The Netherlands). During the two workshops MODEST-7f
in Amsterdam and MODEST-7a in Split (Croatia) the concept of Noah’s Arc
was initiated and realized (see Sect. 2.1).

Fig. 1. Basic structure design of the framework (MUSE). The top layer (flow control)
is connected to the middle (interface layer) which controls the command structure for
the individual applications. These parts and the underlying interfaces are written in
Python, whereas the applications can we written in any language. In this example
only a selection of numerical techniques is shown for each of the applications, such as
smoothed particle hydrodynamics (such as starcrash [4] and gadget [2]) to solve the
gas dynamics, Metropolis-Hastings Monte Carlo for addressing the radiative transfer
and ionization/thermal/chemical balance (such as Moccasin [5]), Henyey (STARS[6],
EZ[7]) or parameterized code (like in SeBa [8]) for stellar evolution and direct integration
for the stellar dynamics (Barnes-Hut tree code [9], Hermit0 or the kira integrator in
starlab[3]).

The development of a multi-physics simulation environment can be approached
from a monolithic or from a modular point of view. In the monolithic approach
1 See for example http://www.artcompsci.org/ok/.
2 MODEST stands for MOdeling DEnse STellar Systems, and the term was coined

during the first MODEST meeting in New York (US) in 2001. The web page for this
coalition is http://www.manybody.org/modest. See also, [10,11]



210 S. Portegies Zwart et al.

a single numerical solver is subsequently expanded to include more physics. Ba-
sic design choices for the initial numerical solver are petrified in the initial ar-
chitecture. Nevertheless, such codes are sometimes successfully redesigned to in-
clude two or possibly even three solvers for a different physical phenomenon (see
FLASH where hydrodynamics has been combined with magnetic fields). Rather
than forming a self consistent framework, the different physical domains in these
environments are made to co-exist. This approach is prone to errors and the result-
ing large simulation packages are often hampered by bugs, redundancy in source
code, chunks of dead code and a lack of homogeneity. The assumptions needed
to make these codes compile and operate without fatal errors often hampers the
science. In addition, the underlying assumptions are rarely documented and the
resulting science is at best hard to interpret. We address these issues by the devel-
opment of a modular numerical environment, in which independently developed
specialized numerical solvers are coupled at a meta level, resulting in a framework
as depicted in Fig. 1.

The modular approach has many advantages. Existing codes which have been
well tuned and tested in their own domains can be reused by wrapping these in
a thin layer and interfacing them to a framework. The identification and speci-
fication of suitable interfaces for such codes allows the codes to be interchanged
easily. An important element of the framework will be the provision of docu-
mentation and exemplars for the design of new modules, and their integration
into the framework. A user can “mix and match” modules like building blocks to
find the most suitable combination for his application. The resulting framework
is also more easily maintainable, since the dependencies between modules is well
separated from their functionality.

A particular advantage of a modular framework is that a motivated scholar
can focus the attention on a narrower area, write a module for it and integrate
it with a knowledge of only the bare essentials of the framework interfaces. For
example it will take little extra work to adapt the results of a successful student
project into a separate module, or a researcher working with his own code for
one field of physics may wish to find out how his code interacts in a multi-
physics environment. The shallower learning curve of the framework will lower
the barrier for entry, will make it more accessible and ultimately leads to a more
open and extensible system.

The only constraint that code must meet to be wrappen as a module is that
it is written in a programming language with a Foreign Function Interface which
can be linked to a contemporary Unix-like system. This includes many popular
languages such as C, C++ and Fortran as well as other high-level languages such
as C#, Java or Haskell.

The flexibility of this framework allows a much broader range of applications
to be prototyped and the bottom-up approach makes the code much easier to un-
derstand, expand and maintain. If a particular combination of modules is found
to be particularly suited to an application, greater efficiency can be achieved,
if desired, by hard coding the interfaces and factoring out the glue code, thus
ramping up to a specialized monolithic code.
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2.1 Noah’s Ark

Instead of writing a new code from scratch, we envision a software framework in
which a glue language is used to bind a wide collection of diverse applications.
We call this environment MUSE, for MUltiphysics Software Environment.

The MUSE framework consist of a hierarchical component architecture that
encapsulates dynamic shared libraries for simulating stellar evolution, stellar
dynamics and treatments for colliding stars. Additional packages for file I/O,
data analysis and plotting are included. Our objective is to eventually include gas
dynamics and radiative transfer but at this point these are not yet incorporated.

We have so far included at least two working packages for each domain of
stellar collisions (hydrodynamics), stellar evolution and stellar dynamics, in what
we label the Noah’s Ark milestone. The homogeneous interface which connects
the kernel modules enables us to switch packages at runtime via a scheduler. In
this paper we demonstrate modularity and interchangeability.

Stellar Collisions. The physical interaction between stars is incorporated by
means of (semi)hydrodynamics solvers to the framework. At the moment two
methodologies are incorporated, one is based on the make-me-a-star (MMAS)
package [13]3 and the revised version make-me-a-massive-star (MMAMS) [14]4;
the other solution is based on stickyspheres.The former (MMAS and MMAMS)
can be combined with full stellar evolution models, as they process the internal stel-
lar structure in a similar fashion to the stellar evolution codes. The sticky sphere
approximation only works with parameterized stellar evolution, as it does not re-
quire any knowledge of the internal stellar structure.

Stellar Dynamics. To simulate gravitational dynamics (e.g., between stars
and/or planets), we incorporate packages to solve Newton’s equations of motion
by means of gravitational N -body solvers. Currently two N -body kernels are
available: a direct force evaluation method and a tree code.

The direct N -body code is based on the 4th order Hermite predictor-corrector
N -body integrator with block time steps [15]. If present, the code can benefit
from special hardware like GRAPE [16] and modern GPUs [17,18]. This method
provides the high accuracy needed for simulating dense stellar systems, but even
with special computer hardware it lacks the performance to simulate systems
with more than 106 particles. For simulating large N systems we have incorpo-
rated a Barnes-Hut [9] tree-code.

Stellar Evolution. Many applications require the structure and evolution of
stars to be followed at various levels of detail. Examples are stellar masses and
radii as a function of time (important for feedback on stellar dynamics), lumi-
nosities and photon energy distribution of the stellar spectrum (important for
feedback on radiative transfer), mass loss rates, outflow velocities and yields of
3 See http://webpub.allegheny.edu/employee/j/jalombar/mmas/
4 See http://modesta.science.uva.nl/
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various chemical elements (returned to the gas in the system and to be followed
hydrodynamically) and even the detailed interior structure (to follow the out-
come of a stellar merger or collision). Consequently the stellar evolution module
should ideally incorporate both a very rapid but approximate code for applica-
tions where speed (i.e. huge numbers of stars) is paramount (like when using
the Barnes-Hut tree code for addressing the stellar dynamics) and a fully de-
tailed (but much slower) structure and evolution code where accuracy is most
important (for example when studying relatively small but dense star clusters).

Currently two stellar evolution modules are incorporated. One is based on fits
to precalculated stellar evolution tracks [19], the other solves the set of coupled
partial differential equations of stellar structure and evolution [6]. The lower
speed of the second method is inconvenient but the better physics allows for
much more realistic treatment of unconventional stars, such as collision products.

2.2 Performance

Large scale simulations, in particular the multiscale and multiphysics simula-
tions for which our framework is intended, require a large number of very differ-
ent algorithms, many of which achieve their highest performance on a specific
computer architecture. For example, the gravitational N -body simulations are
best performed on a GRAPE enabled PC, the hydrodynamical simulations are
accelerated using GPU hardware whereas the trivially parallel execution of a
thousand single stars is best done on a Beowulf cluster computer.

The top level organization of where what should run is managed using a
resource broker, which is grid enabled (see Sect. 2.4). The individual packages
have to indicate on what hardware they operate optimal. Some of these modules
are individually parallelized using the MPI library, whereas others (like stellar
evolution) are handled via a master-slave approach by the top level manager.

Certain parts of the individual modules benefit enormously from dedicated
computing. For example, the gravitational direct N-body calculations are sped
up by special purpose GRAPE-6 [20,16] or GPU hardware to orders of magnitude
faster than on workstations [17,18,21].

2.3 Units

A notorious pitfall in combining scientific software is the failure to perform cor-
rect conversion of physical units between modules. In a highly modular environ-
ment such as MUSE, this is a significant concern. One approach to the problem
could have been to insist on a standard set of units for modules to be incorpo-
rated into MUSE but this is neither practical nor in keeping with the MUSE
philosophy.

Instead we provide a Units module, in which is encoded information about
the physical units used in all other modules, conversion factors between them
and certain useful physical constants. When a module is added to MUSE, the
programmer adds a declaration of the units which that module prefers. When
several modules are imported into a MUSE experiment, the Units module then
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takes care of ensuring that all values passed to each module are in its preferred
units.

Naturally the flexibility which this approach affords also introduces an over-
head. But it is this flexibility which is MUSE’s great advantage; it allows the
experimenter to easily mix and match modules until the desired combination
is found. When the desired combination is found, then the dependence on the
Units module can be removed and conversion of physical units performed by ex-
plicit code. This leads to more efficient interfacing between modules, while the
correctness of the manual conversion can be checked against that of the Units
module.

2.4 MUSE on the Grid

Due to the wide range in computational characteristics of each of the modules,
we plan on running MUSE on a computational grid with a number of specialized
machines. Here we report on our preliminary grid interface which allows us to
use remote machines to distribute individual MUSE modules on the grid. In this
way we reduce the runtime by adopting computers which are best suited for each
module, rather than continuing a calculation even though the selected machine
may be less suitable for that particular part of the calculation. For example, we
can select a large GRAPE cluster in Tokyo for a direct N -body calculation while
the stellar evolution is calculated on a Beowulf cluster in Amsterdam.

The current preliminary interface uses the MUSE scheduler as the manager
of grid jobs and replaces internal module calls with a job execution sequence.
This is implemented with PyGlobus, an application programming interface to
the Globus grid middleware written in Python. The execution sequence for each
module consists of:

Write the state of a module, such as initial conditions, to file
• Transfer state file to the destination site.
• Construct a grid job definition using Globus resource specification lan-

guage.
• Submit the job to the grid. The launched job subsequently:

- read the state file,
- execute the specified MUSE module,
- write the new state of the module to a file,
- and copy the state file back to the MUSE scheduler.

• Then read new state file and resume the simulation

The grid interface has been tested successfully using the distributed ASCI
computer (DAS-3). We executed individual invocations of stellar dynamics, stel-
lar evolutions and stellar collisions modules on remote machines.

3 MUSE Example: Two Black Holes in Merging Galaxies

Here we demonstrate the possibility of changing the integration method within
a MUSE application during runtime. We deployed two integrators for simulating
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Fig. 2. Time evolution of the distance between two black holes which initially reside in
the center of a galaxy with 2048 particles that is a hundred times more massive than the
black hole. Initially the two “galaxies” were located far apart. The curves indicate cal-
culations with the direct integrator (PP), a tree code (TC) and using the hybrid method
in MUSE (PP+TC). The units along the axis are in dimensionless N-body units [22].

the merging of two galaxies, each with a central black hole. The final stages of
such a merger with two black holes orbiting each other can only be integrated
accurately using a direct method. Since this is computationally expensive, the
early evolution of such a merger is generally ignored and these calculations are
typically started some time during the merger process, for example when the
two black holes form a hard bound pair inside the merged galaxy.

These, rather arbitrary, starting conditions for binary black hole mergers can
be improved by integrating the initial merger between the two galaxies. We use
the BHTree code to reduce the computational cost of simulating this merger
process. When the tree code fails to produce accurate results the simulation is
continued using the direct integration method. Overall this results in a consid-
erable reduction of the runtime while still preserving an accurate integration of
the close interactions.

In Fig. 2 we show the results of such a simulation. The initial conditions are
two Plummer spheres with 1024 particles each, all with the same mass. Each
“galaxy” receives a black hole with a mass of 1% of that of the galaxy. The
two stellar systems are subsequently set on a collision orbit, but at fairly large
distance from each other. The simulation is performed three times, once using
Hermite0, once using BHTree and once using the hybrid method. In the latter
case the equations of motion are integrated using Hermite0 if the two black holes
are within 0.3 N-body units [22]5, otherwise we use the tree code. In Fig. 2 we
show the time evolution of the distance between the two black holes.

The integration with only the direct Hermite0 integrator took about 4 days
on a normal workstation and the tree code took about 2 hours. The hybrid code

5 Or see http://en.wikipedia.org/wiki/Natural units#N-body units.
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took almost 2 days. As expected, the relative error in the energy of the direct
N -body simulation (< 10−6) is orders of magnitude smaller than the error in the
tree code (∼ 1%). The energy error in the hybrid code is comparable to that of
the tree code, which in part is caused by regularly changing methodology. Even
though we were unable to further reduce the energy error in the hybrid code, it
seems safe to assume that the close encounters of the two black holes are treated
much more accurately in the hybrid approach compared to the pure tree-code
simulation. This is supported by the very small O(10−6) error in the energy
during the close interactions between the two black holes, which were computed
using the direct integrator. If the system was integrated using the tree code, the
energy errors were also characteristic for the adopted methodology. The latter
then obviously dominates the total error, irrespective of the accurate integration
of the close encounters.
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