Sliding-Tris: A Sliding Window Level-of-Detail
Scheme

Oscar Ripolles, Francisco Ramos, and Miguel Chover

Universitat Jaume I, Castellon, Spain
{oripolle, jromero, chover}Quji.es

Abstract. Virtual environments for interactive applications demand
highly realistic scenarios, which tend to be large and densely populated
with very detailed meshes. Despite the outstanding evolution of graph-
ics hardware, current GPUs are still not capable of managing these vast
amounts of geometry. A solution to overcome this problem is the use
of level-of-detail techniques, which recently have been oriented towards
the exploitation of GPUs. Nevertheless, although some solutions present
very good results, they are usually based on complex data structures
and algorithms. We thus propose a new multiresolution model based on
triangles which is simple and efficient. The main idea is to modify the
list of vertices when changing to a new level of detail, in contrast to pre-
vious models which modify the index list, which simplifies the extraction
process. This feature also provides a perfect framework for adapting the
algorithm to work completely on the GPU.

Keywords: Multiresolution, Level of Detail, GPU, Sliding-Window.

1 Introduction

Nowadays, applications such as computer games, virtual reality or scientific sim-
ulations are increasing the detail of their environments with the aim of offering
more realism. This objective usually involves dealing with larger environments
containing lots of objects which amount to a large quantity of triangles. However,
despite the constant improvements in performance and capabilities of GPUs, it
is still difficult to render such complex scenes as vertex throughput and memory
bandwidth become considerable bottlenecks when dealing with them. As a result,
these environments cannot be interactively rendered by brute force methods.
Among the solutions to overcome this limitation, one of the most widely
used is multiresolution modeling. A level-of-detail or multiresolution model is a
compact description of multiple representations of a single object [I] that must
be capable of extracting the appropriate representation in different contexts.
In recent years, many solutions based on level-of-detail techniques have been
presented. Nevertheless, only a few exploit, in one way or another, some of the
current GPU functionalities. However, although they provide interactive rates,
they require complex data structures and algorithms to manage them. In this
paper we describe a multiresolution model for real-time rendering of arbitrary

M. Bubak et al. (Eds.): ICCS 2008, Part IT, LNCS 5102, pp. 5 [14] 2008.
© Springer-Verlag Berlin Heidelberg 2008



6 O. Ripolles, F. Ramos, and M. Chover

meshes which contributes to diminish the existing distance between a multires-
olution GPU-based solution and its implementation in any 3D application. Our
approach includes the following contributions:

— A simple data structure based on vertex hierarchies adapted to the GPU
architecture. The vertex hierarchy is given through the edge contraction
operations of the simplification process [2].

— Storage cost with low memory requirements.

— Representations are stored and processed entirely in the GPU avoiding the
typical bottleneck between the CPU and the GPU and thus obtaining a great
performance by exploiting the implicit parallelism existing in current GPUs.

This paper presents the following structure. Section 2 contains a study of the
work previously carried out on GPU-friendly multiresolution modeling. Section 3
presents the basic framework of Sliding-Tris. Section 4 provides thorough details
of the implementations of the algorithms in both the CPU and the GPU. Sec-
tion 5 includes a comparative study of spatial cost and rendering time. Lastly,
Section 6 comments on the results obtained in our tests.

2 Related Work

Evolution of graphics hardware has given rise to new techniques that allow us
to accelerate multiresolution models. This research field has been exploited for
many years, and it is possible to find a wealth of papers which present very
different solutions. Nevertheless, the authors have lately re-oriented their efforts
towards the development of new models which consider the possibilities offered
by new graphics hardware. Recent GPUs include vertex and fragment processors,
which have evolved from being configurable to being programmable, allowing us
to execute shader programs in parallel.

In general, multiresolution models can be classified into two large groups [3]:
discrete models, which contain various representations of the same object, and
continuous models, which represent a vast range of approximations.

With respect to discrete models, they offer a very efficient solution but they
usually present visual artifacts when switching between pre-calculated levels of
detail. A possible solution to avoid these popping artifacts is the use of geomor-
phing [4] or blending [5] in the GPU. A more thorough method is that presented
in [6], which consists in sending to the GPU a mesh at minimum level of detail
and applying later a refining pattern in the GPU to every face of the model. The
problem, according to the authors, is that it suffers again the popping effects.
Another aspect is the load suffered by the GPU when a model keeps the level of
detail, as a pass must be made for each face that the coarser model has.

It is possible to find in the literature continuous algorithms aimed at rendering
common meshes by exploiting GPUs. The LodStrips model was reconsidered in
[7] to offer a GPU-oriented solution, by creating efficient data structures that
can be integrated into the GPU. Ji et al. [§] suggest a method to select and
visualize several levels of detail by using the GPU. In particular, they encode



Sliding-Tris: A Sliding Window Level-of-Detail Scheme 7

the geometry in a quadtree based on a LOD atlas texture. The main problem
of this method is the costly process that the CPU must execute in every change
of level of detail. Moreover, if the mesh is too complex, the representation with
quadtrees can be very inefficient and even the size of the video memory can be
an important restriction. Finally, the work presented by Turchyn [9] is based on
Progressive Meshes. It builds a complex hierarchical data structure that derives
in great memory requirements. Moreover, it changes the mesh connectivity trying
to reduce memory costs.

Many of the GPU-based continuous models are aimed at view-dependent ren-
dering of massive models. Works like [10], [11],[12] have adapted their data struc-
tures so that CPU/GPU communication can be optimized to fully exploit the
complex memory hierarchy of modern graphics platforms. With a similar ob-
jective but with a further GPU exploitation, the GoLD method [I3] introduces
a hierarchy of geometric patches for very detailed meshes with high-resolution
textures. The maintenance of boundaries is assured by means of geomorphing
performed in the GPU. Finally, the work presented in [I4] introduces a multi-
grained hierarchical solution which avoids the appearance of cracks in the borders
of nodes at different LODs by applying a border-stitching approach directly in
the GPU.

In general, discrete models are easier to be implemented in GPUs but they do
not avoid the popping artifacts. By contrast, continuous models offer a better
granularity and avoid that problem, although their memory requirements are
high and some of them even need several rendering passes for one LOD change.

3 Owur Approach

The solution we are presenting offers an easy and fast level-of-detail update
which, contrary to previous multiresolution models, modifies the list of vertices
instead of the indices. The basic idea is to order indices and vertices so that we
can apply a sliding-window approach to the level-of-detail extraction process.

Before explaining in detail the basis of our proposed solution, it is important
to comment on the simplification algorithm that we will use for obtaining the
sequence of approximations of the original model. This sequence will be used to
obtain a progressive coarsening (and refinement) of the original model.

3.1 Mesh Simplification

It is possible to find plenty of research on appearance-preserving simplifications
methods. The most important contributions have been made in the areas of
geometric-based algorithms|[I5], [I6] and viewpoint-based approaches[17],[18],[19].
Among these works, we will use an edge-collapse based method which preserves
texture appearance [19]. It is important to comment that in these collapse op-
erations we will not modify vertices coordinates, as we assumed that the vertex
that disappears will collapse to an existing one. The selection of this type of edge-
collapse simplifies the data structures of our model and still offers very accurate



8 O. Ripolles, F. Ramos, and M. Chover

Fig. 1. Simplification of a section of a polygonal model

simplifications. An example of this simplification process can be observed in
Fig. [l where a section of a polygonal mesh is simplified with two edge-collapse
operations.

3.2 Sliding-Tris Framework

This multiresolution model represents a mesh with three different sets. Let M
be the original polygonal surface and V' and T its sets of vertices and triangles.
We will also define the set E, which refers to the evolution of each vertex and
will be explained later. Considering that n is the number of vertices and m is
the number of triangles, M = {V, T, E} can be defined as:

V - {U03U17 -.-,Un},T - {thtlv "'ath}aE - {607617 "'aen} (1)

As we have previously commented, the main idea of Sliding-Tris is to update the
contents of the vertices list instead of the indices one. As an example, collapsing
vertex ¢ to vertex j would mean that the coordinates values of vertex ¢ will be
replaced with the values of vertex j.

The multiresolution model we are presenting is also based on the adequate
ordering of vertices and triangles:

— Vertices: they are ordered following the collapse order, so that vertex ¢ will
collapse when changing from lod ¢ — 1 to lod 1.

— Triangles: they are ordered according to their elimination order, so that the
last triangle will be the first one to disappear.

Following with the simplification example offered in the previous section, the
correct ordering of the initial mesh should be the one presented in Fig.[2l On top
we present the original contents of the triangles and vertices lists. In the bottom,
we offer the ordered lists obtained following our requirements. Thus, we can see
how vertex 4 is now vertex 0 and vertex 0 is now vertex 1, following the order
of vertex collapses. In a similar way, triangles 6 and 2 are now the last ones, as
they will be the first ones to disappear.

As we already commented, we will need to store the evolution of each vertex.
The evolution reflects the different vertices an original one collapses to throughout



Sliding-Tris: A Sliding Window Level-of-Detail Scheme 9

T={t0‘ t1, tz, t3, t4| t5, te}
T={{Ve, V4, Va} {4, V5. Ve}, {V5, Vi, Vol {Vo, V1. Vs, {V3, V4, Vol {Vo, V3, Vab, {Vo, V4, V2t

T={to, ty, to, t3, ty, ts5, tg }

T={{Ve, Vo, o}, {V1,Va, Yo}, {V3, Va4, i}, {Va, V5, Ve {V1, Va, VB 1 {V5, Vo, Vit {V1, Vo, Vit

Fig. 2. Initial ordering (top) and re-order of triangles and vertices (bottom)

// LOD Extraction algorithm.
for (vert=0 to demandedLOD ) {
i= 0;
while (Evolution[vert][i] < demandedL(D)
it+;

>

CopyVertex(CurrentVertices[vert],OriginalVertices[i]);

}

// Visualization algorithm.
numTriangles -= 2x(demandedLOD-currentLOD); //If increasing detail add.
glDrawElements (Triangles,O,numTriangles,...);

Fig. 3. Pseudocode of a simple CPU implementation of the LOD algorithms

the levels of detail. Thus, each e; element will be composed of a list of references to
the vertices that vertex i collapses to. As the vertices have been ordered following
the collapse order, we will be able to know in which LOD a particular vertex must
change. More precisely, we can assure that the evolution of vertex ¢ satisfies that
we must use the contents of its j-th element while e; ; < demandedLOD < e; jy1.

Finally, we will also have to store a copy of the original vertices, which will be
used for updating the value of each vertex when traversing the different LODs.

Once we have fulfilled all these requirements, we are ready to start with the
algorithm that will enable us to obtain all the levels of detail (Fig.[Bl). Each time
we change to a different LOD we must check every vertex to see if it is necessary
to update it. Nevertheless, due to the order we have chosen for the vertices, it
will only be necessary to check vertices from 0 to demandedLOD — 1. Once we
have updated the necessary vertices, the sliding-window approach is applied to
render the suitable number of indices.



10 O. Ripolles, F. Ramos, and M. Chover

LOD O
Trianges [ & | & [ & | & [ u | & [ & |
Vertices | Vg | Vi | Vo | V3 | Va | Vs | Ve |
t t
Evolution | %%z || xvz || wwz || swz |[ vz |[ vz |[ s |
Xy Y124 X5.Y525
X5 Y525
LOD 1
Triangles |_ & | & | & [ & | & | & [ & |
Vertices | Vo | vy | A I A | A | Vs | Vs |
T f
Evolution | %%z |[ xviz || wwz [ vz [ sz [ ez [ % |
X1.Y1.24 X5.¥525
X Y525
LOD 2
Triangles| ta | t | ty | ts | ta | ts | ts |
Vertices | vTu | \;« | \) | V3 | \ | A | Vs I
Evolution [ %Ye2 X1¥121 I X2¥22; ” Xa¥aZs ” X1 YeZs ” b b ” %5Ye %o |
$%12 || XaVaZs

Fig. 4. Example of the extraction process of three levels-of-detail

Fig. @ presents the evolution of the example mesh during three edge collapses.
This figure includes, for each level of detail, the array of triangles and vertices
and, for each vertex, its evolution. The array of triangles is shaded following
the sliding-window approach. With respect to the evolution, the shaded cell
reflects the current contents of the vertex. Following the algorithm introduced
in Fig. Bl let’s suppose we change from LOD 0 to LOD 1. We would decrease
the triangle count bt two and, in this case, we would only modify vertex 0 so
that its coordinates are updated with the contents of vertex 1. For the second
LOD change, vertices 0 and 1 must be updated, and according to the contents
of their evolution, they must change their values for vertex 5.

4 Sliding-Tris Implementation

In this section we will introduce different possible implementations of the original
algorithm which will allow us to exploit the graphics hardware. The first version
will store the mesh information in the GPU, updating it in the most appropriate
way. Nevertheless, this solution still involves data traffic through the BUS. As
a consequence, we will also present the GPU implementations of the algorithm
in both the vertex shader and the pixel shader, which reduce the traffic to just
uploading the value of the new demandedLOD.



Sliding-Tris: A Sliding Window Level-of-Detail Scheme 11

CPU Version. Storing the information in buffers in the GPU offers a faster
rendering. Thus, this version uploads indices and vertices to the GPU. It is
important to comment that we must keep a copy of the current vertices and
also the original ones in the CPU, as well as the evolution of the vertices. The
extraction process is similar to that presented in Fig.[3] but once we have updated
the array of vertices in the CPU, we will upload it to GPU. More precisely, we
will carefully delimit the vertices to transfer to minimize traffic. We can then
render the mesh by indicating how many triangles must be considered.

Exploiting the Possibilities of the Vertex Shader. For adapting the al-
gorithm to shaders in the GPU, the first problem we must address is how to
store the necessary information (the evolution and the original vertices) in the
GPU. On the one hand, we create a floating point texture to store the original
values of the vertices. On the other, the evolution of each vertex will be stored in
different sets of its attributes, mainly in unused MultiTexCoords. These vertex
attributes can store 4 components, which in our case represent 4 elements of the
evolution. We will use as many attributes as necessary. For efficiency, we store
all the vertex attributes in a single interleaved array.

Once the data is stored, the only information that the CPU must send to the
GPU is the new LOD value. The original extraction process has been carefully
adapted to work on a vertex shader, consulting the attributes to analyze the
evolution and accessing the texture once the correct value of the evolution is
obtained. Thus, each vertex uses this shader to correctly update its coordinates.

An important issue with this version is that we oblige the vertex shader to
update the coordinates even when the LOD is maintained, as we are not storing
the resulting vertex buffer. This is an important disadvantage, but we must
consider than in interactive applications the user keeps moving all the time, and
under these conditions the detail must be updated very often.

Exploiting the Possibilities of the Pixel Shader. To overcome the limita-
tion of the vertex shader implementation, we adapted the Sliding-Tris algorithm
to a pixel shader. In this case, we will use a render-to-vertex approach to store
the newly calculated vertices.

With respect to storing the necessary data, we will still use a texture to
store the initial values of the vertices, but we will create a new one to store the
evolution of the vertices.

The main algorithm must consider the render-to-vertex operation[20]. This
way, before rendering the model we will define a viewport and render a quad
that fills it, covering as many pixels as vertices we must update. Thus, each pixel
will use the shader to compute the value of a different vertex. This pixel shader
will use a routine similar to the vertex shader but, in this case, consulting the
evolution of a vertex implies accessing a texture instead of the attributes. Once
all pixels have been evaluated, the CPU must perform an extra operation which
involves reading the output buffer into a VertezBufferObject via ReadPixels.
Then, we can disable this pixel shader and render the mesh normally using this
buffer object as a new source of vertex data.



12 O. Ripolles, F. Ramos, and M. Chover

Table 1. Models used in the experiments, with their storing cost (in MB.)

Model Cow  Bunny Dragon  Phone Isis Buddha
Vertices 2904 35947 54296 83044 187644 543644
Faces 5804 69451 108588 165963 375283 1085634
Original (triangles) 0.10 1.21 1.86 2.84 6.44 18.65
Progressive Meshes 0.27 3.28 5.09 7.86 17.23 51.28
LodStrips 0.17 2.21 3.32 5.08 11.69 35.51
Sliding-Tris 0.12 1.45 2.23 3.45 7.72 22.56
5 Results

In this section we will present some tests that cover the storing cost and the
rendering performance of the presented versions of Sliding-Tris. The experiments
were carried out using Windows XP on a PC with a processor at 2.8 Ghz, 2
GB RAM and an nVidia GeForce 7800 graphics card with 256 MB RAM. The
different implementations have been done in C++, OpenGL and HLSL.

5.1 Storing Cost

Table [[l shows a comparison of spatial costs among previous continuous uniform
resolution models: PM [21], a triangle-based approach, and LodStrips [7], which
is based on triangle strips. As it can be observed, the model presented offers the
best spatial cost. On average, it fits in 1.2 times the original mesh in triangles, in
contrast to PM and LodStrips which fit in 2.7 and 1.9 times respectively. This is
due to the fact that the only extra information that we store is the evolution of
the vertices. Furthermore, it is important to note that the size of each evolution
(en) element is usually small. Our experiments have shown that the evolution
of the vertices of most models have a maximum number of 12 elements and an
average of 2, despite being meshes composed of thousands of vertices.

5.2 Rendering Time

We analyzed the frame rate obtained throughout the different levels-of-detail
when rendering a bunny model without textures nor illumination. We have also
included the results of a version without extraction cost, in order to show which
frame-rate could be obtained at most. The results are presented in Fig. Bl where
it can be observed that the frame rate of the pixel shader version is always the
lowest, as this version obliges the pipeline to stop until the render-to-vertex has
been completely performed, thus limiting the performance of both the CPU and
the GPU. The best results are offered by the vertex shader implementation. It
is important to note that in this test we extracted a new LOD for each frame.
Thus, the CPU version and the pixel shader one would be able to achieve the
performance of the original model when the LOD remains stable. As commented
before, interactive applications tend to change scene conditions permanently, and
under these circumstances the vertex shader offers the best performance.



Sliding-Tris: A Sliding Window Level-of-Detail Scheme 13

Original (no extraction) e

1000 CPU -
Vertex Shader
Pixel Shader

FPS

200 |

Fig. 5. Frame rate obtained when rendering the bunny model with the different im-
plementations. The original values refer to the visualization cost only.

6 Conclusions

In this paper we have presented a new multiresolution model which has been
completely adapted to the GPU. Sliding-Tris offers a low storing cost, easy imple-
mentation and a fast extraction process which make it suitable for any rendering
engine. A further advantage is that the extraction process is always similar in
cost. The shaders must consider the extraction process for each vertex, and, as
a consequence, these algorithms would obtain similar results when the differ-
ence between the demanded and the current LOD is big or small, in contrast to
hierarchical models.

For the CPU model, an important limitation is the data traffic involved in ex-
tracting the approximations. Updating vertices instead of indices involves work-
ing with three floats per vertex instead of one integer per index. This limitation
can be worse if the meshes work with normals, textures, etc. Nevertheless, our
experiments have shown that the total number of update operations is similar,
and the final rendering speed is not affected by this increase in the quantity of
data interchanged.

The use of shaders to perform the LOD changes avoids the traffic problem,
even though the render-to-vertex approach is still slow and demands CPU in-
tervention. As a consequence, even when the three approaches are quite similar
in rendering time, the vertex shader offers a wiser solution as it can be running
while the CPU and GPU are performing a different operation.

Acknowledgments. This work has been supported by grant P1 1B2007-56
(Bancaixa), the Spanish Ministry of Science and Technology (Contiene Project:
TIN2007-68066-C04-02) and FEDER funds.



14 O. Ripolles, F. Ramos, and M. Chover
References
1. Clark, J.: Hierarchical geometric models for visible surface algorithms.

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CACM 10(19), 547-554 (1976)
Garland, M., Heckbert, P.: Simplification using quadric error metrics. Computer
and Graphics 31, 209-216 (1997)

. Ribelles, J., Chover, M., Lopez, A., Huerta, J.: A first step to evaluate and compare

multiresolution models. In: EUROGRAPHICS, pp. 230-232 (1999)

. Sander, P.V., Mitchell, J.L.: Progressive buffers: View-dependent geometry and

texture for lod rendering. In: Symp. on Geom. Process, pp. 129-138 (2005)

. Southern, R., Gain, J.: Creation and control of real-time continuous level of detail

on programmable graphics hardware. Comp. Graph. For. 22(1), 35-48 (2003)

. Boubekeur, T., Schlick, C.: Generic mesh refinement on gpu. In: Graphics Hard-

ware, pp. 99-104 (2005)

. Ramos, F., Chover, M., Ripolles, O., Granell, C.: Continuous level of detail on

graphics hardware. In: Kuba, A., Nyul, L.G., Paldgyi, K. (eds.) DGCI 2006. LNCS,
vol. 4245, pp. 460-469. Springer, Heidelberg (2006)

. Ji, J.,, Wu, E., Li, S., Liu, X.: Dynamic lod on gpu. In: CGI (2005)
. Turchyn, P.: Memory efficient sliding window progressive meshes. In: WSCG (2007)
. Cignoni, P.,; Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.:

Adaptive tetrapuzzles: efficient out-of-core construction and visualization of gigan-
tic multiresolution polygonal models. In: SIGGRAPH, pp. 796-803 (2004)
Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.:
Batched multi triangulation. In: IEEE Visualization, pp. 207-214 (2005)

Yoon, S., Salomon, B., Gayle, R.: Quick-vdr: Interactive view-dependent rendering
of massive models. IEEE Transactions on Visualization and Computer Graph-
ics 11(4), 369-382 (2005)

Borgeat, L., Godin, G., Blais, F., Massicotte, P., Lahanier, C.: Gold: interactive
display of huge colored and textured models. Trans. Graph. 24(3), 869-877 (2005)
Niski, K., Purnomo, B., Cohen, J.: Multi-grained level of detail using a hierarchical
seamless texture atlas. In: Proceedings of I3D 2007, pp. 153-160 (2007)

Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: SIG-
GRAPH 1998, pp. 115-122. ACM Press, New York (1998)

Gonzalez, C., Gumbau, J., Chover, M., Castello, P.: Mesh simplification for inter-
active applications. In: WSCG (2008)

Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans. Graph. 19(3),
204-241 (2000)

Luebke, D., Hallen, B.: Perceptually-driven simplification for interactive rendering.
In: 12th Eurographics Workshop on Rendering, pp. 223-234 (2001)

Castello, P., Chover, M., Sbert, M., Feixas, M.: Applications of information theory
to computer graphics (part 7). In: Eurographics Tutorial Notes, Eurographics,
vol. 2, pp. 891-902 (2007)

Biermann, R., Cornish, D., Craighead, M., Licea-Kane, B., Paul, B.: pixel
buffer objects (2004), http://www.nvidia.com/dev content/nvopenglspecs/GL
EXT pixel buffer object.txt

Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99-108 (1996)


http://www.nvidia.com/dev_content/nvopenglspecs/GL_EXT_pixel_buffer_object.txt
http://www.nvidia.com/dev_content/nvopenglspecs/GL_EXT_pixel_buffer_object.txt

	Sliding-Tris: A Sliding Window Level-of-Detail Scheme
	Introduction
	Related Work
	Our Approach
	Mesh Simplification
	Sliding-Tris Framework

	Sliding-Tris Implementation
	Results
	Storing Cost
	Rendering Time

	Conclusions


