
M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 153 – 162, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Implementation of Filters for Image Pre-processing
for Leaf Analyses in Plantations*

Jacqueline Gomes Mertes, Norian Marranghello, and Aledir Silveira Pereira

Instituto de Biociências, Letras e Ciências Exatas,
Universidade Estadual Paulista,
São José do Rio Preto, SP, Brazil

jackxcomp@gmail.com, {norian,aledir}@ibilce.unesp.br

Abstract. In this work an image pre-processing module has been developed to
extract quantitative information from plantation images with various degrees of
infestation. Four filters comprise this module: the first one acts on smoothness
of the image, the second one removes image background enhancing plants
leaves, the third filter removes isolated dots not removed by the previous filter,
and the fourth one is used to highlight leaves’ edges. At first the filters were
tested with MATLAB, for a quick visual feedback of the filters’ behavior. Then
the filters were implemented in the C programming language. At last, the mod-
ule as been coded in VHDL for the implementation on a Stratix II family
FPGA. Tests were run and the results are shown in this paper.

Keywords: Precision agriculture, hardware description language application,
digital image processing, reconfigurable architectures.

1 Introduction

Currently, digital image processing techniques are used to decide a variety of prob-
lems. Such techniques can improve image visualization for analysis by humans, as,
for example, the biomedical interpretation of rays X images. It can also help recogniz-
ing irregular products in a production mat in an automated industry [1].

One of the newest uses of image processing techniques came into being with the
need for real time processing. One such use is in the agricultural area, aiming at ex-
tracting quantitative information from plantations’ images with diverse degrees of
infestations by various biological agents. In this case it is necessary a specific image
treatment to help detecting, and determining the degree of infestation.

In agriculture, the control of weeds is of real importance when the cost of herbi-
cides is taken into consideration. A careful study of the plantation the amount of her-
bicides to be applied can be considerably reduced. This implies a reduction of the

* This work has been partially supported by the Brazilian National Research Council (CNPq)

through a project within Brazil-IP program, and by Sao Paulo State Research Foundation
(FAPESP) through travel grant number 2008/01645-7.

154 J.G. Mertes, N. Marranghello, and A.S. Pereira

final product as well as prevents unneeded herbicides from being introduced into the
environment.

Precision agriculture appeared in the late eighties to reduce fertilizer application
according to previous chemical analysis of soil composition [2]. With time new
equipments and techniques were developed to improve these studies, and maximize
productivity.

Thus, one of the main objectives of the precision agriculture is the adequate han-
dling of the desired culture to maximize productivity, and to minimize the impact on
the environment.

PERNOMIAN reports a work in which weeds are identified in real time using arti-
ficial neural nets [3]. YANG et al. present another application of artificial neural nets
to weed recognition and classification [4]. DIAS developed an application for rust
identification in sugarcane plantations also using artificial neural nets [5].

In this paper we present a technique based on image filtering algorithms for weed
detection in soybean plantations. A hardware module for leaf image pre-processing is
developed based on such algorithms. After described in VHDL the module is simu-
lated and tested. Then it is implemented onto an FPGA. In the following sections each
filter is functionally presented then the development of the hardware module is de-
scribed, and some test results are discussed.

2 Development of the Filters

In order to develop the soybean leaves’ images pre-processing module four algo-
rithms were elaborated. The module should identify the leaves from the scene, and
highlight their edges so that in the future an artificial neural network (ANN) may use
this information to find out possible weeds.

Image dimension was chosen towards using the least possible number of pixels still
enabling to properly identify the eventual presence of weeds. When submitted to the
ANN each pixel will be treated by an input node of the net. The smaller is the number
of pixels, the smaller the total input node count will be. Thus, it is important to keep
the number of pixels small so that the implementation of the system comprising the
pre-processing module plus the ANN onto an FPGA is viable. Therefore, the images
used were restricted to 40x60 pixels, an amount of pixels that is small enough to be
implemented on an FPGA, while preserves a good amount of information from the
original image.

The pre-processing module was developed with the following functionalities:

– noise smoothing in the original image through a median filter;
– putting leaves’ images apart from the background through image segmentation;
– removing spots not detected by previous processing through a custom de-

signed filter; and
– edge enhancing as well as binarization of the resulting image through a

Roberts filter.

 Implementation of Filters for Image Pre-processing for Leaf Analyses in Plantations 155

At first these filters were implemented with MATLAB as this software has an
easy to use language that is also fast to compile, providing prompt results. Then, the
algorithms were implemented both in C and in VHDL. We had to face the fact that
the VHDL language can only process uni-dimensional matrix declarations. Thus, the
three dimensional RGB input matrix had to be broken down to three uni-dimensional
vectors with 2400 positions each. Therefore, both C and VHDL implementations of
the algorithms dealt with the original image as three vectors, one for each fundamen-
tal color R, G, and B.

2.1 Filter for Noise Smoothing

The median filter is used to reduce image noise. In this work it is implemented using a
3x3 pixels’ neighborhood. Thus, a 3x3 mask scans the image from an initially defined
pixel. The pixels within the 3x3 neighborhood of such an initial pixel are ordered by
value. The, the pixel with the same number of values bellow and above it is identified
as the median pixel. The mask is then centered onto this new pixel.

Fig. 1 displays three images to show the diversity of leaves that can be found in
soybean crops. In all instances the picture to the left (a) is the original image before
being submitted to the filter, and the picture to the right (b) is the corresponding im-
age after being processed by the median filter. In Fig. 1 instances 1 and 3 are soybean
leaves, and instance 2 is weed. From these example images one can fell the difference
among the leaves existing in a soybean plantation.

(1a)

(1b)

(2a)

(2b)

(3a)

(3b)

Fig. 1. Original images of leaves to the left; to the right leaves resulting from median filtering

156 J.G. Mertes, N. Marranghello, and A.S. Pereira

2.2 Filter for Background Removal

Image segmentation provides for background removal. This means that this filter re-
moves all background information such as soil and other particles laid on the ground
hopefully leaving only the leaves in the scene. In order to do that, intervals of color val-
ues from the background image are determined. The image is then scanned a pixel at a
time to check if the pixel’s value is within one of the background intervals. When there is
a match the value of the pixel is set to white, it is left unchanged otherwise.

Fig. 2(a) displays the resulting images after processing by the background removal
filter. The input images for this filtering step are the corresponding numbered images
to the right side of Fig. 1.

2.3 Filter for Noise Removal

This filter aims at removing isolated spots from the image which were not detected
by the previous filters. To accomplish that it uses a 7x7-pixel mask. Using this
mask to scan the image the amount of white pixels sitting within the mask area is
counted. We consider the existence of 25 or more white pixels under the mask area
as an indicative of a background area. Thus, when this count is greater then or equal
to 25 the pixel corresponding to the center of the mask is regarded as noise, and set
to white too.

Fig. 2(b) displays the results from submitting the corresponding images from
Fig. 2(a) to the noise removal filter.

(1a)

(1b)

(2a)

(2b)

(3a)

(3b)

Fig. 2. Images resulting from background removal filtering to the left; to the right images re-
sulting from noise removal filtering

 Implementation of Filters for Image Pre-processing for Leaf Analyses in Plantations 157

2.4 Filter for Edge Enhancing

The goal of this filter is to enhance the edges of the leaves as well as to turn these
edges into binary form to make the image suitable for ANN processing. Some options
were considered for edge enhancing, being the one using Roberts’ filter that presented
the best performance, and the lowest computational cost. Other options considered
were those using Sobel, Prewitt, and Nevatia-Babu filters.

In figure 3, one can observe the images resulting from the application of the edge
enhancing filter. The images resulting from the noise removal filtering have their
edges enhanced. The black-and-white format is the result of the binarization process.
From figure 4 the differences between soybean leaves and weeds can be noted. Weed
leaves are more elongated while soybean leaves present a more rounded shape.

It is also interesting to note that figure 3 is also the final result of the image pre-
processing module. We intend to submit this sort of images to an ANN to tell weeds
and soybean leaves apart so that we can determine the amount of herbicides to apply
to the crop.

(1)

(2)

(3)

Fig. 3. Images resulting from edge enhancing filter

2.5 Application of the Module of Pre-processing in Real Environment

The module presented above was applied to images of soy plantations to prove its
effectiveness. Such images were collected with the aid of a digital camera, at about
1,5 m hieght, perpendicularly to the ground. These images have dimension of
360x240 pixels. In Fig. 4 the result of the pre-processing carried out with one of the
collected images is presented.

158 J.G. Mertes, N. Marranghello, and A.S. Pereira

(1)

(2)

(3)

(4)

(5)

Fig. 4. Result of pre-processing: (1) original image; (2) image resulting from median filtering;
(3) image resulting from background removal filtering; (4) resulting from noise removal filter-
ing and (5) image resulting from edge enhancing filter

3 Composition of the Filters in VHDL

The algorithms presented in the previous section were implemented in VHDL. The
integration of these filters in a module to produce a resulting image that can be di-
rectly read by an ANN for weed identification requires some adaptation as well as the
creation of auxiliary structures for testing on an FPGA.

Fig. 5 illustrates how the module with the filters was organized for implementation,
and how their internal logic blocks communicate to each other. In the following we
describe each such structure comprising the image pre-processing module.

From Fig. 5 one can observe the input data that are composed by the signals clock,
reset, enable and by the set of pixels of the image. This set of pixels, as previously
explained, is comprised by three vectors, namely R, G, and B. These signals will be
reach the FPGA though input ports automatically determined by Quartus II software,
during programming procedure.

 Implementation of Filters for Image Pre-processing for Leaf Analyses in Plantations 159

Fig. 5. Block diagram for the implementation of the filters in VHDL

The MUX MEMORY structure is a multiplexer for the signals that must be sent to
the internal memories. According to the control signals received the multiplexer
switches between the FPGA input ports (corresponding to external data input), and
one of the filters outputs (corresponding to internal data inputs). This multiplexer can
be seen in the Fig. 6(a).

(a)

(b)

Fig. 6. Data memory multiplexer (a); and connections of memory blocks (b)

Blocks MEM R, MEM G, MEM B represent the memories for the storage of in-
formation regarding each image color, and MEM P/B represents the memory to store
the image resulting from the image enhancing filter. These memories have the same
structure, being their external connections presented in Fig. 6(b).

160 J.G. Mertes, N. Marranghello, and A.S. Pereira

The CONT structure represents an internal counter that is started with the reset
signal to sum up the memory positions used by the input data. The counter is shown
in Fig. 7(a).

The GEN POS structure represents the pixel position generator used by the me-
dian, noise removal, and edge enhancement filters. This is the logic that properly
initializes the required mask, as well as moves it by incrementing its position rela-
tively to the corresponding interval. The position generator can be observed in
Fig. 7(b).

(a)
(b)

(c)

Fig. 7. Counter of memory positions (a); and pixel position generator (b); position generator
multiplexer (c)

The MUX GEN POS structure represents the signal multiplexer of the position
generator. Thus, it receives signals from the filters, and sends to the position generator
the information on the position that has to be incremented. The position generator
returns the updated position to the multiplexer, which in turn transmits this informa-
tion to the proper filter. This multiplexer can be observed in Fig. 7(c).

The CTRL structure represents the controller for filter enabling. It enables the first
filter, the median filter, when it receives a signal from the internal counter indicating
that all memories are filled up. For the other filters to be enabled this controller waits
until it receives a task completion signal from the corresponding previous filter. This
controller is shown in Fig. 8(a).

The MUX IN FILTERS structure represents the multiplexer of the signals to be
sent to the filters. According to the enabled filter it determines the data to be sent.
This multiplexer is shown in Fig. 8(b).

The MUX OUT FILTERS structure represents the multiplexer of the signals that
are received from the filters during or after processing of the image vectors. This
multiplexer is shown in Fig. 8(c).

Furthermore, Fig. 5 shows four structures named FILTER 1, FILTER 2, FILTER
3, and FILTER 4, corresponding to the median, background removal, noise removal,
and edge enhancement filters. Their signals are presented in Fig. 9(a), 9(b), 10(a), and
10(b), respectively.

Based on the given description of the interconnection of the sub-system in figure 6
the image pre-processing can be described as follows: upon concluding data input the
counter sends the signal ot0 to the controller that enables the median filter; finishing
its processing this filter sends the signal ot1 to the controller that enables the back-
ground removal filter; this filter processes the required data and then sends the signal

 Implementation of Filters for Image Pre-processing for Leaf Analyses in Plantations 161

(a)

(b)

(c)

Fig. 8. Signal controller (a); multiplexers of input (b), and output (c) signals for the filters

(a)

(b)

Fig. 9. Median filter (a); filter for background removal (b)

(a)

(b)

Fig. 10. Filter for noise removal (a); filter for edge enhancement (b)

162 J.G. Mertes, N. Marranghello, and A.S. Pereira

ot2 to the controller, which enables the noise removal filter; at last, when the noise
removal filter is done with its processing it sends the signal ot3 to the controller that
finally enables the edge enhancement filter. Upon completion this filter sends the
signal ot4 to the controller to conclude the processing.

Before sending the end-of-processing signal (signoff), each filter stores the result-
ing vectors in the memories represented for structures MEM R, MEM G and MEM B.
Except for the edge enhancement filter, which stores the resulting vector in the mem-
ory represented by the structure MEM P/B.

Before sending the end-of-processing signal (signoff), each filter stores the result-
ing vectors in the memories represented for structures MEM R, MEM G and MEM B.
Except for the edge enhancement filter, which stores the resulting vector in the mem-
ory represented by the structure MEM P/B.

4 Conclusions

In this article filters for image pre-processing of soybean plantations were presented.
Identification of such images through their edges was possible mainly due to the
smart performance of image segmentation filters, and the easy edge detection made
possible by the edge enhancement filter.

From the results presented we intend to move on by designing and training an arti-
ficial neural net capable of identifying weeds in images like these. After effective
weed detection it is possible to determine the correct amount of herbicides to be ap-
plied in the considered crop. Thus, reaching the goals of precision agriculture.

References

1. Gonzalez, R.C., Woods, R.E.: Processamento de Imagens Digitais (1993)
2. Whelan, B.M.: Precision Agriculture – An Introduction to Concepts, Analysis & Interpreta-

tion. ACPA, Sydney, Australia, p. 154 (2005)
3. Pernomian, V.A.: Identificação de plantas invasoras em tempo real. ICMC, USP. São Car-

los (2002)
4. Yang, C.C., et al.: Application of artificial neural networks in image recognition and classi-

fication of crops and weeds. Canadian Agricultural Engineering 42(3) (July 2000)
5. Dias, D.N.: Identificação dos sintomas de ferrugem em áreas cultivadas com cana-de-

açúcar. ICMC, USP. São Carlos (2004)

	Implementation of Filters for Image Pre-processing for Leaf Analyses in Plantations
	Introduction
	Development of the Filters
	Filter for Noise Smoothing
	Filter for Background Removal
	Filter for Noise Removal
	Filter for Edge Enhancing
	Application of the Module of Pre-processing in Real Environment

	Composition of the Filters in VHDL
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

