
Tool Integration for Reasoned Programming�

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, Scotland, UK
a.ireland@hw.ac.uk

Abstract. We argue for the importance of tool integration in achieving
the Program Verifier Grand Challenge. In particular, we argue for what
we call strong integration, i.e. a co-operative style of interaction between
tools. We propose the use of an existing planning technique, called proof
planning, as a possible basis for achieving strong integration.

1 Introduction

The renewed interest in the mechanical verification of software, we believe, can
be attributed in part to the following three factors:

– A focus on property based verification, rather than full functional verification.
– Progress in terms of mechanizing abstractions.
– Greater integration of tools.

Below we highlight some software verification projects in which these factors
played a key role:

– SLAM [1] provides an integrated toolkit for checking safety properties of
software interfaces written in C. SLAM has been applied very successfully
to the validation of device driver software. Predicate abstraction and model
checking are used to identify potential defects. Using a theorem prover, the
potential defects are then refined to identify true defects.

– ESC/Java [12] is a tool for identifying defects in Java programs. Using a
theorem prover, ESC/Java can verify that a program is free of run-time ex-
ceptions. In general, annotations are required in order to support the theorem
proving. In order to address this annotation burden, ESC/Java has been in-
tegrated with the Houdini [11] annotation assistant. Houdini is based upon
predicate abstraction, and uses refutations to refine candidate annotations.

� The work discussed was supported in part by EPSRC grants GR/R24081 and
GR/S01771. We are grateful for feedback on this position paper from Alan Bundy.
Thanks also goes to Praxis High Integrity Systems Ltd, in particular Peter Amey
and Rod Chapman for their support.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 422–427, 2008.
c© IFIP International Federation for Information Processing 2008

Tool Integration for Reasoned Programming 423

– Caveat [3] is a static analysis tool for software written in C, and was used
during the development of the flight-control software for the Airbus A380.
Caveat includes a theorem prover that supports the verification of annotated
C programs. A tool called Cristal supports the automatic generation of an-
notations (preconditions) for run-time exception freedom proofs. Currently,
abstract interpretation [26] is being explored as a basis for generating loop
invariants [25].

– NuSPADE1 [9,10,20] builds upon the SPARK approach to high integrity
software development [2]. The SPARK approach has been used extensively
on safety [22] and security [15] critical applications. The NuSPADE project
developed an integrated approach to program reasoning, based upon the use
of proof-failure analysis to constrain the generation of program annotations.
NuSPADE focused in particular on automation for run-time exception free-
dom proofs.

The above list is by no means complete. The aim is simply to highlight the role
of property-based verification, mechanized abstract and tool integration within
current software verification projects. The remainder of this position paper fo-
cuses on the importance of tool integration for software verification.

2 Tool Integration

The importance of tool integration for software verification is not a new observa-
tion. For instance, the potential benefits of having a close relationship between
heuristic guidance, i.e. annotation generation, and theorem proving were antic-
ipated by Wegbreit in his early work on program verification [31]. Achieving
a “close relationship”, what we will refer to as strong integration, requires a
co-operative style of interaction between tools. Note that strong integration is
closely related to the notion of tightly coupled integration presented in [8]. The
use of counterexamples in guiding the search for program annotations is an ex-
ample of strong integration. As an aside, the importance of counterexamples
within the context of software verification is discussed in more detail in [30].
This is in contrast to a black box style of integration, or weak integration, where
interaction between tools is minimal, e.g. success and failure.

In terms of automated reasoning, the benefits of strong integration are illus-
trated in [4] where Boyer and Moore report on the experimental integration of
their theorem prover with a decision procedure for linear arithmetic. They found
that the decision procedure was directly applicable to very few subgoals gener-
ated by the theorem prover – so weak integration gave poor performance. In con-
trast, strong integration, i.e. allowing the theorem prover and decision procedure
to interact co-operatively, gave significant performance improvements. However,
the customization associated with such strong integration is costly. Boyer and
Moore reported that implementing strong integration was time-consuming, in-
volving extensive and complex changes to both the theorem prover and decision
1 More details can be found at http://www.macs.hw.ac.uk/nuspade

http://www.macs.hw.ac.uk/nuspade

424 A. Ireland

procedure. An in-depth discussion of the trade-offs that need to be considered
when addressing the challenge of tool integration can be found in [8].

If one accepts strong integration as an important factor in addressing the task
of software verification, then alleviating the costs associated with strong inte-
gration is an important milestone on the road to meeting the Program Verifier
Challenge. We believe that approaches that support the kind of “customization”
outlined above will play a vital role in alleviating such costs. We propose plan-
ning, and in particular proof planning [5], as a possible approach to achieving
the level of customization that is required in order reduce the cost of strong
integration.

Proof planning is a computer-based technique for automating the search for
proofs. At the core of the technique are high-level proof outlines, known as proof
plans. Proof planning builds upon tactic-based reasoning [14]. Starting with a
set of general purpose tactics, plan formation techniques are used to construct
a customized tactic for a given conjecture. A key feature of proof planning is
that it separates proof search from proof checking. This gives greater flexibility
in the strategies that can be used in guiding proof search as compared to con-
ventional proof development environments. An example of this greater flexibility
is the proof critics mechanism [16,18] that supports the automatic analysis and
patching of proof planning failures. Proof critics have been very successful in
automating the generation of auxiliary lemmas, conjecture generalizations and
loop invariants [17,18,19,29,21].

Inspired by [4], the value of proof planning as a basis for strong integration
was first observed in [6], where part of a decision procedure was rationally re-
constructed as a proof plan. The modularity imposed by the proof plan enabled
flexibility in the application of the decision procedure, e.g. auxiliary information
such as lemmas, could be easily incorporated. In terms of tool integration, the
value of proof planning as a basis for a co-operative style reasoning has been
demonstrated through the Clam-HOL [28] and NuSPADE projects, the details
of which are outlined below.

In the case of Clam-HOL, the Clam proof planner [7] was integrated with
the Cambridge HOL interactive theorem prover [13]. The Boyer and Moore inte-
gration example, highlighted above, was re-implemented within the Clam-HOL
framework with positives results [27].

Within the NuSPADE project, proof plans were used to increase the level of
proof automation available via the SPARK toolset. Part of this effort involved
the development of new proof plans, as well as the reuse of existing proof plans,
i.e. proof plans developed for mathematical induction. The NuSPADE project
also broadened the role of proof plans, i.e. proof patching was extended to incor-
porate light-weight program analysis. That is, common patterns of proof-failure
were identified with constraints on missing properties. These constraints were
used by our program analyzer to guide the introduction of auxiliary program
annotations, e.g. loop invariants. It should be noted that the program analyzer
also initiated interactions with the proof planner, i.e. the program analyzer called
upon the proof planner to discharge simple equational reasoning goals. In terms

Tool Integration for Reasoned Programming 425

of automation for run-time exception freedom proofs, NuSPADE was evaluated
on a number of industrial applications, including SHOLIS [22], the first sys-
tem developed to meet the UK Ministry of Defence Interim Defence Standards
00-55 [24] and 00-56 [23]. Our techniques are aimed at verification conditions
that arise in loop-based code. While industrial strength critical software systems
are engineered to minimize the number and complexity of loops, we found 80%
of the loops that we encountered were provable using our techniques. That is,
our program analysis, guided by proof-failure analysis, automatically generated
auxiliary program annotations that enabled subsequent proof planning and proof
checking attempts to succeed.

3 Conclusion

Tool integration is prevalent within current software verification projects. We
have argued for the value of strong integration, i.e. a co-operative style of tool
interaction, within the context of software verification. To achieve strong inte-
gration, we have proposed the use of proof planning, an approach which has
a track-record in the development of reasoning systems which embody a co-
operative style of interaction. We believe that strong integration will accelerate
the development and sharing of tools and techniques on the road to achieving
the Program Verifier Grand Challenge.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: Conference Record of POPL2002: The 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, Oregon, pp. 1–3
(2002)

2. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, Reading (2003)

3. Baudin, P., Pacalet, A., Raguideau, J., Schoen, D., Williams, N.: Caveat: A tool
for software validation. In: International Conference on Dependable Systems and
Networks (DSN 2002), IEEE Computer Society Press, Los Alamitos (2002)

4. Boyer, R.S., Moore, J.S.: Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic. In: Hayes, J.E., Richards, J., Michie, D.
(eds.) Machine Intelligence, vol. 11, pp. 83–124 (1988)

5. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, R., Over-
beek, R. (eds.) 9th International Conference on Automated Deduction, pp. 111–
120. Springer, Heidelberg (1988); Longer version available from Edinburgh as DAI
Research Paper No. 349

6. Bundy, A.: The use of proof plans for normalization. In: Boyer, R.S. (ed.) Essays
in Honor of Woody Bledsoe, pp. 149–166. Kluwer, Dordrecht (1991); Also available
from Edinburgh as DAI Research Paper No. 513

7. Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The Oyster-Clam system. In:
Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 647–648. Springer,
Heidelberg (1990)

426 A. Ireland

8. de Moura, L., Owre, S., Rueb, H., Rushby, J., Shankar, N.: Integrating verification
components: The interface is the message (2005),
http://www.csl.sri.com/users/shankar/shankar-drafts.html

9. Ellis, B.J., Ireland, A.: Automation for exception freedom proofs. In: Proceedings
of the 18th IEEE International Conference on Automated Software Engineering,
pp. 343–346. IEEE Computer Society, Los Alamitos (2003); Also available from
the School of Mathematical and Computer Sciences, Heriot-Watt University, as
Technical Report HW-MACS-TR-0010

10. Ellis, B.J., Ireland, A.: An integration of program analysis and automated theo-
rem proving. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS,
vol. 2999, pp. 67–86. Springer, Heidelberg (2004); Also available from the School
of Mathematical and Computer Sciences, Heriot-Watt University, as Technical Re-
port HW-MACS-TR-0014

11. Flanagan, C., Rustan, K., Leino, M.: Houdini, an annotation assistant for
ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, Springer,
Heidelberg (2001)

12. Flanagan, C., Rustan, K., Leino, M., Lillibridge, M., Nelson, G., Saxe, J., Stata,
R.: Extended static checking for Java. In: Proceedings of PLDI (2002)

13. Gordon, M.J.: HOL: A proof generating system for higher-order logic. In:
Birtwistle, G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification and
Synthesis, Kluwer, Dordrecht (1988)

14. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

15. Hall, A., Chapman, R.: Correctness by construction: Developing a commercial
secure system. IEEE Software 19(2) (2002)

16. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 178–189. Springer, Heidel-
berg (1992); Also available from Edinburgh as DAI Research Paper 592

17. Ireland, A., Bundy, A.: Extensions to a Generalization Critic for Inductive Proof.
In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 47–61.
Springer, Heidelberg (1996); Also available from Edinburgh as DAI Research Paper
786

18. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of
Automated Reasoning 16(1–2), 79–111 (1996); Also available as DAI Research
Paper No 716, Dept. of Artificial Intelligence, Edinburgh

19. Ireland, A., Bundy, A.: Automatic Verification of Functions with Accumulating Pa-
rameters. Journal of Functional Programming: Special Issue on Theorem Proving
& Functional Programming 9(2), 225–245 (1999); A longer version is available from
Dept. of Computing and Electrical Engineering, Heriot-Watt University, Research
Memo RM/97/11

20. Ireland, A., Ellis, B.J., Cook, A., Chapman, R., Barnes, J.: An integrated approach
to high integrity software verification. Journal of Automated Reasoning: Special
Issue on Empirically Successful Automated Reasoning 36(4), 379–410 (2006)

21. Ireland, A., Stark, J.: Proof planning for strategy development. Annals of Mathe-
matics and Artificial Intelligence 29(1-4), 65–97 (2001); An earlier version is avail-
able as Research Memo RM/00/3, Dept. of Computing and Electrical Engineering,
Heriot-Watt University

22. King, S., Hammond, J., Chapman, R., Pryor, A.: Is proof more cost effective than
testing? IEEE Trans. on SE 26(8) (2000)

http://www.csl.sri.com/users/shankar/shankar-drafts.html

Tool Integration for Reasoned Programming 427

23. MoD. Hazard analysis and safety classification of the computer and programmable
electronic system elements of defence equipment. Interim Defence Standard 00-56,
Issue 1, Ministry of Defence, Directorate of Standardization, Kentigern House, 65
Brown Street, Glasgow G2 8EX, UK (April, 1991)

24. MoD. The procurement of safety critical software in defence equipment (part 1:
Requirements, part 2: Guidance). Interim Defence Standard 00-55, Issue 1, Min-
istry of Defence, Directorate of Standardization, Kentigern House, 65 Brown Street,
Glasgow G2 8EX, UK (April, 1991)

25. Nguyen, T., Ourghanlian, A.: Dependability assessment of safety-critical system
software by static analysis methods. In: InternationalConference onDependable Sys-
tems and Networks (DSN 2003), IEEE Computer Society Press, Los Alamitos (2003)

26. PolySpace-Technologies, http://www.polyspace.com/
27. Slind, K., Boulton, R.: Iterative dialogues and automated proof. In: Proceedings

of the Second International Workshop on Frontiers of Combining Systems (FroCoS
1998), Amsterdam, The Netherlands (October, 1998)

28. Slind, K., Gordon, M., Boulton, R., Bundy, A.: System description: An interface
between CLAM and HOL. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS
(LNAI), vol. 1421, Springer, Heidelberg (1998); Earlier version available from Ed-
inburgh as DAI Research Paper 885

29. Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Flener,
P. (ed.) LOPSTR 1998. LNCS, vol. 1559, Springer, Heidelberg (1999); An ear-
lier version is available from the Dept. of Computing and Electrical Engineering,
Heriot-Watt University, Research Memo RM/98/2

30. Steel, G.: The importance of non-theorems and counterexamples in program ver-
ification. In: Submitted to the IFIP Working Conference on Verified Software:
Theories, Tools, Experiments (2005)

31. Wegbreit, B.: The synthesis of loop predicates. Comm. ACM 17(2), 102–122 (1974)

http://www.polyspace.com/

	Tool Integration for Reasoned Programming
	Introduction
	Tool Integration
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

