Protocol Modeling with Model Program Composition

Margus Veanes and Wolfram Schulte

Microsoft Research, Redmond, WA, USA
{margus, schulte}@microsoft.com

Abstract. Designing and interoperability testing of distributed, application-level
network protocols is complex. Windows, for example, supports currently more
than 200 protocols, ranging from simple protocols for email exchange to com-
plex ones for distributed file replication or real time communication. To fight this
increasing complexity problem, we introduce a methodology and formal frame-
work that uses model program composition to specify behavior of such protocols.
A model program can be used to specify an increment of protocol functionality
with a coherent purpose, which can be understood and analyzed separately. The
overall behavior of a protocol can be defined by a composite model program,
which defines how the individual parts interoperate.

1 Introduction

Protocols are abundant; we rely on the reliable sending and receiving of email, multi-
media, and business data. But protocols, such as SMB [28]], can be very complex and
hard to get right. They require careful design to guarantee reliability and failure re-
silience; they require careful and efficient implementations, to not clog the system; and
they require careful documentation and interoperability testing, so that different vendors
understand the same protocol.

A protocol typically has many different facets. Each facet provides a partial view
of the overall functionality of the protocol with a coherent purpose. An example of a
facet is a set of rules that describes how message ids are allowed to be computed and
communicated between a client and a server in a client-server protocol.

In this paper we provide a methodology and a formal framework for specifying pro-
tocol facets as separate model programs. A model program is a collection of guarded
update rules indexed by actions. A model program of a single facet can be subject to
liveness and safety analysis, which can be infeasible to perform for the whole proto-
col model. Instead, one can apply compositional reasoning in the following sence. If
a model program satisfies one property and another model program satisfies another
property, then the composition of those model programs satisfies both properties. Dis-
tilling facet model programs also fosters reuse, since facets, such as an algorithm for
request cancellation in a particular client-server protocol, typically reappear in similar
protocols.

Model programs of different facets of a protocol can be composed into a single model
program. Composition of model programs is syntactic, but the underlying trace seman-
tics is based on the classical theory of labeled transition systems (LTSs) [31/32]. This
enables a direct application of the formal LTS based theory of testing using IOCO [9] or

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 324 2008.
(© IFIP International Federation for Information Processing 2008

Protocol Modeling with Model Program Composition 325

interface automata refinement [13]. The step semantics of model programs is based on
the theory of abstract state machines (ASMs) with a rich background universe [6]].
This enables explicit state exploration techniques and symbolic analysis techniques
that support the needed background theories [36], as well as a range of other ASM tech-
nologies [I8]] to be applied to model programs.

A key property of the composition of model programs is that actions may include pa-
rameters as logic variables. When actions are synchronized, values are shared through
unification from one model program to another, which is different from communica-
tion through actions by composition of input/output automata [33]], where input actions
in one model are synchronized with output actions in the other model. We provide
tool support for analyzing safety and liveness properties for basic and composed model
programs within the NModel framework [34]. We have integrated model program com-
position into a model-based test environment in NModel so that interoperability tests
can be driven from those combined models. The NModel framework uses C# for writ-
ing model programs and is explained in detail in [30], which also discusses the use of
model programs as a practical modeling technique.

To summarize, this paper makes the following contributions.

— We introduce a novel modeling technique for protocols using a decomposition of
a protocol into different facets that are modeled separately and composed using
model programs.

— We define formally the composition of model programs that simplifies and extends
the definition of parallel composition of model programs in [38]]. In particular, the
composition admits sharing of state variables and can be used for state-dependent
scenario control.

— We illustrate the use of this modeling technique and composition on an excerpt of
an industrially relevant and non-trivial SMB2 protocol.

The remainder of the paper is organized as follows. Section [2| defines model pro-
grams and related notions needed in the sequel. Section3ldefines model program com-
position. Section [] illustrates the application of the technique to a sample protocol.
Section [3] explains some aspects of the implementation and experiments. Section [l is
about related work. We finish off the paper with a short conclusion.

2 Model Programs

Model programs can be viewed as abstract state machines (ASMs) indexed by
actions. The main use of model programs is as high-level specifications in model-based
testing tools such as Spec Explorer and NModel [34]. In Spec Explorer, one
of the supported input languages is the abstract state machine language AsmL [226].
AsmlL is used in this paper as the concrete specification language for update rules that
correspond to basic ASMs with a rich background [6]] 7 including arithmetic, sets,
maps, tuples, user defined data types, etc.

We let X' denote the overall signature of function symbols. Part of the signature,
denoted by X¥*, contains function symbols whose interpretation may vary from state
to state. The remaining part X% contains symbols whose interpretation is fixed by

326 M. Veanes and W. Schulte

the background theory. A ground term over X% is called a value term. Formally,
the interpretation of a value term ¢ is the same in all states and is denoted by [t]. An
example of a value term ¢, using AsmL syntax, is a range expression {3 ..7}; whose
value [t] is the set of all integers from 3 to 7.

A subset of X% denoted by XU are free constructors called action symbols. An
actionis avalueterm f(t1,...,t,) where f is an action symbol, also called an f-action.
We also say action for [f(t1,...,tn)] = f([t1],-- ., [tn]). For all action symbols f
with arity n > 0, and all 7, 1 <4 < n, there is a unique parameter variable denoted by
f.i. We write X' for { f.i}1<i<n. Note that if n = 0 then X'y = 0.

Definition 1. A model program P is a tuple (Vp, Ap, Ip, Rp), where

Vp is a finite subset of V¥, called the state variables of P,
Ap is a finite subset of X2 called the action symbols of P,
Ip is a formula over ¥'p = X% J Vp, called the initial state condition of P;
Rp is a family {RL} se 4, of action rules R}, = (G, U},), where
° Gé is a formula over X'p U Xy called the guard or enabling condition of RL;
o U }i is an update rule over X'p U X called the update rule of R}fp.

We often say action to also mean an action rule or an action symbol, if the intent is clear
from the context.

Example 1 (Credits). The following model program is written in AsmL. It specifies
how a client and a server need to use message ids, based on a sliding window proto-
col (see Section). Here we illustrate the components of the Credits model program
according to Definition[]l

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action("Reqg(_,m,c)")]

Reg(m as Integer, c as Integer)
require m in window and c¢ > 0
requests := Add(requests,m,c)
window := window difference {m}

[Action("Res(_,m,c,_)")]

Res (m as Integer, c as Integer)
require m in requests
require requests(m) >= c
require c >= 0

window := window union {maxId + i | i in {1..c}}
requests := RemoveAt (requests,m)
maxId := maxId + c

Its three state variables are indicated with the keyword var. Credits has two actions
Req and Res, indicated with the [Action] attribute on the corresponding method defi-
nition. The initial state condition is given by the initial assignment of values to the state
variables. The argument of the [Action] attribute provides the arity of the action sym-
bol and the mapping from the formal parameter names used in the method definition to
the corresponding parameter variables for the action symbolEl Each occurrence of the

! If the mapping coincides with the method signature, this argument can be omitted.

Protocol Modeling with Model Program Composition 327

placeholder “_’ indicates that the corresponding parameter variable is not referenced.
The Req action rule Ry, has the following components. The guard G, is the
conjunction of all of the require-statements. The update rule UZ 2. is defined by the
body of the method. Note that the parallel update rule is the default in AsmL, thus both
assignments in the Req action are executed in parallel as a single transaction, although
in this case a sequential execution would yield the same updates. The Res action rule is

analogous. To summarize,

Veredis = {window, maxId, requests}7

Acredgis = {Req, Res},

Icredis = (window = {0} AmaxId =0 A requests = {—}),
Geed. = (Req.2 € window A Req.3 > 0),

Ugeq = (requests := Add(requests, Req.2,Req.3) ||

redits

window := window \ {Req.2}).

We introduce a special class of model programs used here for scenario control. A
finite state model program is a model program all of whose state variables have a finite
range. There is a straightforward encoding of regular expressions over the alphabet of
actions with placeholders to finite state model programsl] Given such a regular expres-
sion p we write FSMP(p) for the corresponding finite state model program.

Example 2 (FSMP(Reqg(, 0,2)*)). The following model program P is a finite state
model program, since Vp = (). Intuitively, P describes the closure Reg(, 0, 2) *.
[Action("Reqg(_,m,c)")]

Reg(m as Integer, c as Integer)

require m = 0 and ¢ = 2

skip
Let P be a fixed model program. A P-state is a mapping of Vp to valuesf Given a
P-state S, an extension of S with the parameter assignment § = {x; — v; }1<i<p IS
denoted by (.5;6). Given an extended P-state S, the reduction of S to Vp is denoted
by S | Vp. Given an action a = f(t1,...,ty), let 8, denote the parameter assignment
{fim— [tilhi<i<n.

Let S be a P-state, and let a be an f-action. We use the notion of firing of an update
rule U in a state S [25]], denoted here by Fire(S,U), that yields the updated state,
provided that Fire(S, U) is defined (a consistent update set exists)f| Then a is enabled
in S'if (S;0,) E Gé and S’ = Fire((S;0,), U};) | Vp is defined. Then a causes a
transition from S to S’.

A labeled transition system or LTS is a tuple (S, Sp, L, T'), where S is a set of states,
Sp C S is a set of initial states, L is a set of labels and T' C S x L x S is a transition
relation.

% Model programs also have an accepting state condition that has been omitted from the discus-
sion in this paper.

3 More precisely, this is the foreground part of the state, the background part is the canonical
model of the background theory 7.

* There is no consistent update set when for example U is a parallel update of two distinct values
to the same state variable.

328 M. Veanes and W. Schulte

Definition 2. Let P be a model program. The LTS of P, denoted by [P] is the LTS
(8,80, L, T), where Sy, is the set of all P-states s such that s = Ip; L is the set of all
actions over Ap; T and S are the least sets such that, Sy C S, and if s € S and there is
an action a that causes a transition from s to s’ then s’ € S and (s, a,s’) € T.

A run of P is a sequence of transitions (s;, @i, S;+1)i<x in [P], for some x < w, where
S0 1s an initial state of [P]. The sequence (a;)<, is called an (action) trace of P. The
run or the trace is finite if k < w. We write Traces(P) for the set of all finite traces of
P.

To illustrate the notion of a trace, consider P = FSMP(Req (, 0, 2)*). In this case
[P] has a single state s that is the empty mapping, because there are no state variables.
There is a transition (sg,Req(v,0,2), sg) in [P] for all values v. Thus a trace of P
is any sequence of Reg-actions whose second argument is O and third argument is 2,
which explains the intuition provided in Example 2l

3 Model Program Composition

Under composition, model programs with the same action signature synchronize their
steps for the actions. The guards of the actions in the composition are the conjunctions
of the guards of the component model programs. The update rules are the parallel com-
positions of the update rules of the component model programs. We use ‘||’ to denote
parallel composition of update rules (ASMs) [23]].

Definition 3. Let P and () be model programs such that A = Ap = Aq. The compo-
sition P& Q is (Vp UV, A, Ip N, (G NGL, UL || Ub) rea).

The following facts follow immediately from the definition of composition. Let P and
@ (possibly with indices) denote model programs with the same action signature.

Fact 1 (Commutativity) [P & Q] = [Q & P].
Fact 2 (Associativity) [(P, @ P2) @ Ps] = [P1 @ (P>, @ Ps)].

A straightforward technique to lift two model programs to use the same action signature,
that is commonly used to compose FSMs and LTSs, is provided by the following basic
action signature extensions.

Definition 4. Let P be a model program and f an action symbol not in Ap. The en-
abling extension of P for f, denoted by P/, is the extension of P such that Ap; =
Ap U{f} and R{Df = (true, skip). The disabling extension of P for f, denoted by

P~/ is the extension of P such that Ap—y = Ap U {f} and Ré,f = (false, skip).

Example 3 (OrderedRequests). Consider the following model program, called Ordere-
dRequests.

var window as Set of Integer

[Action("Reqg(_,m,_)")]
Req(m as Integer)
require m = Min(window)
skip

Protocol Modeling with Model Program Composition 329

It requires the second argument of a Reqg action to be the smallest element in window.
Note that Iorjeredrequesis = true because the initial values of the state variables are un-
specified, i.e. all states of [OrderedRequests] are initial states. The enabling extension

OrderedRequests®*® adds the action rule (true, skip) for Res to OrderedRequests. The
model programs OrderedRequests"*® and Credits in Example [[l have the same action
signature.

The enabling (or disabling) extension of P for a set of action symbols F' not in Ap is
denoted by P¥ (or P~F). Note that P? = P~? = P. Let P and Q be model programs.
Let PUQ = [PANAP g QAP\AR] and PAQ o [P~Ae\Ar @ Q—Ar\AQ], Intuitively,
‘W’ is an operator, where all actions whose symbol is not in the shared action signature
are interleaved; ‘A’ on the other hand disables all such actions.

In the sequel, we overload the composition operator ‘@’ so that, for arbitrary model
programs P and Q), P @ Q stands for P & Q.

3.1 Trace Intersection

When composition is used in an unrestricted manner then the end result is a new model
program which from the point of view of trace semantics might be unrelated to the
original model programs. In general this happens if the composed model programs share
state variables. The following proposition follows from Theorem 1].

Proposition 1. Let P and Q be model programs such that Ap = Ag and VpNVg = 0.
Then Traces(P @& Q) = Traces(P) N Traces(Q).

The main reason why this property is important is that it makes it possible to do com-
positional reasoning over the traces in the following sence. If all traces of P satisfy a
property ¢ and all traces of @ satisfy a property ¢ then all traces of P @ @ satisfy both
properties ¢ and .

3.2 Trace Restriction

For scenario control, it is sometimes useful to refer to the state variables of a model
program in order to write a scenario for it. In other words, there is a contract model
program P and there is a scenario model program () that may read the state variables
of P but it may not change the values of those variables. Let WriteSet(()) be the set of
all state variables of () that appear as left hand sides of assignment rules in ().

Proposition 2. Let P and Q) be model programs such that Ag C Ap, and WriteSet(Q))
and Vp are disjoint. Then Traces(P @ Q) C Traces(P).

In this case composition of P and @) does not introduce traces that were not traces
of P. A typical use of such composition is guard strengthening that is illustrated in
Example @l

Example 4. Let P be the model program Credits in Example[I] and let be the model
program OrderedRequests in Example 3 In this case Vy = {window} C Vp and
WriteSet(Q) = 0. In P @ Q, Q strengthens the guard G'»¥ so that all other choices
for the parameter m besides the smallest element in windows are eliminated, which is a
particular valid scenario for P. It is not possible to achieve this effect easily with “pure”
composition as in Proposition [}

330 M. Veanes and W. Schulte

4 Sample Protocol

We consider an excerpt of the new SMB2 protocol, a successor of the Windows file-
sharing client-server protocol SMB [28]], which is used for filesharing between Vista
machines and future Windows hosts. We consider a fixed client and a fixed server. The
client sends requests to the server and the server sends responses back to the client.
One can decompose SMB2 into various facets, that, when modeled individually, would
comprise between 20 and 30 model programs. We look at two facets that are represen-
tative from the point of view of complexity and size. The excerpt is henceforth called
SP.

— Credit negotiation describes how the client and the server need to use message ids,
based on a sliding window algorithm.
— Cancellation describes how the client can cancel a previously sent request.

Concrete messages of the protocol are mapped to (abstract) actions where message
fields that are not relevant for the given facets have been omitted. We consider three ac-
tion symbols and the following message fields. Each message has a command field that
indicates the operation communicated between the client and the server. This command
field is either mapped to the first argument of the action, or it is mapped to the action
symbol Cancel when the command is a special cancellation command.

— Req i8S a ternary action symbol that represents a request from the client to execute
a command. A request is an action Reg(c, m,n), where ¢ is a command, m is a
message id and n is a number of requested credits.

— Res is an action symbol that takes four arguments and represents responses from
the server. A response is an action Res (¢, m,n,s) where ¢ is a command, m is a
message id, n is a number of granted credits, and s is a status value.

— Cancel is a unary action symbol that represents a “meta” request from the client to
cancel a previous request. A cancellation request is an action Cancel (m) where
m is a message id.

4.1 Credit Negotiation

The client can use certain message identifiers to communicate with the server. The set
of available message identifiers can be seen as a window of numbers that changes over
time. The window is, strictly speaking, not a consecutive interval of numbers because
the client does not have to use the available numbers in any particular order. This is an
important aspect of the specification that leaves open implementation specific details
of the client-side of the protocol. An identifier of a request can only be used once.
The client can ask for credits in the requests that it sends to the server in order to
expand the window. The server may grant credits in its responses to the client. The
number of credits granted in a response determines how the window grows or shrinks as
time progresses. Note that the server may grant credits using different implementation
specific algorithms the details of which are left open by the specification.

The Credits model program is defined uniformly for all of the commands, except for
Cancel, see Example[Il

Protocol Modeling with Model Program Composition 331

The state variable window is the set of all message ids that the client may use to send
new requests to the server, requests is a map containing all the outstanding credit
requests with message ids as keys, and max1d is the largest id that has been granted
by the server. In the initial state of the model the only possible message id is 0, the
maximum id is also 0, and there are no pending requests.

The Reqg action records in the state variable requests that message m has an out-
standing credit request for c credits, and removes m from the window. The actual com-
mand (the first argument) is irrelevant here. The guard of this action rule requires that
m appears in the window and that the requested number of credits is positive. The Res
action updates the window with the new ids and updates the value of the maximum id.
This action is enabled if the given id is an outstanding request, and the granted credits
do not exceed the requested credits.

Validation. The client starves if it runs out of message ids and cannot send further
requests. An important safety requirement of the credits algorithm is that the client
must not starve. Note that this does not mean that the server always has to grant at least
one credit to the client in every response. It may be that the client has pending requests
and the server will eventually grant the client more credits. Thus, the state invariant
describing this safety condition is that if there are no pending requests then the window
must be nonempty.

[StateInvariant]
ClientHasEnoughCredits ()
require (requests = {->}) implies (window <> {})

A natural question that arises here is if the Credits model program has any unsafe
states, i.e., states that are reachable (through a trace) from the initial state that violate
the state invariant. We use the finite state model program FSMP(Req(,0,2)*) in
Example 2] to restrict the number of requested credits to 2 and the message id to 0.
[Credits & FSMP(Reg (,0,2)*)] is shown in Figure [[l and reveals an unsafe state
reached by the trace Reg(,0,2) ,Res(, 0,0,).Thelabels on the states show the
values of the state variables of the credits model program listed in the same order they
appear in Example[Il We need to strengthen the guard of the Res action so that if there
are no pending requests and the window is empty, then the granted number of credits
must be at least one; see Figure Pl Notice that if the window is empty and no credits are

Res(_.0.1 >
Res(,0,0,_)

Fig. 1. Exploration of Credits @ FSMP(Reg(,0,2)").

332 M. Veanes and W. Schulte

[Action("Res(_,m,c,_)")]
Res(m as Integer, c as Integer)
require m in requests
require requests(m) >= c
require c >= 0
require requests.Size > 1 or window <> {} or ¢ > 0

window := window union {maxId + i | i in {1..c}}
requests := RemoveAt (requests,m)
maxId := maxId + c

Fig. 2. Correction of the Res action in the Credits model program. The guard is stengthened with
an additional condition, indicated in boldface.

enum Mode
Sent //Client has sent the request
Cancel //Client has asked to cancel the request

var regMode as Map of Integer to Mode = {->}

[Action("Reqg(_,m,_)")]
Reqg(m as Integer)
require m in window
regMode := Add(regMode,m, Sent)

[Action]
Cancel (m as Integer)
if regMode(m) = Sent
regMode := Add(regMode,m,Cancel)

[Action("Res(_,m,_,status)")]

Res (m as Integer, status as Boolean)
require m in regMode.Keys
require (status or regMode(m) = Cancel) //status=false means cancelled
regMode := RemoveAt (regMode,m)

Fig. 3. Cancellation model program

granted then there must be at least two message ids pending when the new condition is
checked, because the update rule will remove one of the ids.

4.2 Cancellation

Cancellation enables the client to cancel requests that have been sent to the server. In
order to cancel a previously sent request with message id m, the client sends a cancel-
lation message to the server that identifies the request to be cancelled by including its
id in the message. The model program is shown in Figure 31 Notice that it is natural
to refer to the window of the Credits model program for the valid message ids in a
request.

The state variable regMode records for each message id whether it has been sent
or cancelled by the client. Initially, no request has either been sent or cancelled, so the
value of regMode is the empty map.

The rReq action records the mode of the message as Sent. The Cancel action is
always enabled, it updates a Sent mode to Cancel mode, and ignores the request
otherwise (this behavior is needed for robustness). The Res action removes the pending
request and requires that the request has indeed been cancelled by the client if the status

Protocol Modeling with Model Program Composition 333

Fig. 4. Exploration of Cancellation & Cancel5

is false. Note that the client may try to cancel a request but is too late to do so, when
the server has already completed it but the response has not yet reached the client due
to network latencies. Therefore, the status of a response to a request that the client tried
to cancel, is either true or false, so that a potential race condition that would otherwise
arise in the specification is avoided.

Validation. Cancellation behaves uniformly for all message ids. It is therefore enough
to fix a single message id, say 5, to expose all possible isomorphic behaviors. As above,
we use a finite state model program to do this.

Cancel5 = FSMP({Ccancel (5) ,Req(,5,) ,Res(,5, ,)}")

Exploration of [Cancellation & Cancel5] is shown in Figure[d The labels on the states
show the value of regMode. Using more message ids does not provide any additional
useful information about Cancellation, but blows up the state space exponentially in the
number of distinct message ids. With & distinct message ids there are 3* states.

4.3 Composition

Once the individual facets have been modeled and validated in isolation, we can com-
pose some or all of their model programs to validate their interactions. We use an
additional model program called Commands: if a request with id m has command c,
then the response with id m must also have command c, i.e., the server cannot re-
spond with a command that is different from the one it was requested to execute. Note
that it is convenient to refer to window of the Credits model program in the Com-
mands model program for the domain of message ids. (The definition of the Com-
mands model program is straightforward, using a map from message ids to commands.)
We assume that the commands are A and B Note that only the first two arguments
of Req and Res actions are relevant in the Commands model program. Moreover,
we use two scenario model programs: AB = FSMP(Req (A, ,)Reqg(B, ,)) and
M = FSMP({Cancel(1),Req(, ,2)}"). AB restricts the client behavior so that
a single A request is followed by a single B request. M restricts the client behavior so
that only message 1 is ever cancelled, and all requests ask for two credits. Exploration
of the composition

SPscenario = Credits ® Cancellation ® Commands ® AB & M

is illustrated in Figure 3l All self-loops of Cancel (1) are hidden. All occurrences of
placeholders (for the status argument of responses) indicate that both true and false are

334 M. Veanes and W. Schulte

Fig. 5. Exploration of SPscenario

Client Server

Reg(A,0,2) ———————>
j¢———— Res(A,0,1, true)

Reqg(B,1,2) ———————————»1

Cancel (1) —————— >

j¢——————— Res (B, 1,1, false)

Fig. 6. A trace in Figure 3 from state O to state 8

possible. Notice that the server behavior is unconstrained. In the states 7, 8 and 10, the
value of window is, respectively, {2,3}, {2}, and {2, 3,4}, corresponding to all the
possible ways in which the server could grant credits on the way from the initial state.
A particular trace from the initial state to state 8 in Figure[3lis illustrated in Figure[6)

5 Implementation and Experiences

All experiments in this paper have been made within the NModel framework using C#
as the modeling language. The complete examples, as well as the full source of NModel
itself, can be downloaded from [34]. The exploration and the composition examples
have been carried out using the mpv utility of NModel.

In NModel a model program is scoped by a namespace. Within that namespace,
classes can be given a [Feature] attribute that declares that class as a feature or

>In reality, SMB2 has 19 commands.

Protocol Modeling with Model Program Composition 335

submodel program of the full model program. This mechanism can be used to construct
separate facet model programs that share state variables, as discussed in this paper. The
main composition operator in NModel assumes that the composed model programs do
not share state variables.

The FSMP construct is supported in NModel by entering a textual representation of
a nondeterministic finite automaton or NFA (e.g. in a text file), that is converted to a
finite state model program representing a lazy determinization of the NFA based on the
Rabin-Scott algorithm, see e.g. Theorem 2.1].

For conformance testing of the server, the client actions are declared controllable
and the server actions (in this case responses) are declared observable. For online (or
on-the-fly) test execution, with the cz utility of NModel, the composed model program
is explored lazily by firing the actions one at a time, i.e. building up a trace of the
model program incrementally. Due to the lazy exploration, scalability is not an issue.
The discussion about accepting states has been omitted in this paper. Accepting states
are used to define states where a trace may end, thus providing a way to finish a test in
a clean way.

Model program analysis in NModel is based on explicit state exploration over abstract
states. Much of the algorithmic support builds on earlier work in Spec Explorer [37]. In
addition, the exploration includes a pruning technique based on isomorphism checking
of states that use objects and unordered data structures .

NModel does currently not support symbolic analysis. We are investigating an SMT
approach for doing reachability analysis of model programs [36], where we use Z.3 [4115]]
for our implementation, as it supports background theories [17/16] for arithmetic as well
as sets and maps. A prototype is being implemented for a fragment of model programs
written in AsmL. Integration of this analysis into NModel is future work.

The entire SMB2 specification contains over 300 pages of natural language specifi-
cation and corresponds to roughly 20 facets. The specification is written in a way where
the different facets are specified in separate sections of the document and therefore the
corresponding model programs are closely tied to these sections. Thus, having separate
facet model programs matches well with the style of the natural language specs and
makes it possible to do requirements tracking in the corresponding model programs.

The internal version of the modeling tool based on model programs is called Spec
Explorer 2007 and is being developed and used internally in Windows as a core tech-
nology for protocol modeling and model-based testing. In Spec Explorer 2007, model
programs and composition are used for modeling and scenario control of industrial
application-level network protocols. The entire SMB2 protocol has been modeled. In
addition to the contract part of the protocol, over 100 additional model programs were
used for scenario control. The use of composition between contract model programs and
model programs for scenario control (test purposes) is one of the core techniques for
controlling exploration [24]]. For complex protocols it may be hard to identify facets due
to dependencies. A crude classification of the protocols we have looked at is whether
remote procedure call or message passing is being used, where SMB2 belongs to the
latter kind. Being able to decompose a large protocol into facets is crucial for the latter
kind of protocols.

336 M. Veanes and W. Schulte

At least half of the effort in model-based conformance testing of protocols is actually
spent in harnessing of the implementation. A big part of this effort goes into implement-
ing a protocol-specific adapter from concrete messages on the wire to abstract actions.
When defining a mapping from concrete messages on the wire not all of the fields of
messages are relevant. For example, some of the fields in a message are solely related to
well-formedness of the message structure, checking of which can be part of a message
validation layer that is orthogonal to the behavioral model.

6 Related Work

The notion of facets as behavioral aspects of a protocol is similar to protocol features.
Feature oriented specifications have a long standing in the telecommunication indus-
try [42]], because it makes specifications easy to change and individual features easy to
understand, but it also introduces semantic challenges due to unintended feature inter-
actions [10]. More recently, features, as increments of program functionality, are being
used in feature oriented programming (FOP) for step-wise refinement of systems, and
are supported by theory and tools using algebraic specifications [4]. In FOP, features
are viewed as program transformations, and the purpose is to support feature oriented
development through program synthesis and generative programming [4]]. This is quite
different from model programs that provide a partial view of the expected behavior of a
system as an LTS, where the system itself is a black box, that is typically a combination
of different applications from different vendors. However, the relationship between the
mathematical underpinnings of model programs and FOP deserves a closer look.

Composition of model programs is a lazy automata-theoretic composition of the un-
derlying LTSs, where actions are composed by unification. The unification between
action parameters happens through the conjoined action guards. The motivation comes
from the domain of model-based testing and analysis tools such as Spec Explorer [37].
A survey of model-based approaches to software modeling, with an emphasis on test-
ing, is given in the recent book [33]. The notion of model program composition is a
simplified and extended version of parallel composition of model programs in [38§].
Work related to other forms of composition of automata is discussed in [38]]. The use
of several feature classes within a single C# model program in NModel [34] allows
for sharing of state variables across features. This enables state-dependent parameter
generation and guard strengthening, which is, in general, not possible with composition
of model programs with disjoint state signatures. Feature classes are also implemented
in Spec Explorer 2007 [24]]. The semantics of model programs can also be formulated
in terms of labeled Kripke structures. This formulation has the advantage that one can
adapt techniques that are used for model checking of temporal properties of concurrent
software systems, including counterexample-guided abstraction refinement and compo-
sitional reasoning [12].

In aspect oriented programming two concerns crosscut when the related method be-
haviors intersect [19]]. In the current paper the crosscutting of concerns corresponds to
interacting behaviors between different facets of a protocol. The sharing of information
is achieved through unification of actions, that allow data to be shared between traces
but make the sharing explicitly visible in action traces. Model program composition

Protocol Modeling with Model Program Composition 337

might be a viable approach for formalizing certain forms of composition of trace based
aspects [18] or model weaving of stateful aspects in aspect oriented modeling [[13].

The main application of model programs is for analysis and testing of software sys-
tems. In particular, for passive testing or runtime monitoring, a model program can be
used as an oracle that observes the traces of a system under test and reports a failure
when an action occurs that is not enabled in the model. This is related to aspect oriented
approaches to trace monitoring [3]]. In the context of testing of reactive systems with
model programs [39]], the action symbols are separated into controllable and observable
ones. In that context the semantics of a model program as an LTS is fundamen-
tal in order to use IOCO [9], or refinement of interface automata [14], for formalizing
the conformance relation.

Model program composition as defined in this paper is independent of the mech-
anism of exploration or analysis. Various approaches, including explicit state explo-
ration [30] as well as symbolic reachability analysis [36], may be applied. The main
difference compared to composition of action machines is that composition of
model programs is syntactic, whereas composition of action machines is defined in the
style of natural semantics using inference rules and symbolic computation that incor-
porates the notion of computable approximations of subsumption checking between
symbolic states. The computable approximations reflect the power of the underlying
decision procedures that are being used and are an integral part of the composition,
using a three-valued logic. More about model-based testing applications and further
motivation for the composition of model programs can be found in [T1123139137].

Model programs are also related to symbolic transition systems that have an explicit
notion of data and data-dependent control flow [20].

The FSMP(p) construction introduced here is a subset of a more general coordination
language approach for scenario control called Cord [22].

Besides protocol modeling, model program composition is also being investigated
as a technique for modeling and analyzing scheduling problems in embedded real-time
systems [27].

When considering interaction of model programs that require synchronization or
communication on objects rather than actions, then composition of model programs
may be too limited. A more general foundation can be based on interactive abstract
state machines [[7]].

7 Conclusion

The modeling approach introduced in this paper is being applied in a variety of indus-
trially relevant modeling and testing contexts. In particular, model programs are being
adopted as a technique for protocol modeling within Microsoft. The use of composition
of model programs is an important part of this effort that enables scenario control as
well as a divide-and-conquer approach to model complex protocols. Individual facet
model programs can be analyzed separately, they can be composed for interoperability
analysis and for constructing the oracle for the full protocol model for test case genera-
tion and conformance testing.

338

M. Veanes and W. Schulte

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Spec Explorer (released, January 2005), http://research.microsoft.com/
specexplorer

AsmL, http://research.microsoft.com/fse/AsmL/

Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L., Lhotdk, O., de Moor, O., Ongkingco,
N., Sereni, D., Sittampalam, G., Tibble, J., Verbaere, M.: Aspects for trace monitoring. In:
Havelund, K., Nafiez, M., Rosu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 20-39. Springer, Heidelberg (2006)

. Batory, D.: A tutorial on feature oriented programming and the AHEAD tool suite. In:

Lammel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 3-35. Springer,
Heidelberg (2006)

. Bjgrner, N., de Moura, L.: Z3: An efficient SMT solver. In: Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2008). LNCS, vol. 4963, Springer, Heidel-
berg (2008)

. Blass, A., Gurevich, Y.: Background, reserve, and gandy machines. In: Clote, P.G., Schwicht-

enberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1-17. Springer, Heidelberg (2000)

. Blass, A., Gurevich, Y.: Ordinary interactive small-step algorithms, I. ACM Transactions on

Computation Logic 7(2), 363—419 (2006)

. Borger, E., Stirk, R.: Abstract State Machines: A Method for High-Level System Design and

Analysis. Springer, Heidelberg (2003)

. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:

Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp.
187-193. Springer, Heidelberg (2001)

Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical
review and considered forecast. Computer Networks 41(1), 115-141 (2003)

Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer (extended abstract). In: Fitzger-
ald, J.S., Hayes, LJ., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542-547. Springer,
Heidelberg (2005)

Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software
model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) I[FM 2004. LNCS, vol. 2999,
pp. 128-147. Springer, Heidelberg (2004)

Cottenier, T., van den Berg, A., Elrad, T.: Stateful aspects: the case for aspect-oriented mod-
eling. In: AOM 2007, pp. 7-14. ACM, New York (2007)

de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 269-289. Springer, Heidelberg (2004)

de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109-120. ACM,
New York (2001)

de Moura, L., Bjgrner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE
2007. LNCS (LNAI), vol. 4603, pp. 183-198. Springer, Heidelberg (2007)

de Moura, L., Bjgrner, N.: Model-based theory combination. In: 5th International Work-
shop on Satisfiability Modulo Theories (SMT 2007), Berlin, Germany, July 2007, pp. 46-57
(2007)

Douence, R., Fradet, P., Siidholt, M.: Aspect-Oriented Software Development. In: Trace-
based Aspects, pp. 201-218. Addison Wesley, Reading (2004)

Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing aspects of AOP.
Commun. ACM 44(10), 33-38 (2001)

Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based testing.
In: Havelund, K., Nifiez, M., Rosu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 40-54. Springer, Heidelberg (2006)

http://research.microsoft.com/
specexplorer
http://research.microsoft.com/fse/AsmL/

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.
31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.
. Zave, P.: Feature interactions and formal specifications in telecommunications. Com-

Protocol Modeling with Model Program Composition 339

Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from
abstract state machines. In: ISSTA 2002. Software Engineering Notes, vol. 27, pp. 112-122.
ACM, New York (2002)

Grieskamp, W., Kicillof, N.: A schema language for coordinating construction and composi-
tion of partial behavior descriptions. In: 5th International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools (SCESM) (2006)

Grieskamp, W., Kicillof, N., Tillmann, N.: Action machines: a framework for encoding and
composing partial behaviors. IISEKE 16(5), 705-726 (2006)

Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden, F.: Model-
based quality assurance of windows protocol documentation. In: First Intl. Conf. on Software
Testing, Verification and Validation, ICST, Lillehammer, Norway (April 2008)

Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993: Lipari
Guide, pp. 9-36. Oxford University Press, Oxford (1995), research.microsoft.
com/~gurevich/Opera/103.pdf

Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of asml. Theor. Comput.
Sci. 343(3), 370412 (2005)

Helander, J., Serg, R., Veanes, M., Roy, P.: Adapting futures: Scalability for real-world com-
puting. In: Proc. 28th IEEE Real-Time Systems Symposium, pp. 105-116. IEEE, Los Alami-
tos (2007)

Hertel, C.: Implementing CIFS: The Common Internet File System. Prentice-Hall, Engle-
wood Cliffs (2003)

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis
with C#. Cambridge University Press, Cambridge (2007)

Keller, R.: Formal verification of parallel programs. Communications of the ACM, 371-384
(July 1976)

Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: 6th an-
nual ACM Symposium on Principles of distributed computing, pp. 137-151. ACM, New
York (1987)

Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3), 219—
246 (1989)

NModel (released, May 2007), http: //www.codeplex.com/NModel

Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Elsevier Science,
Amsterdam (20006)

Veanes, M., Bjgrner, N., Raschke, A.: An SMT approach to bounded reachability analysis of
model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El - Fakih, K. (eds.) FORTE
2008. LNCS, vol. 5048, pp. 53—68. Springer, Heidelberg (2008)

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson, L.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer. In: Hierons,
R., Bowen, J., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 39-76.
Springer, Heidelberg (2008)

Veanes, M., Campbell, C., Schulte, W.: Composition of model programs. In: Derrick, J.,
Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 128-142. Springer, Heidelberg (2007)
Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: Proc. ESEC/FSE-13, pp. 273-282. ACM, New York (2005)

Veanes, M., Ernits, J., Campbell, C.: State isomorphism in model programs with abstract
data structures. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 112-127.
Springer, Heidelberg (2007)

73 (released, September 2007),http: //research.microsoft.com/projects/z3

puter 26(8), 20-29 (1993)

research.microsoft.
com/~gurevich/Opera/103.pdf
http://www.codeplex.com/NModel
http://research.microsoft.com/projects/z3

	Protocol Modeling with Model Program Composition
	Introduction
	Model Programs
	Model Program Composition
	Trace Intersection
	Trace Restriction

	Sample Protocol
	Credit Negotiation
	Cancellation
	Composition

	Implementation and Experiences
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

