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Abstract. This paper presents a robust tracking system for autonomous
robots equipped with omnidirectional cameras. The proposed method
uses a 3D shape and color-based object model. This allows to tackle dif-
ficulties that arise when the tracked object is placed above the ground
plane floor. Tracking under these conditions has two major difficulties:
first, observation with omnidirectional sensors largely deforms the tar-
get’s shape; second, the object of interest embedded in a dynamic sce-
nario may suffer from occlusion, overlap and ambiguities. To surmount
these difficulties, we use a 3D particle filter to represent the target’s state
space: position and velocity with respect to the robot. To compute the
likelihood of each particle the following features are taken into account:
i) image color; ii) mismatch between target’s color and background color.
We test the accuracy of the algorithm in a RoboCup Middle Size League
scenario, both with static and moving targets.

1 Introduction

In order to carry out complex tasks (e.g. playing football) robots need to extract
sufficient information from the environment they operate in. Catadioptric sensors
are widely used in robotics, especially for self localization and navigation [8],[1],
as they gather information from a large portion of the space surrounding a robot.
One drawback is that images are affected by strong distortion and perspective
effects, which may force the use of non-standard algorithms for target detection
and tracking.

Automated tracking is still an open problem, e.g., surveillance applications [2],
sports [5,10] or smart rooms [6]. In general, tracking visual features in complex
and cluttered environments is fraught with uncertainty. It is therefore crucial to
adopt principled probabilistic models. Over the past few years, particle filters,
also known as sequential Monte Carlo (MC), proved to be effective in image
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processing tracking techniques, e.g., [11,12,13]. The strength of these methods
lies in their simplicity and flexibility on nonlinear and non-Gaussian settings [7].

We use a 3D particle-filter [9,11] tracker in which the hypotheses are 3D
positions and velocities of the object, and whose likelihood is a function of object
color and shape. From one image frame to the next, the hypotheses are moved
according to an appropriate motion model. Then, for each particle, a likelihood
is computed, in order to estimate the object state. To calculate the likelihood of
a particle we first project the contour of the object it represents on the image
plane (as a function of the object 3D shape, position and orientation) using an
approximated model for the catadioptric system, the Unified Projection Model
[15]. The likelihood is then calculated as a function of three color histograms:
one represents the object color model and is computed in a training phase with
several examples taken from distinct locations and illumination conditions; the
other two histograms represent the inner and outer boundaries of the projected
contour, and are computed at every frame for all particles. The idea is to assign
a high likelihood to the contours for which the inner pixels have a color similar
to the object, and are sufficiently distinct from outside ones.

A work closely related to this is described in [14], although in that case
the tracking of RoboCup Middle Size League (MSL) balls is accomplished on
the image plane. Tracking the 3D trajectory of a ball has become relevant in the
RoboCup MSL scenario, as robots are now provided with the ability to kick the
ball off the ground. Tracking the position of an object in 3D space instead of
on the image plane has two main advantages: (i) the motion model used by the
tracker can be the actual motion model of the object, while in image tracking
the motion model should describe movements of the projection of the object on
the image plane and, because of the aforementioned distortion, a good model
can be difficult to formulate and use; (ii) with 3D tracking the actual position of
the tracked object is directly available, while a further non-trivial step is needed
for a system based on an image tracker to provide it.

The paper is organized as follows. In Section 2 we describe the catadioptric
sensor and the used projection model. The particle filter is described in Section 3,
and customized to our particular problem in 4. The experimental results are
shown in Section 5 and, finally, Section 6 concludes the paper and presents ideas
for future work.

2 Catadioptric Imaging System

In this section we describe the imaging system, its projection model and the
used calibration method. Our catadioptric vision system, see Fig.1a, combines
a camera looking upright to a convex mirror, having omnidirectional view in
the azimuth direction [16]. The system is designed to have a wide-angle and
a constant-resolution view of the ground plane [17,18]. The system has the
constant-resolution property at one reference plane, the ground plane, and has
only approximately constant-resolution at planes parallel to the reference one.
As compared to perspective cameras, the constant-resolution design is a good
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compromise between approximating ubiquitous constant-resolution and enlarg-
ing the field of view. Note that perspective cameras can have constant-resolution
for all planes orthogonal to the optical axis only for narrow view fields. Large
fields-of-view imply using small focal length lenses which introduce large radial
distortions.

Let the projection model, P of the constant-resolution system represent the
transformation of a 3D point, [X Y Z]T into the 2D coordinates of its projection
on the image plane, [u v]T , considering the parameters θ:

[u v]T = P
(
[X Y Z]T ; θ

)
. (1)

P is trivial for the ground-plane, as it is just a scale factor between pixels and
meters. Deriving P for the complete 3D field of view is complex as it involves
using the actual mirror shape [18]. Here we assume that the system approximates
a single projection center system, considering that the mirror size is small when
compared to the distances to the imaged-objects. Hence, we can use a standard
model for catadioptric omnidirectional cameras, namely the Unified Projection
Model (UPM) pioneered by Geyer and Daniilidis [15].

The UPM represents all omnidirectional cameras with a single center of pro-
jection [15]. It is simpler than the model which takes into account the actual
shape of the mirror and gives good enough approximations for our purposes.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Catadioptric camera. (b) The Unified Projection Model. (c) Calibration
result: observed image points (crosses), 3D points projected using initial projection
parameters (dark gray circles) and using calibrated parameters (light gray circles) -
the arrows show the calibration effect at four points. (d) The OmniISocRob robotic
platform. (e) Image used for calibration. (f) Sample image taken in a RoboCup MSL
scenario.
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The model consists of a two-step mapping via a unit-radius sphere: (i) project a
3D world point, P = [x y z]T to a point Ps on the sphere surface, such that the
projection is normal to the sphere surface; (ii) project to a point on the image
plane, Pi = [u v]T from a point, O on the vertical axis of the sphere, through
the point Ps. This mapping is graphically illustrated in Fig.1b. The mapping is
mathematically defined by:

[
u
v

]
=

l + m

l
√

x2 + y2 + z2 − z

[
su 0
0 sv

] [
x
y

]
+

[
u0
v0

]
(2)

where (l, m) parameters describe the type of camera, (su, sv, u0, v0) represent
pixel scaling and offsetting in the image plane, and [x y z]T is a 3D point in the
camera coordinate system, whose relationship to world coordinates is given by
the 3D rigid transformation, [x y z]T = R[X Y Z]T + [x0 y0 z0]T .

To calibrate the model we use a set of known non-coplanar 3Dpoints [Xi Yi Zi]T

and measure their images [ui vi]T . Then, we minimize the mean squared error
between the measurements and the projection with the parametric model P :

θ∗ = argθ min
∑

i

∥
∥[ui vi]T − P

(
[Xi Yi Zi]T ; θ

)∥∥2
(3)

where θ contains the 3D rigid transformation from world to camera coordinates,
pixels scaling and offsetting, and the camera type parameters (l, m). We set the
calibration patterns coordinate system in accordance with the robot frame by
aligning the patterns with the center of the robot, see Fig.1e.

3 3D Tracking with Particle Filters

In this section we introduce the methods employed for 3D target tracking with
particle filters. We are interested in computing, at each time t ∈ N, an estimate
of the 3D pose of a target. We represent this information as a “state-vector”
defined by a random variable xt ∈ Rnx whose distribution in unknown (non-
Gaussian); nx is the dimension of the state vector. In the present work we are
mostly interested in tracking balls and cylindrical robots, whose orientation is
not important for tracking. However, the formulation is general and can easily
incorporate other dimensions in the state-vector, e.g. target orientation and spin.

Let xt = [x, y, z, ẋ, ẏ, ż]T , with (x,y,z), (ẋ,ẏ,ż) the 3D cartesian position
and linear velocities in a robot centered coordinate system. The state sequence
{xt; t ∈ N} represents the state evolution along time and is assumed to be an
unobserved Markov process with some initial distribution p(x0) and a transition
distribution p(xt | xt−1).

The observations taken from the images are represented by the random vari-
able {yt; t ∈ N}, yt ∈ R

ny , and are assumed to be conditionally independent
given the process {xt; t ∈ N} with marginal distribution p(yt | xt), where ny is
the dimension of the observation vector.
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In a statistical setting, the problem is posed as the estimation of the posteriori
distribution of the state given all observations p(xt | y1:t). Under the Markov
assumption, we have:

p(xt | y1:t) ∝ p(yt | xt)
∫

p(xt | xt−1) p(xt−1 | y1:t−1)dxt−1 (4)

The previous expression tells us that the posteriori distribution can be computed
recursively, using the previous estimate, p(xt−1 | y1:t−1), the motion-model,
p(xt | xt−1) and the observation model, p(yt | xt).

To address this problem we use particle filtering methods. Particle filtering is
a Bayesian method in which the probability distribution of an unknown state is
represented by a set of M weighted particles {x(i)

t , w
(i)
t }M

i=1 [11]:

p(xt | y1:t) ≈
M∑

i=1

w
(i)
t δ(xt − x(i)

t ) (5)

where δ(·) is the dirac delta function. Based on the discrete approximation of
p(xt | y1:t), different estimates of the best state at time t are possible to be
devised. For instance we may use the Monte Carlo approximation of the expec-
tation, x̂ .= 1

M

∑M
i=1 w

(i)
t x(i)

t ≈ E(xt | y1:t), or the maximum likelihood estimate,
x̂ML

.= argmaxxt

∑M
i=1 w

(i)
t δ(xt − x(i)

t ).
To compute the approximation to the posteriori distribution, a typical tracking

algorithm works cyclically in three stages:

1. Prediction - computes an approximation of p(xt | y1:t−1) , by moving each
particle according to the motion model;

2. Update - each particle’s weight i is updated using its likelihood p(yt | x(i)
t ):

w
(i)
t ∝ w

(i)
t−1p(yt | x(i)

t ) (6)

3. Resampling - the particles with a high weight are replicated and the ones
with a low weight are forgotten.

For this purpose, we need to model probabilistically both the motion dynam-
ics, p(xt | xt−1), and the computation of each particle’s likelihood p(yt | x(i)

t ).

3.1 The Motion Dynamics

In the system proposed herein we assume motion dynamics follow a standard
autoregressive dynamic model:

xt = Axt−1 + wt, (7)

where wt ∼ N (0, Q). The matrices A, Q, could be learned from a set of repre-
sentative correct tracks, obtained previously (e.g., see [3]), however, we choose
pre-defined values for these two matrices (see Sections 4 and 5). Since the coor-
dinates in the model are real-world coordinates, the motion model for a tracked
object can be chosen in a principled way, both by using realistic models (con-
stant velocity, constant acceleration, etc.) and by defining the covariance of the
noise terms in intuitive metric units.
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3.2 Observation Model

Each state vector xt represents a target pose hypothesis. According to target
shape, we compute sets of N points in the 3D inner and outer object boundaries:
{Dn

in} and {Dn
out}, n = 1 · · ·N . These points must be carefully chosen so that

their projection in the image plane, using the projection model of section 2, falls
in the 2D inside and outside boundaries of the image contour. Then, we obtain
sets of 2D points {dn

in} and {dn
out}. Each point d in the image is represented

by its color vector in the HSI representation. For the inner and outer boundary
point sets, we will compute HSI histograms, with B = Bh Bs Bi bins.

Let us denote bt(d) ∈ {1, . . . , B} the bin index associated with the color vector
at pixel location d and frame t. Then the histogram of the color distribution of
a generic set of points can be computed by a kernel density estimate H .=
{h(b)}b=1,...,B of the color distribution at frame t, where each histogram bin is
given as in [4]

h(b) = β
∑

n

δ[bt(dn) − b] (8)

where δ is the Kronecker delta function, β is a normalization constant which
ensures h to be a probability distribution

∑B
b=1 h(b) = 1.

To compute the similarity between two histograms we apply the Bhattacharyya
similarity metric, as in [13]:

S
(
H1,H2) =

B∑

b=1

√
h1(b) · h2(b) (9)

The likelihood of the hypothesis is computed, as a function of two similarities:
the similarity between the object color model and the color measured in the
inside image boundary, and the similarity between the colors measured in the
image inside and outside the contour.

Defining a reference color model for the object as Hmodel, Hinner as the inner
boundary points color histogram, and Houter the outer boundary histogram,
we will measure their similarity, using (9). The data likelihood should favor
candidate color histograms which are close to the reference histogram and are
sufficiently distinct from the background. Therefore we use:

p(yt | x(i)
t ) = pos

[
S(Hmodel,Hinner) − kS(Houter,Hinner)

]
(10)

where the pos(·) function truncates to zero the negative values. This allow us
to cope with the detection of the object (first term) and the detection from the
background (second term).

4 Implementation of the RoboCup MSL 3D Tracker

The present approach is tested for a ball and robot tracking task, in a typical
RoboCup MSL environment. The color model for each object was built collecting
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a set of images in which the object is present, and calculating the HSI color
histogram on the (hand labeled) pixels belonging to the specific object. For
target dynamics, we have chosen a constant velocity model, in which the motion
equations correspond to a uniform acceleration during one sample time:

xt = Axt−1 + Bat−1, A =
[
I (Δt)I
0 I

]
, B =

[
(Δt2

2 )I
(Δt)I

]
(11)

where I is the 3 × 3 identity matrix and at is a 3 × 1 white zero mean random
vector corresponding to an acceleration disturbance. We have set Δt = 1 for
all the experiments, whereas the covariance matrix of the random acceleration
vector was fixed at:

cov(at) = σ2I, σ = 90mm/frame2 (12)

The observation model requires the definition of adequate points in the 3D
object inner and outer boundaries, as described in Section 3.2. Our idea was
to determine which points of the 3D model would be projected on the object’s
contour on the image (see Fig.2) and then create the two sets of 2D boundary
points by projecting the selected 3D points for a smaller and a larger model
of the object (see the close-up’s in Figures 3 and 5: the projected contours are
drawn in white, while internal and external points are drawn in black). For the
ball, for instance, the 3D contour points lie on the intersection between the
sphere modelling it and the plane orthogonal to the line which passes through
the virtual projection center and the center of the sphere. With this model, it
is possible to adjust the number of points describing the 2D contour, obtaining
faster processing times (less points) or more robustness (more points).

(a) (b)

Fig. 2. 3D plot of the 3D points projected to obtain the 2D contour points for balls
(a) and robots (b), at different positions

5 Experimental Results

We ran several experiments to assess the accuracy and precision of the proposed
tracking method: we tracked a ball rolling down a ramp, a ball bouncing on the
floor and a robot maneuvering. We furthermore ran an experiment placing a still
ball at different positions around the robot and measuring the error with respect
to the ground truth.
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5.1 Ball Tracking – Ramp and Bouncing

In the first experiment we tracked a ball rolling down a two-rail ramp. The
projection of the ball on the image plane changes dramatically in size after some
frames (see Fig.3a), due to the nature of the catadioptric system used. The
images are affected by both motion blur and heavy sensor noise (see Fig.3b).

This image sequence was acquired with a frame rate of 20fps and we used
10000 particles in the tracker. The initial position for the particles was obtained
sampling a 3D Normal distribution, the mean and standard deviation of which
were manually set. The initial velocitiy was also manually set, equal for every
particle. To sample the pixels in order to build the inner and outer color his-
tograms for each hypothesis we projected a sphere with respectively 0.9 and 1.1
the radius of the actual ball. For each projection we used 50 points, uniformly dis-
tributed on each 3D contour. The parameter k was set to 1.5 for all experiments,
meaning that we wanted the difference between inner color and outer color to
be more discriminative than the similarity between inner color and model color.
We repeated the tracking 10 times on the same image sequence.

The results of the tracking are visible in Fig. 4a.

(a) (b)

Fig. 3. Ball rolling down a ramp. (a) frames 1, 11 and 21 of the sequence and three
corresponding close-ups of the tracked ball with the contour of the best hypothesis
drawn in white (bottom row). The pixels marked in black are the ones used to build
the color histograms. (b) Close-ups of the ball showing motion blur and noise.

In the second experiment we tracked a ball bouncing on the floor. The experi-
mental setting was exactly the same as for the first experiment described, but for
the frame rate, which in this case was of 25fps. The image sequence begins with
the ball about to hit an obstacle on the ground, while moving horizontally. The
collision triggers a series of parabolic movements for the ball, which is tracked
until it hits the ground for the fourth time. We repeated the tracking process
ten times on the same image sequence. The results are visible in Fig. 4b.
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(a) (b)

Fig. 4. (a) Ball rolling down the ramp: plot of the tracked paths resulting from 10 runs
of the algorithm performed on the same image sequence. The 10 dotted liness represent
the 10 3D estimated trajectories of the ball, the 20 solid lines are the projection of these
trajectories on the ground and lateral plane. (b) Ball jumping: same kind of plot for
the estimated trajectories of the ball in the jump image sequence.

5.2 Robot Tracking

In this experiment we tracked a robot moving along a straight line, turning by
90 degrees and continuing its motion along the new direction (Fig. 5a). In this
experiment the setting differs from the previous two: the vertical position and
speed of the tracked object were constrained to be null. The injected velocity
noise was, thereafter, distributed as a 2D Normal. To sample the pixels in order
to build the inner and outer color histogram for each hypothesis we projected
the contour of an 8-sided-prism with respectively 0.75 and 1.25 the size of the
actual robot. The size difference between the projected models and the actual
one is greater than in the case of the ball due to the fact that the model for the
robot does not exactly fit its actual shape. For each projection, 120 points were
used. We repeated the tracking 10 times and results are shown in Fig. 5b.

5.3 Error Evaluation

In this experiment we placed a ball at various positions around a robot and
confronted the positions measured with our system against the ground truth.
The positions were either in front of the robot, on its right, on its left or behind
it, and either on the floor or at a height of 340mm.

Both the ground truth and the estimated ball positions are shown in Figure 6.
It is noticeable some bias mainly in the vertical direction, due to miscalibration of
the experimental setup. However, we are mostly interested in evaluating errors
arising in the measurement process. Distance to the camera is an important
parameter in this case, because target size varies significantly. Therefore, we
have performed a more thorough error analysis evaluating its characteristics as
a function of distance to the camera.

In Figure 7, we plot the measured error in spherical coordinates (ρ–distance,
φ–elevation, θ–azimuth), as a function of distance to camera’s virtual projection
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(a) (b)

Fig. 5. Robot tracking. (a) three different frames of the sequence (top) and three close-
ups of the tracked robot with the contour of the best hypothesis (white) and regions
used to build the color histograms (black) drawn (bottom). (b) reconstructed robot
trajectory - a view from the top of 10 estimated trajectories.

center. The first plot shows that radial error characteristics are mostly constant
along distance, with a systematic error (bias) of about 46mm, and standard
deviation of about 52mm. This last value is the one we should retain for char-
acterizing the precision of the measurement process. The second plot shows the
elevation error, where it is evident a distance dependent systematic error. This
has its source on a bad approximation of the projection model for distances
close to the cameras. Finally, the third plot shows the azimuthal error. It can
be observed that there is a larger random error component at distances close to
the camera, but this just a consequence of the fact that equal position errors at
closer distances produce larger angular errors. Therefore we conclude that the
precision of the observation model is in average of 52mm and do not depend
significantly on distance to the camera in the tested range.

(a) (b)

Fig. 6. Two views of ground truth (dots) and measurements (crosses)
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Fig. 7. ρ, φ, θ error for balls laying on the ground (dots) and flying at 340mm (crosses)

6 Conclusions

In this paper we have presented a tracking system for MSL Robots equipped
with omnidirectional cameras, capable of tracking both targets on or above the
floor, to consider the possibility of flying balls. The tracker uses a 3D shape and
color model of the targets, and uses particle filtering methods to estimate their
3D location with respect to the Robot. Each hypothesis in the filter represents
the 3D pose of an object. Even though in this paper we only consider targets
with simple shapes (spheres and cylinders for representing balls and robots), the
proposed model is general and copes with arbitrary shapes.

The main advantage of our approach is the use of a full 3D model in which
the targets’ motion dynamics is naturally expressed. Previous image based (2D)
tracking methods require non-linear motion models (image projection is often
non-linear) or must rely on approximations. This non-linearity becomes even
more drastic in the case of omnicamera systems when targets are not lying on
the floor. An additional advantage of the proposed method is related to a direct
computation of 3D pose, whereas 2D models compute an image based pose that
still must be mapped to world coordinates.

We have performed extensive experiments with real robots in a RoboCup MSL
scenario. This paper showed the performance of our method in tracking maneu-
vering robots, rolling and jumping balls, demonstrating its ability to deal with
off-the-floor targets and sudden trajectory changes. Additionally, we evaluated
the precision of the system in static scenarios with ground truth measurements.

Since it is becoming more frequent to have robots kicking balls off the floor,
the presented method constitutes a solution to improve ball position estimation,
which, in the case of the goal-keeper, may be of fundamental importance.
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