Decentralised QoS-Management in Service
Oriented Architectures

Markus Schmid and Reinhold Kroeger

Wiesbaden University of Applied Sciences
Distributed Systems Lab
Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{schmid, kroeger}@informatik.fh-wiesbaden.de

Abstract. Traditional hierarchical Service Level Management (SLM)
frameworks fail to cope with the challenges imposed by the runtime dy-
namics of Service Oriented Architectures (SOA). This paper introduces a
decentralised management approach that successfully uses emerging self-
management techniques to realise a flexible SLM system and presents
an architecture that implements this approach. The architecture con-
sists of a modular self-manager framework that provides the basis for
component-level and workflow-level management. It provides sensor and
effector modules to monitor and manage different classes of applications.
Integration with existing SOA components is based on the Service Com-
ponent Architecture (SCA). The presented framework has been proto-
typically implemented and is currently evaluated in terms of efficiency
and scalability.

1 DMotivation

Traditionally, Service Level Management (SLM) is the discipline concerned with
monitoring and management of processes and applications according to agreed-
upon Quality of Service (QoS) criteria. In service provisioning relationships,
provider and customer agree on QoS criteria and failure penalties in formal con-
tracts, called Service Level Agreements (SLAs). SLAs contain SLA Parameters
that define QoS aspects to consider and Service Level Objectives (SLOs) to be
met regarding these parameters.

At runtime the agreed-on SLOs are monitored by a dedicated SLM architec-
ture. Based on this monitoring information administrators and operators take
care of necessary system reconfigurations. In current installations, a SLM ar-
chitecture is often integrated with large-scale enterprise management systems,
e.g. HP OpenView, IBM Tivoli or CA Unicenter. These systems started as man-
agement frameworks, and today consist of a number of more or less closely
integrated components. The frameworks originate from the network manage-
ment area and therefore implement a centralised, relatively static, and strictly
hierarchical management approach.

However, looking at SLM on the application-level, emerging Service Oriented
Architectures tremendously increase the overall complexity of enterprise appli-
cations, both in terms of the number of components involved and in the overall

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 44 2008.
© IFIP International Federation for Information Processing 2008

Decentralised QoS-Management in Service Oriented Architectures 45

runtime dynamics of the resulting system. In addition, the current trend towards
virtualisation of computing resources adds another layer with dynamic bindings
and thus aggravates the matching of application level failures to physical re-
sources in large-scale systems.

In this paper, we present a decentralised and adaptive SLM architecture for
dynamic SOA-based applications. The architecture employs self-management
techniques to realise SLM for individual services. The structure of the manage-
ment system automatically adapts to the SOA’s business architecture.

The paper is structured as follows: section [2] describes the characteristics of
emerging SOAs and presents commonly used implementation technologies. In
section Bl we discuss challenges for SLM in SOA environments and give a short in-
troduction to currently emerging self-management approaches. Our decentralised
SLM architecture, which in parts relies on self-management, is presented in
section @l This section also gives a description of implementation details. Re-
lated work is discussed in section Bl The paper closes with a conclusion and a
description of future work.

2 Service Oriented Architectures

Traditionally, multi-tier architectures are used to implement large-scale enter-
prise applications. They provide a clear separation of presentation, business logic
and data storage, which alleviates the impact of a change in one of these tiers
regarding the rest of the application. Multi-tier architectures are often based on
standard middleware, e.g. J2EE or CORBA, with relatively static component
bindings. Benefit of a multi-tier architecture is the stability of the interfaces
between components in different tiers. A drawback however is the inability to
perform quick reorganisations as business needs change — the rather static design
of a multi-tier application results in an inability to quickly follow changes in the
overall organisational structure of an enterprise. For that reason a more flexible
and dynamic enterprise software architecture has evolved in recent years:

Independent and loosely coupled services define the building blocks of a Ser-
vice Oriented Architecture. All services in a SOA environment are accessible in
a standardised way, as they inter-operate based on a formal interface definition
which is independent of the underlying computing platform and programming
language. Services are dynamically composed into business workflows to form
applications. This breakup into workflows and (shared) services however makes
the concept of strictly separated applications dispensable.

At runtime, workflow descriptions are interpreted by a workflow management
system (WfMS) that invokes the participating services. A major design goal for
SOA is to bring the architecture of enterprise IT applications in line with the
enterprises’ organisational structure. Thus, while services are considered as static
entities, SOA workflows may be adapted to business needs and thus can change
on a regular basis. In todays B2B scenarios SOA workflows can even span across
administrative boundaries of organisations. From an I'T management perspective
this complicates the enforcement of quality-of-service parameters.

46 M. Schmid and R. Kroeger

Looking at the technical realisation of a SOA we distinguish several abstrac-
tion layers within the architecture (see fig. [[l). At the lowest layer are the oper-
ational systems, networked hardware resources, operating systems and so forth.
These resources are utilised by enterprise components, which themselves provide
service interfaces. The second layer, called service layer, which we can also find
in traditional multi-tier enterprise applications, is the typical domain of exist-
ing hierarchical SLM-approaches for applications. On top of the service layer we
find the workflow orchestration layer, which dynamically involves the underlying
services. Service interfaces hide all implementation details from the workflows
in this layer. Workflows do also provide a service interface to the outside world
and thus may themselves be accessed by other workflows in the same way like
basic services. This allows to design complex, nested workflows.

Today, common technologies
for implementing a SOA environ-
ment are Web Services based on the
Web Services Description Language
(WSDL) for the description of service
interfaces, SOAP as communication
protocol, and the Business Process
Execution Language (BPEL) [I]
for the description of business pro-
cesses and workflows. BPEL is an
XML-based notation that defines a
number of so-called BPEL activi-
ties. Activities represent single steps
of a workflow, e.g. synchronous or
asynchronous service invocations,
variable assignment and evaluation,
case differentiations, loops, etc. BPEL

Fig. 1. Technical layering of a SOA activities are divided into basic activ-
ities that include service invocations
and other straight-forward operations, and complex activities which wrap a
number of basic activities (e.g. loops). Regarding SLM on the workflow layer,
BPEL activities are of special interest, as they reflect the progress of the real-world
business activities. In terms of QoS observation, complex BPEL activities can
be expressed as a combination of basic activities. QoS characteristics of these
activities currently can be monitored, but a reconfiguration of services (accessed
through BPEL activities) according to SLA requirements is difficult in dynamic
environments (see[2]).

The Service Component Architecture (SCA) [3] is a specification that allows
to create a standardised view on services, workflows and their static interdepen-
dencies within a SOA. As such SCA complements workflow modelling languages,
like e.g. BPEL, which concentrate on runtime aspects of component interactions.
SCA Revision 1.0 has been specified by the Open SOA C’ollabomtio7 an industry

Workflows

Services and
Enterprise
Components

Operational
Systems

! Seelhttp://www.osoa.org| for details.

http://www.osoa.org

Decentralised QoS-Management in Service Oriented Architectures 47

consortium that consists of a number of IT companies with SOA activities (e.g.
IBM, Sun, Oracle, SAP, and BEA). Further standardisation of SCA in the mean-
time has been transferred to OASIS.

SCA models services and workflows as SCA Components. These components
comprise any number of interfaces, named SCA Services, and dependencies (SCA
References) to other SCA services. A dependency between two components is
named SCA Binding. In addition SCA components can specify a number of static
SCA properties to be accessed during runtime.

SCA components and their bindings can be grouped into an SCA composite,
which hides its inner structure from the outside and thus can be handled the
same way as a plain SCA component. This allows to create recursive structures
of SCA composites within a SOA. Services and references of SCA composites
are specified by propagation of component interfaces or references.

Figure [2] depicts the graphical no-
tation of an SCA composite ABC,
which comprises three SCA compo-
nents. The composite offers a service / cﬁf&m
a’, which is propagated from the con- 7] H C

tained SCA component A. A also holds -3 2> componen 200

a Property P;. In addition, the com-

Propagation /Binding

Z’>

(Y
[}
1
[}
[}
LY
Y

posite defines bindings between the scn
components A, B and C and prop- ’
agates the reference d of C to the

SCA Composite ABC

outside.

In order to support administrative
tasks, SCA defines the concept of
SCA Domains. Common policies can
be applied to all domain entities. Cur-
rently SCA assumes that within one SCA domain components and composites
of just a single vendor are deployed. This allows vendors to implement propri-
etary binding protocols. Currently SCA composites cannot spread across do-
main boundaries, however inter-domain communication between components is
possible.

To date, SCA defines a number of different mappings for component imple-
mentation (SCA implementation bindings): there are Java and C++-bindings,
but also bindings for BPEL, Enterprise JavaBeans (EJB), Java Messaging Ser-
vice (JMS) and Spring. The component structure, bindings and services are
detailed in an XML-based Service Component Description Language (SCDL)
descriptor which is interpreted by an SCA runtime in order to instantiate the
defined implementation bindings.

Fig. 2. Example SCA composite compris-
ing three SCA components [3]

3 Necessity for Self-management

For several reasons a strictly hierarchical and centralised approach is not appli-
cable for establishing SLM within a SOA:

48 M. Schmid and R. Kroeger

(1) Because of the flexible, dynamic and compositional structure of a SOA, tradi-
tional static management structures cannot adapt fast enough to the system
dynamics.

(2) SOA environments implement large scale processes. Traditional centralised
management approaches with semi-automatic problem solving strategies do
not scale sufficiently to meet SOA demands.

(3) A SOA may well spread across enterprise boundaries and therefore also
across management domains.

(4) SLAs may be defined on different abstraction layers (e.g., for parts of work-
flows, or single services). Conflict resolution strategies must take organisa-
tional boundaries into account.

An SLM architecture for SOA has to consider the complexity of a SOA en-
vironment while it has to cope with permanent changes in composition and
cooperation.

Recently, self-management approaches have become popular, because they
aim at reduced management complexity (for the human administrator) and in-
creased scalability. In addition, the introduction of self-managing system com-
ponents allows to establish a decentralised management architecture and thus
to provide increased stability on a global level.

Self-management projects the principles
of autonomic computing to the domain of
IT-management. [5] gives a compact overview
of current challenges in the self-management
domain. Self-management summarises ap-
proaches for autonomic reconfiguration, error
recovery and optimisation of system be-
haviour of hard- and software components. [4]
describes relevant attributes of self-managed Fig. 3. Structure of an autonomic
systems as Self-X Properties. In contrast to manager, as defined by [4]
traditional management architectures, where
a human administrator controls the system, self-managed systems are controlled
by algorithms that — within certain constraints — operate autonomously.

Figure [3l depicts the principle structure of an autonomic manager. The man-
ager is loosely coupled with a managed system through well-defined sensor and
effector interfaces. Sensors are used to retrieve information about the current
state of the system, effectors are used to dynamically reconfigure the system
with the aim to drive it to a desired state. A manager may for example change
a systems’ strategy in terms of CPU and memory allocation, or may trigger the
reinitialisation of a certain sub-module.

In a self-management setting, the autonomic manager and the managed sys-
tem form a unit: the self-managed system. Such a system can again offer high-
level sensors and effectors to the outside world, thus reducing the globally visible
complexity of the system. As a result, a self-managed architecture can consist of
several layers of control loops with increasing levels of abstraction.

Analyse N Autonomic Manager /Plan

Model _| | Execute

Knowledge!

v

Sensors Effectors

Managed System

Decentralised QoS-Management in Service Oriented Architectures 49

Self-management alone however does not provide sufficient adaptability to
global business goals. For that reason we suggest to apply self-management
techniques only to SLM on the service layer of a SOA environment and to
align the overall management architecture to the structure of the SOA’s business
processes.

4 Decentralised Management Approach

4.1 General Approach

A flexible SLM architecture for SOA environments has to meet the challenges
described in section Bl Our SLM approach for SOA applications aims at pro-
viding scalability and flexibility through its decentralised structure, which uses
self-management mechanisms for management automation at the service-layer.
The SLM architecture automatically aligns with the structure of the business
processes defined, as each SOA business component (that is all corresponding
workflows and services) is associated with a Manager component, which is re-
sponsible for monitoring the components’ behaviour with regard to its previously
defined QoS requirements. Each manager component offers an interface for com-
municating QoS requirements.

Our approach realises a logically layered SLM management architecture, as
managers associated to workflow components communicate with the managers
of the participating services in order to enforce the QoS requirements that have
been defined for a workflow. QoS requirements are represented as SLAs, which
can be specified for workflows or individual services. Each manager gets assigned
one or more individual SLOs, in the following termed #SLOs. The approach uses
WSLA [6], an XML-based specification for SLA description as a formal notation
for SLAs.

In the following, the underlying common architecture for service and workflow
managers is presented. Afterwards, we describe the functionality offered by man-
agers for services and managers for workflows. Last, we present the integration
of our architecture with SCA-based SOA components.

4.2 Generic Manager Architecture

In compliance with the IBM reference architecture in [4], we have developed
a modular self-manager framework that provides a customisable basis for the
managers on the service and the workflow layers.

The core manager framework supports three different kinds of extension mod-
ules (see fig. @ for details): event modules, action modules, and control
modules. Event modules possess their own threads and thus are able to re-
act actively to changes within the environment, e.g. by creating internal mes-
sages. Action modules are passive; they act — triggered by internal messages
— by analysing application-specific sensors, or performing management tasks.
Sensors can be realised using either event modules (push model) or action

50 M. Schmid and R. Kroeger

modules (pull model). Application-specific actuators are realised through action
modules.

Control modules form the “brain” of the self-manager as they contain the
management knowledge and implement control algorithms. Control modules
act periodically or are triggered by incoming messages. Management decisions
are communicated to other modules using the internal messaging capabilities.

At startup the manager core starts a
module manager component, which then in-
stantiates the configured extension modules

Manager Framework

Manager Core _Ej and controls their lifecycle. Each instantiated
Messaging extension module is in one of the states DOWN,
Systen e UP, or ERROR, the module manager regularly
Mdule Adpters\\ Manager checks the state of the modules and is able to

stop and reinstantiate modules that are in the
ERROR state. Dependencies on the availabil-
ity of other modules are also handled by the
module manager (e.g. relevant event and ac-
tion modules are to be started usually before
p— the corresponding control module). Module
under Management configuration is remotely accessible through
a management interface, which in principle
Fig.4. Modular architecture of allows runtime reconfiguration and reinstan-
the underlying management frame- tiation of manager modules.
work

Se|NpoIN

Jusng
SeINPOIN
uonoy

Sensors | | Effectors

Managers on the
service and workflow

Component

: Management Management
layers are designed ks (SLA
to integrate into an Enforcement)

SCA-based SOA as
SCA components
(see fig. H). Each
manager consists of ,
the core manager
described above, a
number of extension
modules, and an Fig. 5. Overall architecture of a manager component
SCA adapter that
provides SCA-compliant connectivity to other components, e.g. by offering a
management interface m that is used for communicating QoS requirements.

Depending on the position of the manager in the architecture, its function-
ality is enhanced with one or more task-specific extension modules, namely for
(A) SLA distribution, (B) SLA monitoring and escalation, and (C) SLA
enforcement.

In the following we discuss the assignment of these management tasks to
service and workflow managers.

Manaéer Core

SCA Adapter-..

1 SLA|
| S

Decentralised QoS-Management in Service Oriented Architectures 51

4.3 Service Managers

For service managers, SLA monitoring (B) is performed with the help of ap-
propriate event and action modules. Usually SOA services are realised based on
enterprise software stacks that also provide standardised monitoring and man-
agement interfaces (e.g. [7U8I[9]).

Several action and event modules have been implemented, that allow a pow-
erful interaction with management interfaces, typically available in the domain
of business-critical applications:

— A Web Services Distributed Management (WSDM) [10] module handles
generic Web Services management invocations, implementing the Manage-
ment of Web Services (MOWS) part of WSDM.

— The Web-based Enterprise Management (WBEM)/Common Information
Model (CIM) [11] module allows the self-manager to act as a CIM client.

— A Java Management Extensions (JMX) [12] module allows to control any
JMX-instrumented application.

— An Application Response Measurement (ARM) [13] module can retrieve
performance-related information (e.g. response times) from ARM-instrumen-
ted applications.

— Command-execution supports the execution of shell scripts and other locally
available executables.

Due to the modular architecture of the framework additional modules can be
implemented without much effort.

SLA monitoring and escalation is performed by each manager in a sepa-
rate SLA parameter-specific control module. A manager permanently monitors
whether the iSLOs defined for the service are met, and — in case of a violation —
notifies the requesting party (the manager, which communicated the SLA).

SLA enforcement (C) is solely performed by managers on the service layer.
In order to fulfil the iSLOs that have been agreed on, a manager uses self-
management techniques to reconfigure its managed service. Reconfiguration
makes use of application specific interfaces (symbolically depicted as m; in fig. Bl
and may comprise dynamic resizing of application clusters, reallocation of re-
sources, migration of virtual machines, or other highly component-specific tasks.
Therefore, it is impossible to specify a generic SLA enforcement module, however
managers typically implement a specialised controller module for the manage-
ment algorithm and can possibly utilise existing action and event modules.

In order to customise a manager for controlling a software component that
provides a service, a service vendor has to select appropriate event and action
modules for monitoring and control of the service. As an example, one would
probably choose the JMX module to control a Java-based service implemen-
tation. Performance monitoring of a service that runs on an IBM WebSphere
application server can be achieved using the ARM event module as WebSphere
offers an ARM-compliant performane monitoring interface. In addition, the con-
trol algorithm that is used for SLA enforcement has to be customised for the

52 M. Schmid and R. Kroeger

management of the software component, i.e. to reflect the possible reconfigura-
tions offered by the software components’ JMX interface.

In [T4] we give an example for the customisation of a service manager com-
ponent by describing an example SLA enforcement mechanism for a dynami-
cally resized Cluster of JBoss application servers that uses a predecessor of the
presented management framework: The approach minimises the resource con-
sumption of the JBoss servers while still granting a maximum response time
for the requests served. For this management scenario a state machine acts as
self-management controller for the cluster, the communication with the JBoss
cluster is realised based on ARM and CIM/WBEM modules.

4.4 Workflow Managers

SLA distribution (A) is a task primarily assigned to managers that are respon-
sible for workflow components. SLAs that are assigned to a workflow need to be
adequately distributed to the services that are involved in executing the work-
flows’ steps. The distribution of the SLA comprehends an SLA parameter-specific
fragmentation of the original SLA into iSLOs for the individual services and can
e.g. take historical data into account. Afterwards, the iSLOs are communicated
to the managers of the participating services via the SCA adapter.

SLA distribution has to take into account, that services offered by external
providers are typically accessed with a fixed SLA (that has been previously nego-
tiated by the parties), which cannot be manipulated by the SLM system. Such
an SLA is treated as constant in the fragmentation process. In addition, also
fully unmanaged services can be invoked by a workflow. Such services introduce
a certain degree of uncertainty regarding the overall QoS behaviour of the work-
flow. Unmanaged services initially are assigned a random iSLO which is later
adjusted according to monitoring information.

Fig. [0l gives an example for the process of SLA fragmentation and distribu-
tion. We discuss the fragmentation exemplarily for an SLO t,,,, that limits the
maximum response time of the workflow. Fig. [6 part a) depicts the graphical
representation of a workflow that invokes four different services, C1 - C4. After
the request to C1 has returned, C2 and C3 are executed in parallel in a loop.
Afterwards the service C4 is invoked.

Fig. B part b) shows
™ > the overall structure of the
| @]J. workflow, which is used to
[(o) fragment the global SLO into

t (3 t iSLOs for the participating
services. Initially, t,;; is com-
posed of three components
- > te, tp and t., where t, de-
scribes C1 and t. describes
C4. t, = n * tp, represents
the loop execution time, being n the number of iterations and t,, the maximum
execution time of C2/C3. Ideally, 4, tpq, ty, and n are estimated from historical

a) tau

Fig. 6. SLA fragmentation example

Decentralised QoS-Management in Service Oriented Architectures 53

data, which allows to proportionally fragment the SLO into iSLOs for C1 - C4. If
no historical data is available, the proportions for the fragmentation have to be
selected randomly and need to be readjusted later.

As for managers on the service layer, SLA monitoring and escalation (B) is
executed by each manager on the workflow layer in a separate control module. In
order to increase the overall system stability, a workflow manager only sends a
notification in case the SLA for the workflow is violated, but does generally not
forward notifications from individual participating services. In case a workflow
manager receives a notification from a participating service, SLA distribution is
triggered again to perform a restructuring of the existing SLA fragmentation,
aiming at relaxing the iSLO of the component that sent the notification.

For workflow managers SLLA monitoring is implemented generically for each
supported SLA parameter. Workflow managers internally monitor workflow
progress and calculate SLA parameters like workflow response times and
throughput from this data.

4.5 SCA Integration

In order to integrate man-

Component
Manager

agers transparently with ex-
isting business components,

Component

>0 - A Sy we make use of the SCA com-
» (Managed) ey .
position feature. Figure [1 de-
omponent A

picts the association between
Composite A

a business component and a
manager: Manager and busi-
ness component are grouped
into a single SCA composite,
which propagates both the
interface of the business component and the managers’ management interface to
the outside world. In addition, existing references to other components are also
propagated by the SCA composite. We assume that workflow components are re-
alised using the SCA BPEL implementation binding as the manager component
at runtime needs to access structural workflow information; services may use
any SCA binding available. The major advantage of the composition of business
component and manager into a managed SCA composite is, that the existence
of the management component remains transparent for management-unaware
services that reference the business component. A drawback is an increase in
the response time of requests sent to the managed SCA composite, that is in
parts caused by the transport protocol used (e.g. one additional Web Service call
between composite and service) but also depends on the overhead of the SCA
runtime. We performed measurements for a worst case scenario that consists of
an empty service implementation, which provides an interface with two double
parameters. On an Intel Pentium M, 1.6 GHz (Apache Tuscany SCA Runtime,
Apache Tomcat 5.5 AS) we measured a mean response time of 3.02ms per in-
vocation for the pure service implementation and 8.75ms for a composite that

Fig. 7. Managed SCA Composite

54 M. Schmid and R. Kroeger

references this service. This response time contains an overhead of 2 ms for SCA
processing. In a real world SOA setting these calls however typically take much
longer as services perform complex business tasks while the SCA processing
overhead remains constant.
In a SOA, services are
typically accessed by multi- *
ple workflows at a time. The 4= Z4
presented management archi-
tecture is able to cope with ED

several concurrent SLAs, by
using a QoS-Proxy mecha-

>
Business » -

i i e L =X Da s Component A
nism as depicted in fig. B > a ¥

Here a management proxy
component offers several ser- %D
vice queues, one for each SLA
to be met. The proxy ref-
erences the business inter- Fig.8. Managed SCA composite with QoS proxy
face of the managed service component
and propagates this interface
multiple times, thus offering the same service in different qualities. External ser-
vices reference one of the QoS proxys’ interfaces instead of the managed service
itself.

The manager however can implement a number of different strategies for
SLA enforcement, e.g. priority-based enforcement, or approaches known from
the networking area such as weighted fair queueing or bandwidth management.

QoS-aware managed Composite A

4.6 Prototypical Implementation

The presented self-management framework has been prototypically implemented
in Java. Internal communication is based on a lightweight, process-local Java
Message Service (JMS) implementation. The integration with SCA is based on
the Apache Tuscany SCA project runtime. The SLA distribution functionality
is based on the BPEL parser of the Apache ODE BPEL engine.

In our lab the architecture has been applied to example scenarios for SLA
enforcement that have been implemented based on Apache Tomcat and JBoss
as underlying Middleware. In this context, we used Apache Axis2 and JBoss for
Web Service provisioning. JBoss and Tomcat were equipped with fine-grained
performance monitoring sensors using the ARM API (see [9] for details). We
implemented an actuator module to start and stop server instances on differ-
ent hosts. In addition, we designed a rule-based control module that uses the
ARM performance monitoring data in combination with the actuator module to
increase or reduce the size of the managed server cluster according to the aver-
age response time measured. The control module was able to keep the service
response times within a predefined range under different load conditions.

The global stability of the SLM framework depends on constant response
times of the participating services. In cases where we observe a high standard

Decentralised QoS-Management in Service Oriented Architectures 55

deviation from the average response time, workflow managers tend to unneces-
sarily recalculate iSLOs. However this can be minimised by defining appropriate
thresholds for workflow managers or alternatively by adding a predefined safety
margin to the iSLOs assigned to individual services. In addition we observed
that it is essential that service managers pause after executing a reconfiguration
in order to allow the changes to take effect. In the example above, the start of a
new server instance took about 40s — the manager had to take this into account
in order not to trigger the start of additional instances in the meantime.

5 Related Work

Many architectures for SLM-enforcement do exist for multi-tier environ-
ments [IDJI6II7] or single enterprise components [I8/I9]. Some of these archi-
tectures already employ controllers that are able to manage certain aspects of
the system without human interaction (self-management, autonomic manage-
ment). To give an example, [19] uses a feedback-control approach for autonomic
optimisation of Apache Web server response times. In contrast to our architec-
ture these approaches mainly focus on the service layer, i.e., they are not capable
of dealing with changing SOA workflows.

[20] discusses the topic of QoS enforcement in Web Services environments
and points out current challenges in this area. A management architecture that
itself is organised as a SOA is discussed in [2I]. The authors describe their SOA-
based management approach as a novel way to integrate different management
applications but do not provide automatic alignment with changes in the business
architecture.[22] presents a method for analysing the effects of service-local SLAs
on global business processes. The approach gives hints for future investments (in
terms of resources) to improve the overall QoS. It could therefore complement
our work as it assists long-term management decisions on business restructuring.

In [23] the authors present WSQoSX, an SLM architecture for SOA environ-
ments. WSQoSX consists of a number of management components that control
the lifecycle of SOA components, e.g. service discovery, selection, and work-
flow assembly. The architecture focuses on QoS-dependent service binding, i.e.
the management system evaluates workflows and selects participating services
based on their response time to fulfil predefined SLOs. When compared to our
SLM architecture for SOA management, WSQoSX focuses on scenarios where
different services with equivalent functionality are available and does not deal
with the possibility of QoS-improvement for individual services. Thus WSQoSX
focuses on B2B scenarios where multiple providers offer standardised services to
choose from, whereas our approach focuses on SLM in inner-enterprise scenar-
ios. In contrast to our approach, WSQoSX is realised as a number of centralised
services, which may eventually lead to scalability issues.

6 Summary and Conclusions

We presented a decentralised management approach for SOA environments that
uses emerging self-management techniques to realise a flexible SLM system. The

56 M. Schmid and R. Kroeger

SLM architecture consists of a modular self-manager framework that provides
the basis for component-level and workflow-level managers. The framework pro-
vides a number of sensor and effector modules to monitor and manage different
classes of enterprise components. The seamless integration with existing SOA
components is based on the Service Component Architecture (SCA).

The underlying manager framework has also been used in a different con-
text: we designed an autonomic management framework for virtual machines
[24], which is going to be integrated with the work presented in this paper.
We are also working on basing our inter-manager SLA communication on WS-
Agreement (see [25]). In addition, future work concentrates on exploiting the
potential for system-wide optimisations, which are made possible by the homo-
geneous view on all applications of an enterprise that is provided by a SOA. We
currently work on enhancing the existing architecture with self-organisation as-
pects for service managers. We aim to minimise global service resource usage by
establishing a P2P-based trading mechanism for iSLO parts. A first approach
that uses auction and bazaar protocols for transferring iSLO shares between
participating components of a workflow has already been described in [20].

References

1. Organization for the Advancement of Structured Information Standards (OASIS):
Web Services Business Process Execution Language Version 2.0 - OASIS Standard
(April 2007) (Last visited 10/12/2007),
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.pdf

2. Rud, D., Schmietendorf, A., Dumke, R.: Performance Modeling of WS-BPEL-
Based Web Service Compositions. In: IEEE Services Computing Workshop (2006)

3. Open SOA Collaboration: SCA Service Component Architecture — Assembly Model
Specification Version 1.0 (March 2007) (Last visited 10/12/2007), http://www.
osoa.org/display/Main/Service+Component+Architecture+Specifications

4. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41-50 (2003)

5. Herrmann, K., Muehl, G., Geihs, K.: Self-Management: The Solution to Complexity
or Just Another Problem?. IEEE Distributed Systems Online 6(1) (2005)

6. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Manage-
ment 11(1), 57-81 (2003)

7. Schaefer, J.: An Approach for Fine-Grained Web Service Performance Monitor-
ing. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, Springer,
Heidelberg (2006)

8. IBM: IBM Systems Software Information Center: Application instrumenta-
tion (Last visited August 2007), http://publib.boulder.ibm.com/infocenter/
eserver/vir2/index. jsp?topic=/ewlminfo/eicaaappinstrument.htm

9. Schmid, M., Thoss, M., Termin, T., Kroeger, R.: A Generic Application-
Oriented Performance Instrumentation for Multi-Tier Environments. In: IM 2007
- IFIP/IEEE Int. Symp. on Integrated Network Management, IEEE, Los Alamitos
(2007)

10. OASIS: Web Services Distributed Management: Management of Web Services 1.0
(2005), http://docs.oasisopen.org/wsdm/2004/12/wsdm-mows-1.0.pdf

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaaappinstrument.htm
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaaappinstrument.htm
http://docs.oasisopen.org/wsdm/2004/12/wsdm-mows-1.0.pdf

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Decentralised QoS-Management in Service Oriented Architectures 57

Distributed Management Task Force, Inc.: Common Information Model Specifica-
tion 2.2 (1999), http://www.dmtf.org/standards/documents/CIM/DSP0004 . pdf
Sun Microsystems: Java Management Extensions Instrumentation and Agent Spec-
ification, V1.2 (2002),
http://jcp.org/aboutJava/community-process/final/jsr003/index3.html
The OpenGroup: Application Response Measurement (ARM) Issue 4.0, V2 - C
Binding (2004), http://www.opengroup.org/management/arm/

Debusmann, M., Schmid, M., Kroeger, R.: Model-Driven Self-Management of
Legacy Applications. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS,
vol. 3543, pp. 56-67. Springer, Heidelberg (2005)

Menasce, D.A., Barbara, D., Dodge, R.: Preserving QoS of e-commerce sites
through self-tuning: A performance model approach. In: Proceedings of the 3rd
ACM Conference on Electronic Commerce, pp. 224-234. ACM Press, New York
(2001)

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-
tier internet applications. In: Proceedings of the 2nd International Conference on
Autonomic Computing (ICAC 2005) (June 2005)

Ranjan, S., Rolia, J., Fu, H., Knightly, E.: QoS-driven server migration for internet
data centers. In: Proceedings of the 10th International Workshop on Quality of
Service (IWQoS 2002), May 2002, pp. 3-12 (2002)

Diao, Y., Eskesen, F., Froehlich, S., Hellerstein, J.L., Spainhower, L.F., Surendra,
M.: Generic Online Optimization of Multiple configuration Parameters With Ap-
plication to a Database Server. In: Brunner, M., Keller, A. (eds.) DSOM 2003.
LNCS, vol. 2867, Springer, Heidelberg (2003)

Diao, Y., Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics With Application to
the Apache Web Server. In: Proceedings of Network Operations and Management
2002 (NOMS), pp. 219-234 (2002)

Ludwig, H.: Web services QoS: external SLAs and internal policies or: how do we
deliver what we promise?. In: Proceedings of Fourth International Conference on
Web Information Systems Engineering Workshops, 2003 (2003)

Mayerl, C., Vogel, T., Abeck, S.: SOA-based integration of IT service manage-
ment applications. In: Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE
International Conference on (2005)

Moura, A., Sauv, J., Jornada, J., Radziuk, E.: A Quantitative Approach to IT
Investment Allocation to Improve Business Results. In: Seventh IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY 2006)
(2006)

Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R.: An
approach for the Management of Service-oriented Architecture (SoA) based Appli-
cation Systems. In: Enterprise Modelling and Information Systems Architectures,
Proceedings, 2005, October 2005, pp. 208-221 (2005)

Marinescu, D., Kroeger, R.: Towards a Framework for the Autonomic Management
of Virtualization-Based Environments. In: Erstes GI/ITG KuVS Fachgespraech
Virtualisierung, Paderborn (February 2008)

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne,
J., Rofrano, J., Tuecke, S., Xu., M.: Web Services Agreement Specification (WS-
Agreement). Open Grid Forum GWD-R (Proposed Recommendation) (2007)
Schmid, M.: Ein Ansatz fuer das Service Level Management in dynamischen Ar-
chitekturen. In: Braun, T., Carle, G., Stiller, B. (eds.) KiVS 2007 - Kommunikation
in Verteilten Systemen, March 2007, pp. 255-266. VDE Verlag (2007) (in German)

http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf
http://jcp.org/aboutJava/community-process/final/jsr003/index3.html
http://www.opengroup.org/management/arm/

	Decentralised QoS-Management in Service Oriented Architectures
	Motivation
	Service Oriented Architectures
	Necessity for Self-management
	Decentralised Management Approach
	General Approach
	Generic Manager Architecture
	Service Managers
	Workflow Managers
	SCA Integration
	Prototypical Implementation

	Related Work
	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

