
xOperator – Interconnecting the Semantic Web
and Instant Messaging Networks

Sebastian Dietzold1, Jörg Unbehauen2, and Sören Auer1,3

1 Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany

dietzold@informatik.uni-leipzig.de
2 Leuphana - University of Lüneburg, Faculty III Environmental Sciences and

Engineering, Volgershall 1, D-21339 Lüneburg
joerg@unbehauen.net

3 University of Pennsylvania, Department of Computer and Information Science
Philadelphia, PA 19104, USA

auer@seas.upenn.edu

Abstract. Instant Messaging (IM) is in addition to Web and Email
the most popular service on the Internet. With xOperator we present a
strategy and implementation which deeply integrates Instant Messaging
networks with the Semantic Web. The xOperator concept is based on the
idea of creating an overlay network of collaborative information agents
on top of social IM networks. It can be queried using a controlled and
easily extensible language based on AIML templates. Such a deep inte-
gration of semantic technologies and Instant Messaging bears a number
of advantages and benefits for users when compared to the separated use
of Semantic Web technologies and IM, the most important ones being
context awareness as well as provenance and trust. We showcase how the
xOperator approach naturally facilitates contacts and calendar manage-
ment as well as access to large scale heterogeneous information sources.

1 Introduction

With estimated more than 500 million users1 Instant Messaging (IM) is in addi-
tion to Web and Email the most popular service on the Internet. IM is used to
maintain a list of close contacts (such as friends or co-workers), to synchronously
communicate with those, exchange files or meet in groups for discussions. Exam-
ples of IM networks are ICQ, Skype, AIM or the Jabber protocol and network2.
The latter is an open standard and the basis for many other IM networks such
as Google Talk, Meebo and Gizmo.

While there were some proposals and first attempts to bring semantic tech-
nologies together with IM (e.g. [9,5,12]) in this paper we present a strategy and
implementation called xOperator, which deeply integrates both realms in order
1 According to a sum up available at:
http://en.wikipedia.org/wiki/Instant_messaging#User_base

2 http://www.jabber.org/

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 19–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://en.wikipedia.org/wiki/Instant_messaging#User_base
http://www.jabber.org/

20 S. Dietzold, J. Unbehauen, and S. Auer

to maximise benefits for prospective users. The xOperator concept is based on the
idea of additionally equipping an users’ IM identity with a number of information
sources this user owns or trusts (e.g. his FOAF profile, iCal calendar etc.). Thus
the social IM network is overlaid with a network of trusted knowledge sources.
An IM user can query his local knowledge sources using a controlled (but easily
extensible) language based on Artificial Intelligence Markup Language (AIML)
templates[13]. In order to pass the generated machine interpretable queries to
other xOperator agents of friends in the social IM network xOperator makes
use of the standard message exchange mechanisms provided by the IM network.
After evaluation of the query by the neighbouring xOperator agents results are
transferred back, filtered, aggregated and presented to the querying user.

Such a deep integration of semantic technologies and IM bears a number
of advantages and benefits for users when compared to the separated use of
Semantic Web technologies and IM. From our point of view the two most crucial
ones are:

– Context awareness. Users are not required to world wide uniquely iden-
tify entities, when it is clear what/who is meant from the context of their
social network neighbourhood. When asked for the current whereabout of
Sebastian, for example, xOperator can easily identify which person in my
social network has the name Sebastian and can answer my query without
the need for further clarification.

– Provenance and trust. IM networks represent carefully balanced networks
of trust. People only admit friends and colleagues to their contact list, who
they trust seeing their online presence, not being bothered by SPAM and
sharing contact details with. Overlaying such a social network with a network
for semantic knowledge sharing and querying naturally solves many issues
of provenance and trust.

The paper is structured as follows: after presenting envisioned usage scenarios
and requirements in Section 2 we exhibit the technical xOperator architecture
in Section 3. We report about a first xOperator evaluation according to different
use cases in Section 4, present related work in Section 5. We draw conclusions
and suggest directions for future work in Section 6.

2 Agent Communication Scenarios and Requirements

This section describes the three envisioned agent communication scenarios for
xOperator. We will introduce some real-world application scenarios also later in
Section 4. Figure 1 shows a schematic depiction of the communication scenarios.
The figure is divided vertically into four layers.

The first two layers represent the World Wide Web. Mutually interlinked RDF
documents (such as FOAF documents) reference each other using relations such
as rdf:seeAlso.3 These RDF documents could have been generated manually,
3 The prefix rdf, rdfs, foaf and ical used in this paper represent the well known

namespaces (e.g. http://xmlns.com/foaf/0.1/ for foaf).

http://xmlns.com/foaf/0.1/

xOperator – Interconnecting the Semantic Web and IM Networks 21

exported from databases or could be generated from other information sources.
These can be, for example, mailing list archives which are represented as SIOC
ontologies or personal calendars provided by public calendaring servers such as
Google calendar. In order to make such information available to RDF aware
tools (such as xOperator) a variety of transformation and mapping techniques
can be applied. For the conversion of iCal calendar information for example we
used Masahide Kanzaki’s ical2rdf service4.

The lower two layers in Figure 1 represent the Jabber Network. Here users are
interacting synchronously with each other, as well as users with artificial agents
(such as xOperator) and agents with each. A user can pose queries in natural
language to an agent and the agent transforms the query into one or multiple
SPARQL queries. Thus generated SPARQL queries can be forwarded either to
a SPARQL endpoint or neighbouring agents via the IM networks transport pro-
tocol (XMPP in the case of Jabber). SPARQL endpoints evaluate the query
using a local knowledge base, dynamically load RDF documents from the Web
or convert Web accessible information sources into RDF. The results of SPARQL
endpoints or other agents are collected, aggregated, filtered and presented to the
user depending on the query as list, table or natural language response.

Fig. 1. Agent communication scenarios: (a) personal agent, (b) group agent, (c) agent
network

The different communication scenarios are described in the following
subsections:

2.1 Personal Agent (A)

This scenario is the most important one and also builds the foundation for the
other two communication scenarios. A user of an Instant Messaging network
installs his own personal agent and configures information sources he owns or
4 http://www.kanzaki.com/courier/ical2rdf

http://www.kanzaki.com/courier/ical2rdf

22 S. Dietzold, J. Unbehauen, and S. Auer

trusts. For easy deployment the software representing the agent could be dis-
tributed together with (or as a plugin of) the IM network client (e.g. Pidgin).
Information sources can be for example a FOAF profile of the user containing
personal information about herself and about relationships to other people she
knows and where to find further information about these. This information is
represented in FOAF using the properties foaf:knows and rdfs:seeAlso. The
following listing shows an excerpt from a FOAF profile.

:me a foaf:Person ;
foaf:knows [

a foaf:Person ;
rdfs:seeAlso <http:// eye48.com/foaf .rdf > ;
foaf:name "Michael Haschke " ;
foaf:nick "Haschek"] .

Additionally this FOAF profile can link to other RDF documents which con-
tain more information about the user and his activities. The RDF version of his
calendar, for example, could be linked as follows:

:me rdfs:seeAlso <http: //.../ ical2rdf ?u=http ... > .
<http: //.../ ical2rdf ?u=http ... > a ical:Vcalendar ;

rdfs:label "Haschek ’s Calendar " .

Such links span a network of information sources as depicted in Figure 1.
Each user maintains his own information and links to information sources of
his acquaintances. Depending on the query, the agent will access the respective
resources. The following example queries are possible, when FOAF profiles are
known to the agent: Tell me the phone / homepage / ... of Frank! What is the
birthday of Michael? Where is Dave now? Who knows Alex?

2.2 Group Agent (B)

This communication scenario differs from the Personal Agent scenario in that
multiple users get access to the same agent. The agent should be able to commu-
nicate with multiple persons at the same time and to answer queries in parallel.
As is also depicted in Figure 1 the agent furthermore does not only access re-
mote documents but can also use a triple store for answering queries. When
used within a corporate setting this triple store can for example contain a di-
rectory with information about employees or customers. The triple store can be
also used to cache information obtained from other sources and thus facilitates
faster query answering. For agents themselves, however, the distinction between
RDF sources on the Web and information contained in a local triple store is not
relevant.

2.3 Agent Network (C)

This scenario extends the two previous ones by allowing communication and
interaction between agents. The rationale is to exploit the trust and provenance
characteristics of the Instant Messaging network: Questions about or related to

foaf:knows
rdfs:seeAlso

xOperator – Interconnecting the Semantic Web and IM Networks 23

acquaintances in my network of trust can best be answered by their respective
agents. Hence, agents should be able to talk to other agents on the IM network.
First of all, it is crucial that agents on the IM network recognize each other. A
personal agent can use the IM account of its respective owner and can access the
contact list (also called roster) and thus a part of its owner’s social network. The
agent should be able to recognise other personal agents of acquaintances in this
contact list (auto discovery) and it should be possible for agents to communicate
without interfering with the communication of their owners. After other agents
are identified it should be possible to forward SPARQL queries (originating from
a user question) to these agents, collect their answers and present them to the
user.

3 Technical Architecture

First of all, the xOperator agent is a mediator between the Jabber Instant
Messaging network 5 on one side and the World Wide Web on the other side.
xOperator is client in both networks. He communicates anonymously (or using
configured authentication credentials) on the WWW by talking HTTP with Web
servers. On the Jabber network xOperator utilizes the Extensible Messaging and
Presence Protocol (XMPP, [11]) using the Jabber account information provided
by its owner. Jabber clients only communicate with the XMPP server associated
with the user account. Jabber user accounts are have the same syntax as email

Fig. 2. Technical architecture of xOperator

addresses (e.g. soerenauer@jabber.ccc.de). The respective Jabber server cares
about routing messages to the server associated with the target account or tem-
porarily stores the message in case the target account is not online or its server
is not reachable. Since 2004 XMPP is a standard of the Internet Engineering
Task Force and is widely used by various services (e.g. Google Talk). Figure 2
depicts the general technical architecture of xOperator.

5 Our implementation currently supports the Jabber network, but can be easily ex-
tended to other IM networks such as Skype, ICQ or MSN Messenger.

soerenauer@jabber.ccc.de

24 S. Dietzold, J. Unbehauen, and S. Auer

The agent works essentially in two operational modi:

1. (Uninterrupted line) Answer natural language questions posed by a user
using SPARQL queries and respond to the user in natural language according
to a predefined template. Questions posed by a user (a) are either directly
mapped to a SPARQL query template (b) or SPARQL queries are generated
by a query script (c), which might obtain additional information by means of
sub queries (d). The resulting SPARQL query will be evaluated on resources
of the user (e), as well as passed on the Jabber network to neighbouring
agents for evaluation (f). All returned results are collected and prepared by
a result renderer for presentation to the user (g). Algorithm 1 demonstrates
the workings of xOperator.

Algorithm 1. Evaluation of XMPP user input
Input: User input I from XMPP
Output: Sendable Agent response
Data: set S = A ∪ D ∪ E of agents, documents and endpoints
Data: set C of AIML categories
Data: set R = ∅ of results
if I is an admin or extension command then return executeCommand (I)1
else if I has no match in C then return defaultmsg2
else if I has standard match in C then return aimlResult (I,C)3
else4

if I has SPARQL template match in C then5
Query = fillPatterns (aimlResult (I,C))6

else if I has query script match in C then7
Query = runScript (aimlResult (I, C))8

if Query then9
foreach s ∈ S do10

R = R ∪ executeQuery(Query, s)11

return renderResults (R);12

else13
return error14

2. (Dotted line) Receive SPARQL queries from neighbouring agents (1) on the
IM network, evaluate these queries (2) on the basis of locally known RDF
documents and SPARQL endpoints and send answers as XML SPARQL
Result Set [3] back via XMPP (3).

In both cases the agent evaluates SPARQL queries by querying a remote
SPARQL endpoint via HTTP GET Request according to the SPARQL HTTP
Bindings [4] or by retrieving an RDF document as well via HTTP and evaluating
the query by means of a local SPARQL query processor.

In the following we describe first the natural language component on the basis
AIML templates and address thereafter the communication in the Jabber network.

xOperator – Interconnecting the Semantic Web and IM Networks 25

3.1 Evaluation of AIML Templates

The Artificial Intelligence Markup Language (AIML, [13]) is an XML dialect for
creating natural language software agents. In [6] the authors describe AIML to
enable pattern-based, stimulus-response knowledge content to be served, received
and processed on the Web and offline in the manner that is presently possible
with HTML and XML. AIML was designed for ease of implementation, ease
of use by newcomers, and for interoperability with XML and XML derivatives
such as XHTML. Software reads the AIML objects and provides application-
level functionality based on their structure. The AIML interpreter is part of a
larger application generically known as a bot, which carries the larger functional
set of interaction based on AIML. A software module called a responder handles
the human-to-bot or bot-to-bot interface work between an AIML interpreter and
its object(s). In xOperator AIML is used for handling the user input received
through the XMPP network and to translate it into either a query or a call to a
script for more sophisticated evaluations.

The most important unit of knowledge in AIML is the category. A category
consists of at least two elements, a pattern and a template element. The pattern
is evaluated against the user input. If there is a match, the template is used
to produce the response of the agent. It is possible to use the star (*) as a
placeholder for any word in a pattern. We have extended this basic structure in
two ways:

Simple Query Templates: In order to enable users to create AIML categories
on the fly we have created an extension of AIML. It allows to map natural
language patterns to SPARQL query templates and to fill variables within those
templates with parameters obtained from *-placeholders in the natural language
patterns.

<category >
<pattern >TELL ME THE PHONE OF *</pattern >
<template >

<external name ="query"
param="SELECT DISTINCT ?phone WHERE {...}" />

</template >
</category >

Within the SPARQL template variables in the form of %%n%% refer to *-
placeholder (n refers to the nth *-placeholder in the category pattern). The
question for the phone number of a person, for example, can be represented
with the following AIML template:

TELL ME THE PHONE OF *

A possible (very simple) SPARQL template using the FOAF vocabulary could
be stored within the AIML category as follows:

SELECT DISTINCT ?phone WHERE
{ ?s foaf:name "%%1%%". ?s foaf:phone ?phone. }

26 S. Dietzold, J. Unbehauen, and S. Auer

On activation of a natural language pattern by the AIML interpreter the cor-
responding SPARQL templates variables are bound to the values of the place-
holders and the resulting query is send independently to all known SPARQL
endpoints and neighbouring agents. These answer independently and deliver re-
sult sets, which can complement each other, contain the same or contradictory
results. The agent renders results as they arrive to the user, but filters duplicates
and marks contradictory information. The agent furthermore annotates results
with regard to their provenance.

This adoption of AIML is easy to use and directly extensible via the Instant
Messaging client (cf. Sec. 3.2). However, more complex queries, which for exam-
ple join information from multiple sources are not possible. In order to enable
such queries we developed another AIML extension, which allows the execution
of query scripts.

Query Scripts: Query scripts basically are small pieces of software, which run
in a special environment where they have access to all relevant subsystems. They
are given access to the list of known data sources and neighbouring agents. xOp-
erator, for example, allows the execution of query scripts in the Groovy scripting
language for Java.The execution of a query script results in the generation of a
SPARQL query, which is evaluated against local information sources and passed
to other agents as described in the previous section. We motivate and illustrate
the workings of query scripts using an application scenario based on the FOAF
space (cf. Figure 1). The FOAF space has the following characteristics:

– The foaf:knows relation points to other people known by this person.
– Other FOAF and RDF documents are linked through rdfs:seeAlso, al-

lowing bots and agents to crawl through the FOAF space and to gather
additional RDF documents like calendars or blog feeds.

To enable the agent to retrieve and evaluate additional information from
sources which are referenced from the user’s FOAF profile, a query script can
contain subqueries, whose results are used within another query. Query scripts
also enable the usage of special placeholders such as now or tomorrow, which can
be populated for the querying of iCal calendars with the concrete values.

In order to extend the agent for other application domains or usage scenarios,
xOperator allows to dynamically assign new query scripts to AIML categories. A
query script is assigned to an AIML template by means of an external tag (as
are also simple SPARQL templates). An example script implementing a subquery
to retrieve relevant resources about a foaf:person is presented in Section 4.

3.2 Administration and Extension Commands

Users can easily change the configuration of their agents by using a set of ad-
ministration and extension commands. These commands have a fix syntax and
are executed without the AIML engine:
– list ds, add ds {name} {uri}, del ds {name}: With these commands,

users can manage their trusted data sources. Each source is locally identified
by a name which is associated to an URI.

xOperator – Interconnecting the Semantic Web and IM Networks 27

– list templates, add template {pattern} {query}, del template {pat-
tern}: With these template commands, users can manage simple query tem-
plates which are associateded by its AIML pattern.

– query {sparql query}: This command is used to send on-the-fly SPARQL
queries to the xOperator. The query will be evaluated on every datastore
and routed to every agent in the neighbourhood. The query results will be
rendered by a default renderer.

– list ns, add ns {prefix} {uri}, del ns {prefix}: To easlily create on-
the-fly SPARQL queries, users can manage namespaces. The namespaces
will be added to the namespace section in the on-the-fly query.

– help: This is an entry point for the help system.

3.3 XMPP Communication and Behaviour

While the HTTP client of the agent uses standard HTTP for querying SPARQL
endpoints and the retrieval of RDF documents, we extended XMPP for the mu-
tual communication between the agents. This extension complies with standard
extension routines of XMPP will be ignored by other agents. With regard to the
IM network the following functionality is required:

– The owner of the agent should be able to communicate easily with the agent.
He should be able to manage the agent using the contact list (roster) and
the agent should be easily recognizable.

– The agent has to have access to the roster of its owner in order to identify
neighbouring agents.

– It should be possible for other agents to obtain information about the owner-
ship of an agent. His requests will not be handled by other agents for security
reasons if he can not be clearly assigned to an owner.

– The agent should be only visible for his owner and neighbouring agents (i.e.
agents of contacts of his owner) and only accept queries from these.

As a consequence from those requirements it is reasonable that the agent acts
using the account of its owner (main account) for the communication with other
agents, as well as an additional account (proxy account) for the communication
with its owner6. Due to the usage of the main account other agents can trust
the agents answers and easily track the provenance of query results. Figure 3
depicts the concept of using two different accounts for the communication with
the owner and other agents. For unique identification of senders and recipients so
called resource names (in the figure Home, Work and Agent) are used and simply
appended to the account name.

We demonstrate the agent communication with two XMPP messages:

Agent Autodiscovery: Goal of the autodiscovery is the identification of agents
among each other. For that purpose each agent sends a special message of type
6 Technically, it is sufficient for the agent to use the owner’s account which, however,

could create confusing situations for the user when communicating with ‘herself’.

28 S. Dietzold, J. Unbehauen, and S. Auer

Fig. 3. XMPP Communication example

info/query (iq) to all known and currently active peers. Info/query messages
are intended for internal communication and queries among IM clients without
being displayed to the human users. An autodiscovery message between the two
agents from Figure 3, for example, would look as follows:

<iq from ="user1@example .com/Agent" type =’get ’
to=" user2@example .com/Agent" id=’... ’>

<query xmlns=’http:// jabber.org/protocol /disco#info ’/>
</iq>

A positive response to this feature discovery message from an xOperator
agent would contain a feature with resource ID http://www.w3.org/2005/09/
xmpp-sparql-binding. This experimental identifier/namespace was created by
Dan Brickley for SPARQL / XMPP experiments (cf. Section 5). The response
message to the previous request would look as follows:

<iq from =’user2@example .com/Agent’ type =’result ’
to=’user1@example .com/Agent’ id=’... ’ />

<query xmlns=’http:// jabber.org/protocol /disco#info ’>
<identity

category =’client’ name =’xOperator ’ type =’bot’/>
<feature

var=’http:// www.w3.org /2005/09/ xmpp -sparql -binding ’/>
<!-- ... more here -->

</query>
</iq>

Similar XMPP messages are used for sending SPARQL queries and retrieving
results. The latter are embedded into a respective XMPP message according to
the SPARQL Query Results XML Format7.

Routing and Recall: Queries are propagated to all neighbouring xOperator
agents. As currently there is no way of anticipating which agent could answer

7 http://www.w3.org/TR/rdf-sparql-XMLres/

http://www.w3.org/2005/09/xmpp-sparql-binding
http://www.w3.org/2005/09/xmpp-sparql-binding

xOperator – Interconnecting the Semantic Web and IM Networks 29

a question, asking all directly connected agents offers the best compromise be-
tween load and recall. Flooding the network beyond adjacent nodes would cause
excessive load. Especially in the domain of personal information, persons or their
respective agents directly related to the querying person or agent should be most
likely to answer the query.

4 Evaluation

The xOperator concept was implemented in Java and is available as open-source
software from: http://aksw.org/Projects/xOperator. The agent is able to log
into existing accounts and can receive querying and configuration commands.

Fig. 4. Communication with the xOperator agent by means of an ordinary Jabber
client

We evaluated our approach in a number of scenarios, which included various
heterogeneous information sources and a different number of agents. As informa-
tion sources we used FOAF profiles (20 documents, describing 50 people), the
SPARQL endpoint of our semantic Wiki OntoWiki [2] (containing information
about publications and projects), information stored in the LDAP directory ser-
vice of our department, iCal calendars of group members from Google calendar
(which are accessed using iCal2RDF) and publicly available SPARQL endpoints
such as DBpedia [1]. Hence the resulting information space contains information
about people, groups, organizations, relationships, events, locations and all infor-
mation contained in the multidomain ontology DBpedia. We created a number
of AIML categories, interacting with this information space. Some example pat-
terns and corresponding timings for obtaining answers from the agent network in

http://aksw.org/Projects/xOperator

30 S. Dietzold, J. Unbehauen, and S. Auer

Table 1. Average response time in seconds (client to client) of some AIML patterns
used in three scenarios: (1) 20 documents linked from one FOAF profile, 1 personal
agent with no neighbourhood (2) 20 documents linked from different FOAF profiles
and spread over a neighbourhood of 5 agents (3) one SPARQL endpoint as an interface
to a Semantic Wiki or DBpedia store with one group agent

Template Scenario 1 Scenario 2 Scenario 3

1 What is / Tell me (the) * of * 2.3 3.9 1.5
2 Who is member of * 3.5 4.3 1.6
3 Tell me more about * 3.2 5.6 1.1
4 Where is * now: 5.1 6.7 4.2
5 Free dates * between * and * 5.1 6.8 4.7
6 Which airports are near * – – 3.4

the three different network scenarios (personal agent, agent network and group
agent) are summarized in Table 1.

The first three templates represent queries which are answered using simple
SPARQL templates. Template 4 makes use of a reserved word (now), which is
replaced for querying with an actual value. Template 5 is implemented by means
of a query script which retrieves all available time slots from the calendars of
a group of people and calculates the intersection thus offering suitable times
to arrange meetings or events, where the attendance of all group members is
required. Template 6 uses the DBpedia SPARQL endpoint in a group agent
setting to answer questions about the geographic location of places (such as
airports). These query templates are meant to give some insights in the wealth of
opportunities for employing xOperator. Further, AIML templates can be created
easily, even directly from within the IM client (using the administration and
extension commands as presented in Section 3.2).

A typical user session showing the communication with the agent is depicted
in Figure 4. The response timings indicate that the major factor are latency times
for retrieving RDF documents or querying SPARQL endpoints. The impact of
the number of agents in the agent network as well as the overhead required
by the xOperator algorithm is rather small. The timings are furthermore upper
bounds, since answers are presented to the user as they arrive. This results in
intuitive perception that xOperator is a very responsive and efficient way for
query answering.

Experiences during the evaluation have led to the following rules for creating
patterns and queries in xOperator.

(1) Query as fuzzy as possible: Instant Messaging is a very quick means of com-
munication. Users usually do not capitalize words and use many abbreviations.
This should be considered, when designing suitable AIML patterns. If informa-
tion about the person ‘Sören Auer’ should be retrieved, this can be achieved using
the following graph pattern: ?subject foaf:name "Auer". However, informa-
tion can be represented in multiple ways and often we have to deal with minor

xOperator – Interconnecting the Semantic Web and IM Networks 31

misrepresentations (such as trailing whitespace or wrong capitalizations), which
would result for the above query to fail. Hence, less strict query clauses should be
used instead. For the mentioned example the following relaxed SPARQL clause,
which matches also substrings and is case insensitive, could be used:

?subject foaf:name ?name .
FILTER regex(?name ,’.* Auer .*’,’i’)

(2) Use patterns instead of qualified identifiers for properties: Similar, as for
the identification of objects, properties should be matched flexible. When search-
ing for the homepage of ‘Sören Auer’ we can add an additional property matching
clause to the SPARQL query instead of directly using, for example, the property
identifier foaf:homepage):

?subject ?slabel ?spattern .
?subject ?property ?value.
?property ?plabel ?ppattern .
FILTER regex(?spattern ,’.* Auer .*’,’i’)
FILTER regex(?ppattern ,’.* homepage .*’,’i’)

This also enables multilingual querying if the vocabulary contains the respec-
tive multilingual descriptions. Creating fuzzy queries, of course, significantly
increases the complexity of queries and will result in slower query answering
by the respective SPARQL endpoint. However, since we deal with a distributed
network of endpoints, where each one only stores relatively small documents this
effect is often negligible.

(3) Use sub queries for additional documents: In order to avoid situations
where multiple agents retrieve the same documents (which is very probable in a
small worlds scenario with a high degree of interconnectedness) it is reasonable
to create query scripts, which only distribute certain tasks to the agent network
(such as the retrieval of prospective information sources or document locations),
but perform the actual querying just once locally.

5 Related Work

Proposals and first prototypes which are closely related to xOperator and in-
spired its development are Dan Brickley’s JQbus8 and Chris Schmidt’s SPARQL
over XMPP9. However, both works are limited to the pure transportation of
SPARQL queries over XMPP.

Quite different but the xOperator approach nicely complementing are works
regarding the semantic annotation of IM messages. In [9] for example the authors
present a semantic archive for XMPP instant messaging which facilitates search
in IM message archives. [5] suggests ways to make IM more semantics aware
by facilitating the classification of IM messages, the exploitation of semantically
represented context information and adding of semantic meta-data to messages.
8 http://svn.foaf-project.org/foaftown/jqbus/intro.html
9 http://crschmidt.net/semweb/sparqlxmpp/

http://svn.foaf-project.org/foaftown/jqbus/intro.html
http://crschmidt.net/semweb/sparqlxmpp/

32 S. Dietzold, J. Unbehauen, and S. Auer

Comprehensive collaboration frameworks which include semantic annotations of
messages and people, topics are, for example, CoAKTinG [12] and Haystack [7].
The latter is a general purpose information management tool for end users and
includes an instant messaging component, which allows to semantically anno-
tate messages according to a unified abstraction for messaging on the Semantic
Web[10].

In [8] natural language interfaces (NLIs) are used for querying semantic data.
The NLI used in xOpertor employs only a few natural language processing tech-
niques, like stop word removal for better template matching. Generic templates
would be possible to define, but as [8] shows user interaction is necessary for clar-
ifying ambiguities. For keeping IM conversation as simple as possible, domain
specific templates using AIML were chosen. Finally, in [6] the author enhanced
AIML bots by generating AIML categories from RDF models. Different to xOp-
erator, these categories are static and represent only a fixed set of statements.

6 Conclusions and Future Work

With the xOperator concept and its implementation, we have showed how a
deeply and synergistic coupling of Semantic Web technology and Instant Mes-
saging networks can be achieved. The approach naturally combines the well-
balanced trust and provenance characteristics of IM networks with semantic
representations and query answering of the Semantic Web. The xOperator ap-
proach goes significantly beyond existing work which mainly focused either on
the semantic annotation of IM messages or on using IM networks solely as trans-
port layers for SPARQL queries. xOperator on the other hand overlays the IM
network with a network of personal (and group) agents, which have access to
knowledge bases and Web resources of their respective owners. The neighbour-
hood of a user in the network can be easily queried by asking questions in a
subset of natural language. By that xOperator resembles knowledge sharing and
exchange in offline communities, such as a group of co-workers or friends. We
have showcased how the xOperator approach naturally facilitates contacts and
calendar management as well as access to large scale heterogeneous information
sources. In addition to that, its extensible design allows a straightforward and
effortless adoption to many other application scenarios such as, for example,
sharing of experiment results in Biomedicine or sharing of account information
in Customer Relationship Management.

In addition to adopting xOperator to new domain application we view the
xOperator architecture as a solid basis for further technological integration of
IM networks and the Semantic Web. This could include adding light-weight rea-
soning capabilities to xOperator or the automatic creation of AIML categories
by applying NLP techniques. A more fine grained access control will be imple-
mented in a future version. Instead of simply trusting all contacts on the roster,
individual and group based policies can be created. An issue for further research
is the implementation of a more sophisticated routing protocol, that allows query
traversal beyond directly connected nodes without flooding the whole network.

xOperator – Interconnecting the Semantic Web and IM Networks 33

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
A Nucleus for a Web of Open Data. In: Proc. of ISWC/ASWC, pp. 722–735 (2007)

2. Auer, S., Dietzold, S., Riechert, T.: OntoWiki - A Tool for Social, Semantic Col-
laboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749.
Springer, Heidelberg (2006)

3. Beckett, D., Broekstra, J.: SPARQL Query Results XML Format. In: W3C Can-
didate Recommendation, World Wide Web Consortium (W3C) (April 2006)

4. Clark, K.G.: SPARQL Protocol for RDF. In: W3C Recommendation, World Wide
Web Consortium (W3C) (2007)

5. Franz, T., Staab, S.: SAM: Semantics Aware Instant Messaging for the Networked
Semantic Desktop. In: Semantic Desktop Workshop at the ISWC (2005)

6. Freese, E.: Enhancing AIML Bots using Semantic Web Technologies. In: Proc. of
Extreme Markup Languages (2007)

7. Karger, D.R., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack: A General-
Purpose Information Management Tool for End Users Based on Semistructured
Data. In: Proc. of CIDR, pp. 13–26 (2005)

8. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the se-
mantic web for casual end-users? In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 281–294. Springer,
Heidelberg (2007)

9. Osterfeld, F., Kiesel, M., Schwarz, S.: Nabu - A Semantic Archive for XMPP Instant
Messaging. In: Semantic Desktop Workshop at the ISWC (2005)

10. Quan, D., Bakshi, K., Karger, D.R.: A Unified Abstraction for Messaging on the
Semantic Web. In: WWW (Posters) (2003)

11. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. RFC
3920, The Internet Engineering Task Force (IETF) (October 2004)

12. Shum, S.B., De Roure, D., Eisenstadt, M., Shadbolt, N., Tate, A.: CoAKTinG: Col-
laborative advanced knowledge technologies in the grid. In: Proc. of 2nd Workshop
on Adv. Collab. Env. at the HPDC-11 (2002)

13. Wallace, R.: Artificial Intelligence Markup Language (AIML). Working draft,
A.L.I.C.E. AI Foundation (February 18, 2005)

	xOperator – Interconnecting the Semantic Web and Instant Messaging Networks
	Introduction
	Agent Communication Scenarios and Requirements
	Personal Agent (A)
	Group Agent (B)
	Agent Network (C)

	Technical Architecture
	Evaluation of AIML Templates
	Administration and Extension Commands
	XMPP Communication and Behaviour

	Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

