Combining Fact and Document Retrieval with
Spreading Activation
for Semantic Desktop Search

Kinga Schumacher, Michael Sintek, and Leo Sauermann

Knowledge Management Department
German Research Center for Artificial Intelligence (DFKI) GmbH,
Kaiserslautern, Germany
{firstname.surname }@dfki.de

Abstract. The Semantic Desktop is a means to support users in Per-
sonal Information Management (PIM). It provides an excellent test bed
for Semantic Web technology: resources (e.g., persons, projects, mes-
sages, documents) are distributed amongst multiple systems, ontologies
are used to link and annotate them. Finding information is a core ele-
ment in PIM. For the end user, the search interface has to be intuitive
to use, natural language queries provide a simple mean to express re-
quests. State of the art semantic search engines focus on fact retrieval or
on semantic document retrieval. We combine both approaches to search
the Semantic Desktop exploiting all available information. Our seman-
tic search engine, built on semantic teleporting and spreading activation,
is able to answer natural language queries with facts, e.g., a specific
phone number, and/or relevant documents. We evaluated our approach
on ESWC 2007 data in comparison with Google site search.

1 Introduction

The Semantic Desktop [20U7] is a means for personal knowledge management.
It transfers the Semantic Web to desktop computers by consistent application
of Semantic Web standards like the Resource Description Framework (RDF)
and RDF Schema (RDFS). Documents, e-mails, contacts are identified by URIs,
across application borders. The user is able to annotate, classify, and relate
these resources, expressing his view in a Personal Information Model (PIMO)
[21]. On a full-featured Semantic Desktop many data sources are integrated and
searchable: a personal categorization system of topics, projects, contacts, etc.
is established. The text and metadata of all documents is indexed and catego-
rized. Together with the collected facts about people, organizations, events and
processes, a critical amount of information is available to the user.

To use all information, we propose to use a Semantic Desktop search engine
which is able to find structured information, to focus on unstructured informa-
tion, and combine them providing a comprehensive search solution for the user.

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 569 , 2008.
© Springer-Verlag Berlin Heidelberg 2008

570 K. Schumacher, M. Sintek, and L. Sauermann

To achieve this goal, the search engine automatically explores the knowledge
base to find facts which answer the query and accomplish enhanced document
retrieval embracing the found facts including the metadata of the documents.
The engine should also facilitate not only the searching for documents but also
semantic teleporting. Teleporting is a search strategy where the user tries to
jump directly to the information target, e.g., the query ‘phone number of the
DFKI KM-Group secretary’ delivers the document which contains the wanted
phone number [23]. Semantic teleporting does not deliver the document which
contains the wanted phone number but the phone number itself. Another basic
point is to enable natural language queries to keep knowledge overhead of spe-
cial query languages away from the user. Free-text queries are usually dealt with
NLP technology which, among other things, has to resolve syntactic ambiguity,
1. e., words with multiple meanings and structural ambiguityl], i. e., the ambigu-
ity of the underlying structure of complex expressions [10]. For this reason we
focus on semantic search approaches based on natural language queries which
support the resolution of ambiguity.

Recently, several semantic search approaches with diverse application areas
have been published. There are two main research thrusts: semantic search en-
gines to retrieve documents which are enriched with semantics (semantic docu-
ment retrieval) and engines which are deployed to search within ontologies (fact
retrieval). Semantic document retrieval augments traditional keyword search with
semantic techniques. Such search engines often use thesauri for query expansion
and/or apply graph traversal algorithms to the available ontology for generaliza-
tion, specification of the query terms, or to match predefined categories [TO/T5].
Fact retrieval approaches apply three kinds of core search techniques: reasoning,
triple based (also referred to as statements based), i. e., structural interpretation
of the query guided by semantic relations, and graph traversal [10].

According to the requirements of searching the Semantic Desktop, our engine
combines fact retrieval with semantic document retrieval using a triple-based al-
gorithm and graph traversal. We selected these two approaches for the following
reasons: Triple-based search provides the resolving of syntactic and structural
ambiguity since the existing triples can constrict the possibilities of the inter-
pretation of a concrete query (see Sect. [B]). The reason for choosing a graph
traversal algorithm, especially spreading activation [6], is that this approach
enables an effective combination of fact retrieval and document retrieval (see
Sect. B3)). The goal of our approach is to provide a simple to use, yet powerful
search functionality to users of the Semantic Desktop, through which all informa-
tion from a PIMO can be retrieved, i. e., both facts like a special phone number
and relevant documents. We supports queries like ‘literature by Sintek’, ‘seman-
tic search papers’, ‘persons interested in document retrieval’, ‘phone number of
Nepomuk’s project manager’, ‘abstract and authors of papers about Semantic
Desktop applications’, ‘when and where is the welcome reception of the ESWC
2007, etc..

! For example, the sentence ‘I saw the man with the telescope’ has two underlying
structures; it is not clear who is using the telescope [11].

Combining Fact and Document Retrieval with Spreading Activation 571

The rest of this paper is organized as follows. The next section gives a state
of the art overview on semantic search. Section [B] explains our approach, where
Sect. [B1] describes the fact retrieval, i. e., the semantic teleporting, Sect. [B.2] the
semantic document retrieval and Sect. the way of their combination. The
experimental evaluation including method, data, and results is dealt with in
Sect. @ Section [l concludes the paper.

2 State of the Art

In recent years, several semantic search engines have been developed. There are
some main publications which give a good overview on this research field.

Hildebrand et al. consider in [I0] 35 existing systems and examine them ac-
cording to the three main steps of the search process, i. e., query construction,
the core search process, and the representation of the results. They identify the
general approaches for the core search process. C. Mangold focuses in [16] on
semantic document retrieval. He introduces a classification scheme and compares
22 semantic document retrieval engines by means of the defined criteria.

Lei, Uren and Motta investigate how current semantic search approaches ad-
dress user support without making restrictions on considered approaches [I4].
This work points out the problem of knowledge overhead and the lack of support
for answering complex queries. Search engines which allow the user to specify
the query by choosing ontologies, classes, properties, values, and query language
front-end engines require that the user possesses knowledge about the back-end
knowledge base or copes with a special query language. In contrast, keyword-
based semantic search is user-friendly but breeds the problem of supporting
complex queries since allowing free-text queries causes syntactic and structural
ambiguity [T4I10].

Given that we aspire to provide natural language queries, we focus upon
semantic search approaches which enable to resolve these ambiguities. Syntac-
tic ambiguity can be solved by pre-query disambiguation, e. g., in Squiggle [2],
through user interaction, e. g., MIT’s Semantic Desktop Haystack [13]. A fur-
ther possibility is to include the user context, e. g., TAP [9]. In terms of resolving
structural ambiguity, one such approach is a triple-based algorithm which de-
fines and combines query templates to translate the free-text query into a formal
query, introduced in [I4]. Another triple-based approach uses keyword search to
identify concepts of the ontology and forms RDF queries with one or two vari-
ables based on matched properties and non-properties, i. e., subjects and objects
of a triple [8].

F. Crestani gives in [6] a good introduction on the application of spread-
ing activation techniques in semantic networks in information retrieval. Rocha
et al. applies spreading activation as graph traversal algorithm for semantic doc-
ument retrieval using weights assigned to links based on certain properties of
the ontology [19]. Berger et al. [I] use spreading activation and take additionally
the relatedness of terms into account.

572 K. Schumacher, M. Sintek, and L. Sauermann

Current approaches especially to Semantic Desktop Search concentrate on se-
mantic document retrieval. Beagle ™t [AI2/5] enhances document retrieval on
the desktop by exploiting activity-based meta data, e. g., a saved email attach-
ment is annotated with the sender, date, subject, body text and status of the
email. The engine executes a keyword search on the document index and on
available meta data and ranks the found documents with an enhanced ranking
system. The ranks are computed based on ontological relation weights and on
ranks computed by considering external sources. Further approach for semantic
document retrieval on the Semantic Desktop applies spreading activation to find
resources which are sparsely annotated with semantic information [22]. The un-
derlying semantic network (see Sect. B.2)) is initially set up with a path length
based semantic similarity measure of concepts.

3 Searching the Semantic Desktop

Figure [I] depicts the architecture of our semantic search approach. The search
engine is composed of a fact retrieval engine, a semantic document retrieval
engine and a component which controls both in order to exploit all available
data of the Semantic Desktop. The engines are linked among each other and
they are connected to the knowledge base by the use of an interface which can
be used to define and apply views and inferences. Our knowledge base, the
PIMO, consists of the ontology and its instances. Native structures, i. e., folders
in file system and in email client are mapped to ontological concepts. Files and
other information objects, i. e., text documents, emails, address book entries are
mapped to instances of the ontology. Documents also refer to the knowledge
base, they are semantically tagged.

3.1 Fact Retrieval Approach

Our fact retrieval approach is based on the triple-based search algorithm by Gold-
schmidt and Krishnamoorthy [8]. Their semantic search engine processes natural
language queries. Syntactic matching is done by string matching against the la-
bels (rdfs:label), comments (rdfs:comment), and literals (rdfs:1literal)inthe
knowledge base. Results are the URISs of found properties and non-properties (sub-
jects and objects of a triple), weighted according to their frequency. The semantic
matching is carried out by generating RDF queries as combinations of potential
properties (p;) and non-properties (n;) with one or two variables, e. g., ((n1 p1 ?),
(?p1 ?), (? p1 n2)). The process of creating and applying queries is repeated for
each new resource detected but limited to only two hops in the knowledge base in
order to avoid flooding with irrelevant inferences [§].

We adopted and extended this basic idea in order to enhance results by im-
proving the syntactic matching and by providing more hops in the knowledge
base conforming with the query. The syntactic matching of the query against
the knowledge base step enacts, after removing stop words, a keyword search
over the textual content of the knowledge base, i.e., over all kinds of labels,

Combining Fact and Document Retrieval with Spreading Activation 573

/[natural language query]\ GUI

I

. e semantic document] S :
emantic
[fact retrieval - retrieval 4 b
combined approach earc

| Views, Inference | Interface

;

Ontology

. Knowledge
base

s o s o 6t O AN e

A
: 2 + : Indexing, l
| Z_ i
'
T
1
1

semantic
tagging,

3z_;4:5i-__- _
AN

e document
T analysis Folders,
documents,
5 O desktop
applications

Fig. 1. Architecture

literals, local names of URIs and comments if available. Our knowledge base
supports the search engine with synonyms/alternative names of the knowledge
base elements (classes, properties, and instances). We use elements of the SKO

formal language to define them, <skos:prefLabel> contains the labels which
are used for visualizing and textual output, <skos:altLabel> stands for other
alternative designators. Thus we perform query rewriting by augmentation [16],
i. e., we derive further terms from the ontological context of the query term.
However, this part of the search engine focuses on the knowledge base in order
to find the perfect answer and it is optimized for the Semantic Desktop where in
addition to the use of thesauri the user is enabled to assign alternative names
of ontological elements himself. Therefore, we only use the SKOS labels of the
matched elements for this step, i. e., without an explicit generalizing and spe-
cializing through hypernyms, meronyms, or adjacent concepts. This feature is
customizable according to the application area. We use the n-gram method to
compute the syntactic similarity of two stringsﬁ. The matches are also weighted
with the n-gram value of the query term and label, literal or comment using

2 Simple Knowledge Organisation Systems, http://www.w3.org/2004/02/skos/

3 The N-gram method divides a sequence in subsequences of n items, e. ¢., a string in
subsequences of n characters. The similarity of two terms can then be determined
by mapping the words to vectors containing the number of occurrences of several
n-grams and computing the distance/similarity of them. More different ways are
used for the n-gram decomposition and the computation of the similarity of two
sequences. For example, the term ‘basic’ can be decomposed in the 2-grams (‘ba’,
‘as’, ‘si’, ‘ic’) and the Dice distance can be used as similarity measure [I7]. We use
2-grams combined with 3-grams.

http://www.w3.org/2004/02/skos/

574 K. Schumacher, M. Sintek, and L. Sauermann

predefined thresholds for the selection of potential elements. Additionally we
support phrase matching by determining possible phrases and comparing their
n-gram weights with the weights of the single terms. For further steps, we differ-
entiate between matched classes, properties and instances for each query term.

The semantic matching is simple in the case of one query term. When in-
stances are matched, the engine returns them. For matched properties it delivers
the associated triples of instances, in case of classes their instances. When the
query is composed of multiple query terms we start a search process over three
levels in order to detect relevant triples from the instance base.

1st level. At first, we consider all pairs of terms side by side, e. g., if a query is
composed of 3 terms we consider the pairs (¢1, t2) and (t2, t3). We determine
and execute the possible RDF queries based on the matched ontological
elements of the terms and gathering the result bindings. For example, if the
term ¢, matches the instance inst;, to matches the property prop; and the
class classy, the possible RDF queries are:

(inst; 7 classy), (? prop; inst;), (inst; prop; ?) (1)

For matched classes, we consider the class itself to find class-instance rela-
tions and if it returns no results with the adjacent terms, we replace the
class by its instances. That means, for the example above, if neither the
RDF query (inst; 7 classg) nor the RDF queries created based on t2 and
t3 match existing triples, we replace classy by its instances and apply the
possible RDF queries. If at least one of the executed RDF queries based on
a term pair ({,, tp) results in existing triples from the knowledge base, ¢,
and ¢, are marked as matched.

2nd level. At the second level, the found triples and until now unmatched query
terms build the base for generating RDF queries along the same way as in the
first level. This step is iterated until all new results and all still unmatched
terms have been processed. Example: Assuming that the query (inst; prop;
?) results in the triple (inst; prop; inst,) and the property prop; of ts is
not marked as matched, the query (inst,, prop; ?) is executed. Embedded in
this process, we discover and handle enumerations of instances, properties
or classes, since we iterate over unmatched terms and found triples following
the order of the query terms but considering the results of all terms in a set
of found triples. This feature enables to answer queries like ‘mail address,
phone number and affiliation of the NEPOMUK project members.’

3rd level. The third level combines the found triples if possible. This includes as
well the identification of connected triples, thus triples which build a coherent
subgraph, as the identification of subgraphs which are seen as single results. In
our example, we assume that the 1st and the 2nd level results are the triples:

(inst; prop; insty), (inst, prop; inst,,), (inst; rdf:type classy),

(instq prop; inst,), (inst, prop; insts), (inst, rdf :type inst,).

Combining Fact and Document Retrieval with Spreading Activation 575

The first two triples have a joint instance, they belong together. The subject
of the 3rd triple inst; is same as the subject of the 1st triple, i. e., the three
triples build a subgraph. The next three triples build a subgraph, too. There
is a link between the two subgraphs since both instances inst; and inst,
have the same class but we identify the both subgraphs as different results,
the engine also outputs the two subgraphs.

Figure Pl demonstrates this process by means of the query ‘phone number of the
KM-Group secretary.” The numbers of edges state the order of executed steps.

| “phone number of the KM-Group secretary” I

[Property <phone> || Instance <KM-Group> || Class <secretary> |
[\I[/I] | \l[/Z] |
[(noresult) |—>| erances:
{no result) (no result) <Secretary AD>, ...
| (3 |
v

| <KM-Group><unit><SecretaryAD> |
J

\4

<KM-Group><unit><SecretaryAD>
<SecretaryAD><phone> , 0049 631 205 75 101“

[5] \7

_ ‘QFKI KM Group ; ﬂwﬁ 0049 631 20575 101
e
“ o

Secretary of Prof. Dr. &. Dengel

14]

‘I,Q(\u“‘: w

Fig. 2. Example for Semantic Teleporting

The process stops either when all query terms are matched or when there
is no possibility to include all terms given that some term pairs do not lead to
existing triples. The result consists of a set of instances and a set of triples which
constitute the whole answer including semantic relations which explain why the
result should be relevant to the query.

The ranking is based on the n-gram values, which result from the syntactic
matching. Since our goal is to find the ‘perfect answer’, the number of involved
query terms is used in the ranking function. Starting weight is the computed
n-gram value of a query term and textual knowledge base content relating to
the matched element. The weight of a matched triple is the sum of the n-gram
weights of participating ontological elements. Each added triple increases the
weight of the partial result by the appropriate n-gram value. Class-instance in-
formation is included by adding the weight of the class and assigning the appro-
priate query term to the partial result. Finally, the rank of a result is the sum of
participating elements’ n-gram weights divided by the number of query terms.

576 K. Schumacher, M. Sintek, and L. Sauermann

Resolving structural ambiguity is supported by the step by step, 7. e., triple
to triple processing. Since we do not directly transform the natural language
query to an RDF query, the triples found step by step lead to possible ways.
Syntactic ambiguity is resolved in most cases by the same process. The onto-
logical elements, which lead to existing triples, are higher ranked than elements
that cannot be combined with other matched elements.

Compared to [§], our algorithm enables to make as many hops as required
by the query and stops when all query terms are matched or there is no possi-
bility to include further triples since no existing ones corresponds to the query.
Furthermore, we include information about classes and involve their instances if
the class itself does not lead to further results. The recognition of enumerations
enables to answer queries which ask for multiple properties of multiple resources.

3.2 Semantic Document Retrieval Approach

The semantic document retrieval approach applies spreading activation to en-
hance the results by exploiting available domain knowledge. Before starting the
description of our solution, it is helpful to explain spreading activation in general.

The basic idea behind spreading activation is to find more relevant informa-
tion based on retrieved relevant information items (e. g., results of traditional
keyword search on the document index) by exploiting associations represented
by semantic networks [6]. Spreading activation considers the knowledge base as a
network structure, where the ontological concepts are the nodes and the proper-
ties are the edges. The edges are usually directed and weighted. The processing
technique is an iteration of two main steps: pulses and termination check. A
pulse is the incoming activation of a node, which propagates from a node to
connected nodes along the edges by computing the outgoing activation, 7. e., the
activation spreads through the network. The basic formula to compute the input
I; of the node j is:

Ij = Z Olww

where O; is the output of node ¢ and w;; is the assigned weight of the edge
between node ¢ and node j, thus the strength of the association between node @
and node j. Usually, the activation level is the output of the node, determined
by an output function of the input value:

O; = f(1y)

Commonly used functions for f are the threshold function, linear function,
step function, or sigmoid function. The spreading activation results in the ac-
tivation level of each node at the termination time. To avoid an uncontrolled
flooding of the network, the application of constraints is needed, e. g., distance
constraint to limit the number of hops from the initially activated nodes or fan-
out constraint to stop spreading at nodes with high connectivity since they often
have a broad semantic meaning [0].

Combining Fact and Document Retrieval with Spreading Activation 577

Spreading activation requires coupling the documents with the knowledge
base, i. e., the metadata of documents refers explicitly to instances of the knowl-
edge base. Furthermore, the configuration of the network by choosing useful
relations and corresponding weights (w;;), defining adequate constraints, input
and output function, requires domain knowledge.

We design our semantic network as follows: a default weight is assigned to
each kind of relation w;; and the graph is represented as a similarity matrix.
Rows and columns are dedicated to the ontological concepts, w;; to the weight
of the connecting edge. The activation level of a node i is recorded in wj;.

We use a Lucendd index for keyword matching on the document corpus. The
query is expanded with the alternative names of knowledge base elements which
are found by the meta data search. Alternatively, it is possible to index the
textual content of the ontology with Lucene. In this case, the query modifica-
tion is carried out implicitly during the spreading activation. Lucene delivers a
ranked set of documents which match one or more terms of the expanded query.
These documents are the initial activation points for spreading, inputs are the
appropriate ranks. For this simple spreading activation, we extended the basic
activation function with the factor «, so-called ‘loss of energy’ [19]:

Ij = ZOle(l — Oé)

Parameter « can be seen as an attenuation factor. It decreases the activation
by factor a by each propagation from one node to a connected one. This feature is
combined with an activation constraint, which stops spreading at a node when
its activation level does not exceed a defined threshold. A fan-out constraint
averts the danger of a too wide spreading through nodes with high connectivity,
thus to become noise in results. At the same time, these constraints define the
stop condition. It is important to assure that each edge is processed only once
(in case of directed edges each direction is considered as one edge). The process
stops when no more nodes have an activation level above the defined threshold
or the nodes above the threshold have no pending edges. The activation level of
nodes determines their ranks.

3.3 Combined Approach

In this section, we describe the combination of the fact retrieval and the docu-
ment retrieval with spreading activation, shown in Fig.

First, the fact retrieval is processed. If it results in nothing we process the
semantic document retrieval (described in Sect. B2)). If the user attempts tele-
porting and the engine delivers the ‘perfect answer’ no further steps are needed.
We define the ‘perfect answer’ for a query with multiple terms/phrases as a set
of results with a rank close to 1.0 where each result is composed of triples and
the triples of one result match all query terms. In case of one term matching

4 Lucene is a high-performance full text search engine library, cf. http://lucene.
apache.org/java/docs/

http://lucene.
apache.org/java/docs/

578 K. Schumacher, M. Sintek, and L. Sauermann

Kombination der Ansatze
)

natural language

query weighted
. _propgrties
matched propertleg
R data .
Fact retrieval instance!
classes -
Wa

weighted

3 Wiy
documents
|
Doct{ment T matched documents
retrieval etridve
docufnents
|
|
I
A2

| subgraphs, facts |

expanfled query

e search results

Kinga Schumacher — Semantische Desktopsuche — Demo, 29.02.2008

Fig. 3. Overview of the combined approach

a particular instance in the knowledge base, we assume that the spreading ac-
tivation delivers helpful contextual information to the wanted resource. When
no ‘perfect answer’ is found, we extract the following information from the fact
retrieval results:

— instances, which are components of the results,
— alternative names, synonyms of the matched instances,
— matched properties.

The query is expanded with the alternative names of found instances. We chose
this way of query expansion since it enables better to specify which documents
are relevant. A graph-based query expansion would spread all resources associ-
ated with an activated instance which is suited for thesauri. Domain ontologies,
which do not mainly describe linguistic relations between terms but support
domain-specific relations between resources (instances, documents), require a
very specific configuration of the spreading activation process. For example, the
query ‘spreading activation’ on the Lucene index delivers the document ‘Appli-
cation of Spreading Activation Techniques in Information Retrieval’ by Crestani.
This document is categorized with the topics ‘spreading activation’, ‘informa-
tion retrieval’ and ‘semantic networks’. The activation of these topics results in
documents which are on ‘information retrieval’ or on ‘semantic networks’, but
not on ‘spreading activation’, the precision decreases. To avoid this noise, we
should define additional constraints for categorization topics. Query expansion
by found facts before spreading is also more effective.

Combining Fact and Document Retrieval with Spreading Activation 579

.. The dth Emopean Sernantic Web Conference

5 =

*0% ». =) 2007.06.04 19:0000
o E
) G /

:"-.. Welcome Reception

P

\e
o~

<N oon.06.04, 220000

naneoa]

Kristall Foyer

Fig. 4. Result graph of the query ‘when and where is the welcome reception of the
ESWC 2007

Michael Sintek
a Person

first name: Michael

affiliation: DFKI GmbH, Kaiserslautern

Distributed Knowledge Representation on the Social Semantic Desktop:
Named Graphs, Views and Roles in NRL

a InProceedings, Paper

Fig. 5. Presentation of a result composed of the first name, affiliation and paper of a
person

After querying the document index we have all required information to cre-
ate the network model and to start spreading activation. The network model
includes all classes, instances and documents and involves all properties between
instances, i. e., all properties which link instances but not instances with literal
values. These properties are marked as spreadable in the knowledge base and
receive a low initial weight in the network model. We assign to the properties
which are delivered by the fact retrieval their n-gram weight. We also assign to
each edge the according weight, where some rules are carried out:

— directed relation from node i to node j, which has an inverse relation from
node j to node i (e. g., ‘hasAuthor’ — ‘authorOf’): assigning the weight from
i to j

— directed relation without an inverse: assign the weight in both directions

— instance-class relation (rdf :type): assign the weight from class to instance

The second point makes sure that relations without an inverse are involved if
one of the connected instances is activated. The third condition helps to avoid
spreading from one instance to all other instances of a particular type but enables
to identify all instances of a class, if a class is initially activated.

The initial activation points are the instances, classes of the fact retrieval
results and documents found by keyword search. The strength of activation

580 K. Schumacher, M. Sintek, and L. Sauermann

corresponds to the weights and ranks which the elements have. The spreading
activation process complies with the one described in Sect. using an activa-
tion constraint and a fan-out constraint. It results in a ranked set composed of
instances of the knowledge base and related documents.

We visualize the ’perfect answer’ as a grap}ﬁ with associated symbols for
persons, projects, email, phone, event, location, date etc., in order to enable the
user to recognize the result immediately. Furthermore, a graph shows at same
time the explanation of the result, see Fig. [l Other results are shown as items
in a list according to their ranks and enriched with the requested information.
Properties which are matched by the fact retrieval and which have a literal value
are added to the appropriate results. The matched properties which connect two
instances are used to group the instances and documents which belongs together.
Figure [l shows an example.

4 Evaluation

As there is no standardized and annotated test data set for Semantic Desktop
evaluations yet [3], we used the ESWC 2007 [I8] data for our evaluations which
has a data structure similar to the PIMO. The ESWC conference knowledge
base describes the conference including information about people, talks, papers,
posters, conference events, it also involves abstract concepts and references to
documents like the Semantic Desktop.

We extended the knowledge base with some synonyms of the ontological el-
ements and instances and created the index of the document set using Lucene.
The evaluation is based on 11 queries carried out with our semantic search en-
gine and Google site search using ‘< query > sitei://wuw.eswc2007.org/’. We
computed the precision of the results, shown in Fig. [l The last column states
the results as ‘perfect answer’ or not, i. e., subgraph(s) which accomplish the
conditions of a ‘perfect answer’ (see Sect.[33) found by the fact retrieval engine.
Since the semantic search engine applies additional information as ontological
elements and instances it is not possible to build a ground truth for this evalu-
ation. For instance, a session is included in the knowledge base but there is no
document on the ESWC 2007 web sites about a single session. For this reason,
recall, f-measure of the results cannot be determined.

The results demonstrate clearly the power of our combined approach, it re-
turns precise results to extensive queries by exploiting additional information
from the knowledge base. The additional results for ‘RDF’ compared with the
Google site results are caused partly by the expansion of the query with ‘Re-
source Description Framework’ which enhance the results of the document re-
trieval and by the found instances through our combined approach, e. g., sessions
with topic ‘RDF’. In case of simple queries like ‘social networks’, the precision
of the semantic search engine is lower since the engine results documents which

® The graph visualization was developed by Bjérn Forcher (DFKI) and is based
upon the Java Universal Network/Graph Framework and the Batik SVG Toolkit,
http://jung.sourceforge.net/| and http://xmlgraphics.apache.org/batik/

://www.eswc2007.org/
http://jung.sourceforge.net/
http://xmlgraphics.apache.org/batik/

Combining Fact and Document Retrieval with Spreading Activation 581

QUERY Google site search | Semantic desktop search

No. of precision |No. of |precision |Perfect
results results answer

RDF 55 1.0 77 1.0

Social networks 13 1.0 24 0.58

Sintek 11 1.0 15 0.8

System descriptions 0 0.0 10 1.0 yes

Organizer of workshop 5 0 0.0 4 1.0 yes

Invited talks 0 0.0 4 1.0 yes

Semantic search demos 13 0.077 2 1.0 yes

Papers from Voelker 2 0.5 2 1.0 yes

Authors and abstracts of 21 1.0 1 1.0 yes

reasoning papers

DFKI members at the ESWC 2007 1 0.0 6 1.0 yes

When and where is the welcome 2 0.5 1 1.0 yes

reception

Average precision 0.4615 0.9436

Fig. 6. Table of results

were presented in the same session as the relevant documents. The additionally
found documents are related since the sessions are organized based on topics,
but not relevant to the query. This result demonstrates the failing of spreading
activation: if there are no certain properties matched against the query and/or
only documents are matched, the spreading activation propagates to all adjacent
nodes with the same intensity. For some queries it is helpful for the user to have
this additional information based on the ontological context of found resources.
In all further evaluated cases, the semantic search engine delivered precise an-
swers. The query ‘authors and abstract of reasoning papers’ is, compared to the
Google site results, a special case. It results in one document with the keyword
‘reasoning’ incl. its abstract and authors. Since it is a ‘perfect answer’, no docu-
ment retrieval is processed and so all other documents containing the term but
not focused on ‘reasoning’ are not returned. Since the engine is configured to
search the semantic desktop and to response as precise answers as possible, we
consider this result as actually the ‘perfect answer’ but we enable the user to
inquire more information, thus the results of the complete search process.

The benefit of our semantic search is that it supports the user with precise
information (facts) to extensive queries. Furthermore, the user receives useful
additional information to the found resources, e. g., not only the title of a paper
and the appropriate text snippet, but also the authors and keywords. Further-
more, the ranking which combines the ranks from the fact retrieval and the ranks
from document retrieval delivers a good order of the results, since the found facts
support more precise information about documents and instances of the knowl-
edge base. The example query ‘RDF’ returns at the top of the result list papers
and sessions with this topic, 4. e., with the keyword ‘RDF’, thus papers which
focus on ‘RDF’. A document retrieval just delivers documents that contain this
term and ranks them based on the number of the query term’s frequency.

582 K. Schumacher, M. Sintek, and L. Sauermann

5 Conclusions and Future Work

This paper describes a semantic search approach which combines fact retrieval
and document retrieval with spreading activation in order to exploit all available
information on a Semantic Desktop. The developed semantic search engine works
with natural language queries and supports not only a semantic document search
but also semantic teleporting. We evaluated our approach based on the ESWC
2007 knowledge base and documents comparing the results of our engine with
the results of Google Site search since there is no standardized test data set
for Semantic Desktop or Semantic Desktop search evaluations. The evaluation
results demonstrate the power of our combined approach; the engine returns
precise results to extensive queries by exploiting facts, metadata of documents
from the knowledge base, i. e., it is appropriate to search for information on the
Semantic Desktop in a goal-directed way.

For future work, we plan to extend our approach with machine learning tech-
nology in order to learn the network model’s edge-weights by exploiting user
feedback. We assume that the user is often interested in specific information
about an instance or in a specific aspect of a document. Using relevance feed-
back, both explicitly by the user and implicitly by user observation, allows the
adaption of the weights according to the user’s needs, i. e., to personalize the
search on the Semantic Desktop.

Acknowledgements. Part of this work has been supported by the Rheinland-
Pfalz cluster of excellence “Dependable adaptive systems and mathematical
modeling” DASMOD, project ADIBE and by the European Union IST fund
(Grant FP6-027705, Project NEPOMUKEI). We also want to thank the various
developers of Gnowsisﬁ, Aperture and Nepomuk.

References

1. Berger, H., Dittenbach, M., Merkl, D.: An adaptive information retrieval system
based on associative networks. In: Proc. of the first Asian-Pacific Conference on
Conceptual Modelling, pp. 27-36 (2004)

2. Celino, 1., Turati, A., Valle, E.D., Cerizza, D.: Squiggle — a semantic search engine
at work. In: Proc. of the 4th European Semantic Web Conference (2007)

3. Chernov, S., Serdyukov, P., Chirita, P.-A., Demartini, G., Nejdl, W.: Building a
desktop search test-bed. In: Proc. of the 29th European Conference on Information
Retrieval (2007)

4. Chirita, P.-A., Costache, S., Nejdl, W., Paiu, R.: Beagle™: Semantically enhanced
searching and ranking on the desktop. In: Proc. of the 3rd European Semantic Web
Conference, pp. 348-362 (2006)

5. Chirita, P.-A., Gavriloaie, R., Ghita, S., Nejdl, W., Paiu, R.: Activity based meta-
data for semantic desktop search. In: Proc. of the 2nd European Semantic Web
Conference, pp. 439-454 (2005)

Shttp://www.dasmod.de/twiki/bin/view/DASMOD/ADIB
" http://nepomuk.semanticdesktop.org/
8 http://www.gnowsis.org/

http://www.dasmod.de/twiki/bin/view/DASMOD/ADIB
http://nepomuk.semanticdesktop.org/
http://www.gnowsis.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Combining Fact and Document Retrieval with Spreading Activation 583

. Crestani, F.: Application of spreading activation techniques in information re-

trieval. Artificial Intelligence Review 11(6), 453-482 (1997)

. Decker, S., Frank, M.R.: The networked semantic desktop. In. WWW Workshop

on Application Design, Development and Implementation Issues in the Semantic
Web (2004)

. Goldschmidt, D.E.; Krishnamoorthy, M.: Architecting a search engine for the se-

mantic web. In: Proc. of the AAATI Workshop on Contexts and Ontologies: Theory,
Practice and Applications (2005)

. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proc. of the 12th Interna-

tional Conference on Word Wide Web (2003)

Hildebrand, M., Ossenbruggen, J., van Hardman, L.: An analysis of search-based
user interaction on the semantic web. Report, CWI, Amsterdam, Holland (2007)
Hindle, D., Rooth, M.: Structural ambiguity and lexical relations. Computational
Linguistics 19(6), 103-120 (1993)

Tofciu, T., Kohlschiitter, C., Nejdl, W., Paiu, R.: Keywords and rdf fragments: Inte-
grating metadata and full-text search in beagle++. In: Proc. of Semantic Desktop
Workshop at the International Semantic Web Conference, vol. 175 (2005)

Karger, D.R., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack: A customiz-
able general-purpose information management tool for end users of semistructured
data. In: Proc. of the 2nd Conference on Innovative Data Systems Research (2005)
Lei, Y., Uren, V.S., Motta, E.: Semsearch: A search engine for the semantic web. In:
Proc. of the 15th International Conference on Knowledge Engineering and Knowl-
edge Management, pp. 238-245 (2006)

Makeld, E.: Survey of semantic search research. In: Proc. of the Seminar on Knowl-
edge Management on the Semantic Web (2005)

Mangold, C.: A survey and classification of semantic search approaches. Interna-
tional Journal of Metadata, Semantics and Ontologies 2(1), 23-34 (2007)
Manning, C.D., Schiitze, H.: Foundations of statistical natural language processing.
MIT Press, Cambridge (1999)

Moller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web dog
food - the eswc and iswc metadata projects. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 802—
815. Springer, Heidelberg (2007)

Rocha, C.,; Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: Proc. of the 13th International Conference on World Wide Web,
pp. 374-383 (2004)

Sauermann, L., Bernardi, A., Dengel, A.: Overview and outlook on the semantic
desktop. In: Proc. of the Semantic Desktop Workshop at the 4th International
Semantic Web Conference, vol. 175 (2005)

Sauermann, L., van Elst, L., Dengel, A.: Pimo — a framework for representing
personal information models. In: Proc. of the I-.SEMANTICS 2007, pp. 270-277
(2007)

Scheir, P., Ghidini, C., Lindstaedt, S.N.: Improving search on the semantic desktop
using associative retrieval techniques. In: Proc. of the I-Semantics 2007, pp. 415—
422 (2007)

Teevan, J., Alvarado, C., Ackerman, M.S., Karger, D.R.: The perfect search engine
is not enough: a study of orienteering behavior in directed search. In: Proc. of the
SIGCHI conference on Human factors in computing systems, pp. 415-422 (2004)

	Combining Fact and Document Retrieval with Spreading Activation for Semantic Desktop Search
	Introduction
	State of the Art
	Searching the Semantic Desktop
	Fact Retrieval Approach
	Semantic Document Retrieval Approach
	Combined Approach

	Evaluation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

