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Abstract. In order to overcome the limitations of deductive logic-based
approaches to deriving operational knowledge from ontologies, especially
when data come from distributed sources, inductive (instance-based)
methods may be better suited, since they are usually efficient and noise-
tolerant. In this paper we propose an inductive method for improving
the instance retrieval and enriching the ontology population. By cast-
ing retrieval as a classification problem with the goal of assessing the
individual class-memberships w.r.t. the query concepts, we propose an
extension of the k-Nearest Neighbor algorithm for OWL ontologies based
on an entropic distance measure. The procedure can classify the indi-
viduals w.r.t. the known concepts but it can also be used to retrieve
individuals belonging to query concepts. Experimentally we show that
the behavior of the classifier is comparable with the one of a standard
reasoner. Moreover we show that new knowledge (not logically derivable)
is induced. It can be suggested to the knowledge engineer for validation,
during the ontology population task.

1 Introduction

Classification and query answering for retrieving resources in a knowledge base
(KB) are important tasks. Generally these activities are performed by means of
logical approaches that may fail when data comes from distributed sources, and
is therefore exposed to inconsistency problems. This has given rise to alternative
methods, such as non-monotonic, paraconsistent [§], approzimate reasoning (see
the discussion in [9]).

Inductive methods are known to be be quite efficient and more noise-tolerant,
hence they seem suitable for contexts where knowledge is intended to be acquired
from distributed sources. In this paper we propose an inductive instance-based
method for concept retrieval [1I] and query answering that may suggest new
assertions which could not be logically derived, providing also a measure of their
likelihood which may help dealing with the uncertainty caused by the inherent
incompleteness of the KBs in the Semantic Web.

Namely, instance retrieval and query answering can be cast as classification
problems, i.e. assessing the class-membership of the individuals in the KB w.r.t.
some query concepts. Reasoning by analogy, similar individuals should likely
belong to the extension of similar concepts. Moving from such an intuition,
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an instance-based framework for retrieving resources contained in ontological
KBs has been devised, to inductively infer (likely) consistent class-membership
assertions that may be not logically derivable. As such, the resulting assertions
may enrich the KBs since the method can also provide a likelihood measure for its
outcomes. Then the time-consuming ontology population task can be facilitated
since the knowledge engineer only has to validate such new knowledge, as also
argued in [2].

Logic-based approaches to (approximate) instance retrieval have been pro-
posed in the literature [I3], [IT]. We intend to apply inductive forms of reasoning
borrowed from machine learning. Specifically, we propose an extension of the
well-known Nearest Neighbor search (henceforth, NN) [14] to the standard rep-
resentations of the SW (RDF through OWL). Our analogical approach is based
on a dissimilarity measures for resources in these search space. The procedure
retrieves individuals belonging to query concepts, by analogy with other training
instances, namely on the grounds of the classification of the nearest ones (w.r.t.
the dissimilarity measure). This approach may be quite efficient because it re-
quires checking class-membership for a limited set of training instances yielding
a decision on the classification of new instances.

From a technical viewpoint, extending the NN setting to the target represen-
tations founded in Description Logics (DL) [I], required suitable metrics whose
definition could not be straightforward. In particular, a theoretical problem is
posed by the Open World Assumption (OWA) that is generally made on the
semantics of SW ontologies, differently from the typical standards of databases
where the Closed World Assumption (CWA) is made. Moreover, the NN algo-
rithms are devised for simple classifications where classes are assumed to be
pairwise disjoint, which is quite unlikely in the Semantic Web context where an
individual can be instance of more than one concept. Furthermore, dissimilar-
ity measures that can cope with the semantics of expressive representations are
necessary.

Most of the existing measures focus on concept (dis)similarity and particularly
on the (dis)similarity of atomic concepts within hierarchies or simple ontologies
(see the discussion in [3]). Conversely, for our purposes, a notion of dissimilar-
ity between individuals is required. Recently, dissimilarity measures for specific
description logics concept descriptions have been proposed [3, [4]. Although they
turned out to be quite effective for the inductive tasks of interest, they are still
partly based on structural criteria (a notion of normal form) which determine
their main weakness: they are hardly scalable to deal with standard ontology
languages.

In order to overcome these limitations, an extension of a semantic pseudo-
metrics [7] is exploited. This language-independent measure assesses the dissim-
ilarity of two individuals by comparing them on the grounds of their behavior
w.r.t. a committee of features (concepts), namely those defined in the KB or that
can be generated to this purpos. In the former measures, all the features have

! The choice of optimal committees may be performed in advance through randomized
search algorithms [7].
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the same importance in determining the dissimilarity. However, it may well be
that some features have a larger discriminating power w.r.t. the others. In this
case, they should be more relevant in determining the dissimilarity value. Mov-
ing from this observation, we propose an extension of the measures presented
in [7], where each feature of the committee is weighted on the grounds of the
quantity of information that it conveys. This weight is then determined as an
entropy measure, also used in attribute selection when building decision trees.
The rationale is that the more general a feature (or its negation) is (i.e. low
entropy) the less likely it may be usable for distinguishing the two individuals
and vice versa.

The measure has been integrated in the NN procedure [4] and the classification
of resources (individuals) w.r.t. a query concept has been performed through a
voting procedure weighted by the neighbors’ similarity. The resulting system
allowed for an experimentation of the method on performing instance retrieval
and query answering with a number ontologies drawn from public repositories.
Its predictions were compared to assertions that were logically derived by a
deductive reasoner. The experiments showed that the classification results are
comparable (although slightly less complete) and also that the classifier is able
to induce new knowledge that is not logically derivable. The experimentation
also compared the outcomes obtained by the former measure, extended in this
paper. Such a comparison showed that the measure presented in this paper may
improve the classification results.

The paper is organized as follows. The basics of the instance-based approach
applied to the standard representations are recalled in Sect. 2l The next Sect.
presents the semantic dissimilarity measures adopted in the retrieval procedure.
Sect. @ reports the outcomes of the experiments performed with the implemen-
tation of the procedure. Possible developments are finally examined in Sect.

2 Resource Retrieval as Nearest Neighbor Search

2.1 Representation and Inference

In the following sections, we assume that concept descriptions are defined in
terms of a generic sub-language based on OWL-DL that may be mapped to
Description Logics with the standard model-theoretic semantics (see the hand-
book [I] for a thorough reference).

A Eknowledge base K = (T, A) contains a TBox T and an ABox A. T is a
set of axioms that define concepts. A contains factual assertions concerning the
resources, also known as individuals. Moreover, the unique names assumption
may be made on the ABox individuals, that are represented by their URIs. The
set of the individuals occurring in A will be denoted with Ind(A).

As regards the inference services, like all other instance-based methods, our
procedure may require performing instance-checking [1], which roughly amounts
to determining whether an individual, say a, belongs to a concept extension, i.e.
whether C'(a) holds for a certain concept C. Note that because of the OWA, a
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reasoner may be unable to give a positive or negative answer to a class-membership
query. This service is provided proof-theoretically by a reasoner.

2.2 The Method

Query answering boils down to determining whether a resource belongs to a
(query) concept extension. Here, an alternative inductive method is proposed for
retrieving the resources that likely belong to a query concept. Such a method may
also be able to provide an answer even when it may not be inferred by deduction,
Moreover, it may also provide a measure of the likelihood of its answer.

In similarity search [I4] the basic idea is to find the most similar object(s) to
a query one (i.e. the one that is to be classified) with respect to a similarity (or
dissimilarity) measure. We review the basics of the £-NN method applied to the
Semantic Web context [4] context.

The objective is to induce an approximation for a discrete-valued target hy-
pothesis function h : IS — V from a space of instances IS to a set of values
V = {vy,...,vs} standing for the classes (concepts) that have to be predicted.
Note that normally |IS] < |Ind(A)| i.e. only a limited number of training in-
stances is needed especially if they are prototypical for a region of the search
space. Let z, be the query instance whose class-membership is to be determined.
Using a dissimilarity measure, the set of the k nearest (pre-classified) training
instances w.r.t. x, is selected: NN (zy) ={x; |t =1,...,k}.

In its simplest setting, the k-NN algorithm approximates h for classifying x,
on the grounds of the value that A is known to assume for the training instances
in NN (z,), i.e. the k closest instances to x4 in terms of a dissimilarity measure.
Precisely, the value is decided by means of a weighted majority voting procedure:
it is simply the most wvoted value by the instances in NN (z,) weighted by the
similarity of the neighbor individual.

The estimate of the hypothesis function for the query individual is:

k
h(z,) == argmaxZwié(v, h(z;)) (1)

veV i—1

where ¢ returns 1 in case of matching arguments and 0 otherwise, and, given a
dissimilarity measure d, the weights are determined by w; = 1/d(z;, z4).

Note that the estimate function h is defined extensionally: the basic k-NN
method does not return an intensional classification model (a function or a con-
cept definition), it merely gives an answer for the instances to be classified.

It should be also observed that this setting assigns a value to the query in-
stance which stands for one in a set of pairwise disjoint concepts (corresponding
to the value set V). In a multi-relational setting this assumption cannot be made
in general. An individual may be an instance of more than one concept.

The problem is also related to the CWA usually made in the knowledge dis-
covery context. To deal with the OWA, the absence of information on whether
a training instance x belongs to the extension of the query concept @ should
not be interpreted negatively, as in the standard settings which adopt the CWA.
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Rather, it should count as neutral (uncertain) information. Thus, assuming the
alternate viewpoint, the multi-class problem is transformed into a ternary one.
Hence another value set has to be adopted, namely V' = {+1,—1,0}, where
the three values denote, respectively, membership, non-membership, and uncer-
tainty, respectively.

The task can be cast as follows: given a query concept @, determine the
membership of an instance x, through the NN procedure (see Eq. [} where
V = {-1,0,+1} and the hypothesis function values for the training instances
are determined as follows:

1 K Q)
ho(z) =4 -1  KE =Q(z)
0 otherwise

i.e. the value of hg for the training instances is determined by the entailment?]
the corresponding assertion from the knowledge base.

Note that, being based on a majority vote of the individuals in the neighbor-
hood, this procedure is less error-prone in case of noise in the data (e.g. incorrect
assertions) w.r.t. a purely logic deductive procedure, therefore it may be able to
give a correct classification even in case of (partially) inconsistent knowledge bases.

It should be noted that the inductive inference made by the procedure shown
above is not guaranteed to be deductively valid. Indeed, inductive inference
naturally yields a certain degree of uncertainty. In order to measure the likelihood
of the decision made by the procedure (individual x4 belongs to the query concept
denoted by value v maximizing the argmax argument in Eq.[I]), given the nearest
training individuals in NN (z4, k) = {21,..., 2}, the quantity that determined
the decision should be normalized by dividing it by the sum of such arguments
over the (three) possible values:

S wi - 6(v, hg(w:))
Swer Soiy wi - 6V, hg(x:))

Hence the likelihood of the assertion Q(z4) corresponds to the case when v = +1.

I(class(zq) = v|NN(zq,k)) = (2)

3 A Semantic Pseudo-Metric for Individuals

As mentioned in the first section, various attempts to define semantic similarity
(or dissimilarity) measures for concept languages have been made, yet they have
still a limited applicability to simple languages [3] or they are not completely
semantic depending also on the structure of the descriptions [4]. Moreover, for
our purposes, we need a function for measuring the similarity of individuals
rather than concepts. It can be observed that individuals do not have a syntactic
structure that can be compared. This has led to lifting them to the concept
description level before comparing them (recurring to the notion of the most

2 We use = to denote entailment, as computed through a reasoner.
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specific concept of an individual w.r.t. the ABox [, yet this makes the measure
language-dependent. Besides, it would add a further approximations as the most
specific concepts can be defined only for simple DLs.

For the NN procedure, we intend to exploit a new measure that totally de-
pends on semantic aspects of the individuals in the knowledge base.

3.1 The Family of Measures

The new dissimilarity measures are based on the idea of comparing the seman-
tics of the input individuals along a number of dimensions represented by a
committee of concept descriptions. Indeed, on a semantic level, similar individ-
uals should behave similarly with respect to the same concepts. Following the
ideas borrowed from [12], totally semantic distance measures for individuals can
be defined in the context of a knowledge base.

More formally, the rationale is to compare individuals on the grounds of their
semantics w.r.t. a collection of concept descriptions, say F = {F1, Fs, ..., Fy},
which stands as a group of discriminating features expressed in the OWL-DL
sub-language taken into account.

In its simple formulation, a family of distance functions for individuals inspired
to Minkowski’s norms L,, can be defined as follows [7]:

Definition 3.1 (family of measures). Let K = (7, A) be a knowledge base.
Given a set of concept descriptions F = {F1, Fs, ..., Fy}, a family of dissimi-
larity functions d; :Ind(A) x Ind(A) — [0,1] is defined as follows:

) e
Va,b € Ind(A) d;(a,b): |F| sz\é (a,b)

where p > 0 and Vi € {1,...,m} the dissimilarity function 6; is defined by:

0 Fi(a) e ANF;(b) € A or
_|FZ‘(CL) cAN _\Fz(b) cA
Y(a,b) € (Ind(A)? &;i(a,b) =< 1 F;(a) e AN—F;(b) € A or
—|Fi(a) cAN Fz(b) cA
1/2 otherwise

or, model theoretically:

0 K & Fi(a) NK | F;(b) or
K E —Fi(a) NK = —F;(b)
Y(a,b) € (Ind(A))* 6;(a,b) =4 1 K & Fi(a) ANK = =F;(b) or
K = =Fi(a) NK | F;(b)
1/2 otherwise

Note that the original measures [7] correspond to the case of uniform weights.
The alternative definition for the projections, requires the entailment of an
assertion (instance-checking) rather than the simple ABox look-up; this can make
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the measure more accurate yet more complex to compute unless a KBMS is
employed maintaining such information at least for the concepts in F.

In particular, we will consider the measures df (-, -) or d5 (-, -) in the experiments.

As regards the weights employed in the family of measures, they should re-
flect the impact of the single feature concept w.r.t. the overall dissimilarity. As
mentioned, this can be determined by the quantity of information conveyed by
a feature, which can be measured as its entropy. Namely, the extension of a
feature F' w.r.t. the whole domain of objects may be probabilistically quantified
as Pp = |FZ|/|AT| (w.r.t. the canonical interpretation Z). This can be roughly
approximated with: Pp = |retrieval(F')|/|Ind(A)|. Hence, considering also the
probability P-p related to its negation and that related to the unclassified indi-
viduals (w.r.t. F'), denoted Py, we may give an entropic measure for the feature:

H(F) = — (Pplog(Pr) + P-plog(P-r) + Pylog(Py)) .

These measures may be normalized for providing a good set of weights for the
distance measures.

3.2 Discussion

Tt is easy to prove [7] that these functions have the standard properties for pseudo
metrics (i.e. semi-distances [14]):

Proposition 3.1 (pseudo-metric). For a given a feature set F and p > 0, dZF,
s a pseudo-metric.

Proof. It is to be proved that:

1. dy(a,b) >0
2. dp(a,b) =dp(b,a)
3. dp(a,c) <dp(a,b) 4+ dpy(b,c)

1. and 2. are trivial. As for 3., noted that
dlae)r = LS wi | eifac) P
o mr = 7
1 m
1S , P
< i E w; | 6;(a,b) + 6;(b,c) |

< Zwl|6ab|p—|— Zwl|6bc
< (dp(a,b)) + (dp(b, 0))P < (dp(avb) + dp (b, )"
then the property follows for the monotonicity of the root function.

It cannot be proved that df)(a7 b) = 0iff @ = b. This is the case of indiscernible in-
dividuals with respect to the given set of features F. To fulfill this property several
methods have been proposed involving the consideration of equivalent classes of
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individuals or the adoption of a supplementary meta-feature Fy determining the
equality of the two individuals: éy(a, b) = 0 if aZ = b otherwise 6¢(a, b) = 1.

Compared to other proposed dissimilarity measures [3], 4], the presented func-
tions do not depend on the constructors of a specific language, rather they re-
quire only (retrieval or) instance-checking for computing the projections through
class-membership queries to the knowledge base.

The complexity of measuring he dissimilarity of two individuals depends on the
complexity of such inferences (see [1], Ch. 3). Note also that the projections that
determine the measure can be computed (or derived from statistics maintained
on the knowledge base) before the actual distance application, thus determining a
speed-up in the computation of the measure. This is very important for algorithms
that massively use this distance, such as all instance-based methods.

The measures strongly depend on F. Here, we make the assumption that the
feature-set F represents a sufficient number of (possibly redundant) features that
are able to discriminate really different individuals. The choice of the concepts
to be included — feature selection — is beyond the scope of this work (see [7]
for a randomized optimization procedure aimed at finding optimal committees).
Experimentally, we could obtain good results by using the very set of both
primitive and defined concepts found in the knowledge base.

Of course these approximate measures become more and more precise as the
knowledge base is populated with an increasing number of individuals.

4 Experimentation

4.1 Experimental Setting

The NN procedure integrated with the pseudo-metric proposed in the previous
section has been tested in a number of retrieval problems. To this purpose, we
selected several ontologies from different domains represented in OWL, namely:
SURFACE-WATER-MODEL (SWM), NEWTESTAMENTNAMES (NTN) from the
Protégé libr:amyﬁ7 the Semantic Web Service Discovery datasetH(SWSD), the Uni-
versity(0.0 ontology generated by the Lehigh University Benchmark LUBM),
the BioPax glycolysis ontologyﬁ (BioPax) and the FINANCIAL ontologyll. Tab. [
summarizes details concerning these ontologies.

For each ontology, 20 queries were randomly generated by composition (con-
junction and/or disjunction) of (2 through 8) primitive and defined concepts in
each knowledge base. Query concepts were constructed so that each offered both
positive and negative instances among the ABox individuals. The performance

3http://protege.stanford.edu/plugins/owl/owl-1library

* https://www.uni-koblenz.de/FB4/Institutes/IF1/AGStaab/Projects/xmedia/
dl-tree.htm

® http://swat.cse.lehigh.edu/projects/lubm

Shttp://www.biopax.org/Downloads/Levelivl.4/biopax-example-ecocyc—
glycolysis.owl

"http://www.cs.put.poznan.pl/alawrynowicz/financial . owl


http://protege.stanford.edu/plugins/owl/owl-library
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree.htm
https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree.htm
http://swat.cse.lehigh.edu/projects/lubm
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
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Table 1. Facts concerning the ontologies employed in the experiments

Ontology DL language #concepts #object prop. #data prop. #individuals

SWM ALCOF(D) 19 9 1 115
BIoPAX ALCHF(D) 28 19 30 323
LUBM ALRTHZ(D) 43 7 25 555
NTN  SHIF(D) 47 27 8 676
SWSD ALCH 258 25 0 732
FINANCIAL ALCTF 60 17 0 1000

of the inductive method was evaluated by comparing its responses to those re-
turned by a standard reasonetf] as a baseline.

Experimentally, it was observed that large training sets make the distance
measures (and consequently the NN procedure) very accurate. In order to make
the problems more difficult, we selected limited training sets (7°S) that amount
to only 4% of the individuals occurring in each ontology. Then the parameter
k was set to log(|T'S|) depending on the number of individuals in the training
set. Again, we found experimentally that much smaller values could be chosen,
resulting in the same classification.

The simpler distances (d}) were employed from the original family (uniform
weights) and entropic family (weighted on the feature entropy), using all the con-
cepts in the knowledge base for determining the set F with no further optimization.

4.2 Results

Standard Measures. Initially the standard measures precision, recall, Fi-
measure were employed to evaluate the system performance, especially when
selecting the positive instances (individuals that should belong to the query
concept). The outcomes are reported in Tab. Bl For each knowledge base, we
report the average values obtained over the 20 random queries as well as their
standard deviation and minimum-maximum ranges of values.

As an overall consideration we may observe that generally the outcomes ob-
tained adopting the extended measure improve on those with the other one and
appear also more stable (with some exceptions). Besides, it is possible to note
that precision and recall values are generally quite good for all ontologies but
SWSD, where especially recall is significantly lower. Namely, SWSD turned out
to be more difficult (also in terms of precision) for two reasons: a very limited
number of individuals per concept was available and the number of different con-
cepts is larger w.r.t. the other knowledge bases. For the other ontologies values
are much higher, as testified also by the F-measure values. The results in terms
of precision are also more stable than those for recall as proved by the limited
variance observed, whereas single queries happened to turn out quite difficult as
regards the correctness of the answer.

The reason for precision being generally higher is probably due to the OWA.
Indeed, in a many cases it was observed that the NN procedure deemed some

8 We employed PELLET v. 1.5.1. See http://pellet.owldl.com
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Table 2. Experimental results in terms of standard measures: averages + standard
deviations and [min,max] intervals

ORIGINAL MEASURE
precision recall F-measure
89.1 + 27.3 84.4 4+ 30.6 78.7 + 30.6

SWM [16.3;100.0] [11.1;100.0] [20.0;100.0]
BIOPAX 99.2 £ 1.9 97.3 £ 11.3 97,8 + 7.4
[93.8;100.0] [50.0;100.0] [66.7;100.0]
100.0 + 0.0 T1.7 £384 762 4+ 344
LUBM [100.0;100.0] [9.1;100.0] [16.7;100.0]
NTN 98.8 £ 3.0 62.6 £ 42.8 66.9 4+ 37.7
[86.9;100.0] [4.3;100.0] [8.2;100.0]
74.7 £ 37.2 43.4 + 35.5  54.9 + 34.7
SWSD [8.0;100.0] [2.2;100.0] [4.3;100.0]
FINANCIAL 99.6 £ 1.3 94.8 £15.3 97.1 £ 10.2
[94.3;100.0] [50.0;100.0] [66.7;100.0]
ENTROPIC MEASURE

precision recall F-measure
SWM 99.0 £ 4.3 75.8 £36.7 79.5 4+ 30.8
[80.6;100.0] [11.1;100.0] [20.0;100.0]

BIoPAx 99.9 £ 04 97.3 £ 11.3 98,2 + 74
[98.2;100.0] [50.0;100.0] [66.7;100.0]
100.0 + 0.0 81.6 £ 32.8 85.0 & 284

LUBM [100.0;100.0] [11.1;100.0] [20.0;100.0]
NTN 97.0 £ 5.8 40.1 +41.3 45.1 &+ 35.4
[76.4;100.0] [4.3;100.0] [8.2;97.2]
94.1 £+ 18.0 38.4 £379 46.5 4+ 35.0
SWSD [40.0;100.0] [2.4;100.0] [4.5;100.0]
99.8 £ 0.3 95.0 £154 96.6 = 10.2
FINANCIAL

[98.7;100.0]  [50.0;100.0]  [66.7;100.0]

individuals as relevant for the query issued while the DL reasoner was not able
to assess this relevance and this was computed as a mistake while it may likely
turn out to be a correct inference when judged by a human agent.

Because of these problems in the evaluation with the standard indices, es-
pecially due to the cases on unknown answers from the reference system (the
reasoner) we thought to make this case more explicit by measuring both the rate
of inductively classified individuals and the nature of the mistakes.

Alternative Measures. Due to the OWA, cases were observed when, it could
not be (deductively) ascertained whether a resource was relevant or not for a
given query. Hence, we introduced the following indices for a further evaluation:

— match rate: number of individuals that got exactly the same classification
(v € V) by both the inductive and the deductive classifier with respect to
the overall number of individuals (v vs. v);
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— omission error rate: amount of individuals for which inductive method could
not determine whether they were relevant to the query or not while they were
actually relevant according to the reasoner (0 vs. £1);

— commission error rate: number of individuals (analogically) found to be rel-
evant to the query concept, while they (logically) belong to its negation or
vice-versa (+1 vs. —1 or —1 vs. +1);

— induction rate: amount of individuals found to be relevant to the query
concept or to its negation, while either case is not logically derivable from
the knowledge base (+1 vs. 0);

Tab. Bl reports the outcomes in terms of these indices. Preliminarily, it is im-
portant to note that, in each experiment, the commission error was quite low or
absent. This means that the inductive search procedure is quite accurate, namely
it did not make critical mistakes attributing an individual to a concept that is
disjoint with the right one. Also the omission error rate was generally quite low,
yet more frequent than the previous type of error.

The usage of all concepts for the set F of d made the measure quite accurate,
which is the reason why the procedure resulted quite conservative as regards
inducing new assertions. In many cases, it matched rather faithfully the reasoner
decisions. From the retrieval point of view, the cases of induction are interesting
because they suggest new assertions which cannot be logically derived by using a
deductive reasoner yet they might be used to complete a knowledge base [2], e.g.
after being validated by an ontology engineer. For each candidate new assertion,
Eq.Blmay be employed to assess the likelihood and hence decide on its inclusion
(see next section).

If we compare these outcomes with those reported in other works on instance
retrieval and inductive classification [4], where the highest average match rate
observed was around 80%, we find a significant increase of the performance due
to the accuracy of the new measure. Also the elapsed time (not reported here)
was much less because of the different dissimilarity measure: once the values for
the projection functions are pre-computed, the efficiency of the classification,
which depends on the computation of the dissimilarity, was also improved.

As mentioned, we found also that a choice for smaller number of neighbors
could have been made for the decision on the correct classification was often
quite easy, even on account of fewer (the closest) neighbors. This yielded also
that the likelihood of the inferences made (see Eq. ) turned out quite high.

Likelihood and Top-k Answers. A further investigation concerned the like-
lihood of the inductively answers provided by the NN procedure. In Tab. @l we
report the average likelihoods computed (for all queries per ontology) during
the previous experiments in case of induction of new consistent assertions (see
Eq. Bl), when the reasoner was not able to assess the membership. The first line
reports the averages when answers were given based on the normalization of the
likelihood over the 3 possible values. As expected, they are even higher when
only the two cases +1 or —1 (membership, non-membership) are considered
(see second line). As mentioned, since the distance measure accurately selected
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Table 3. Results with alternative indices: averages =+ standard deviations and
[min,max]| intervals

ORIGINAL MEASURE

match commission omission induction

SWM 93.3 £+ 10.3 0.0 £ 0.0 2.5+ 44 4.2 + 10.5
[68.7;100.0] [0.0;0.0] [0.0;16.5] [0.0;31.3]

BroPax 99.9 £ 0.2 0.2 +£0.2 0.0 &£ 0.0 0.0 £ 0.0
[99.4;100.0] [0.0;0.06] [0.0;0.0] [0.0;0.0]

99.2 £ 0.8 0.0 £ 0.0 0.8 +£0.8 0.0 £ 0.0

LUBM 00 001000 [0.0:0.0)  [0.0:0.2]  [0.00.0]
NTN 98.6 £ 1.5 0.0 £ 0.1 0.8+ 1.1 0.6 1.4
[93.9;100.0] [0.0;0.4] [0.0;3.7] [0.0;6.1]

97.5 £ 3.7 0.0 £ 0.0 1.8 + 2.6 0.8 1.5

SWSD' 1046:1000]  [0.0:00]  [0.0:9.7]  [0.0:5.7]
FINANCIAL 99.5 £ 0.8 0.3 £ 0.7 0.0 &£ 0.0 0.2 +0.2
[97.3;100.0] [0.0;2.4] [0.0;0.0] [0.0;0.6]

ENTROPIC MEASURE

match commission omission induction

SWM 97.5 £ 3.2 0.0 £ 0.0 2.2 £+ 3.1 0.3 +1.2
[89.6;100.0] [0.0;0.0] [0.0;10.4] [0.0;5.2]

BIOPAX 99.9 £ 0.2 0.1 £0.2 0.0 &£ 0.0 0.0 £ 0.0
[99.4;100.0] [0.0;0.06] [0.0;0.0] [0.0;0.0]

99.5 £ 0.7 0.0 £ 0.0 0.5 &+ 0.7 0.0 £ 0.0

LUBM 08210000 [0.0:0.0)  [0.0;1.8]  [0.00.0]
NTN 97.5 £ 1.9 0.6 = 0.7 1.3+ 14 0.6 + 1.7
[91.3;99.3] [0.0;1.6] [0.0;4.9] [0.0;7.1]

SWSD 98.0 £ 3.0 0.0 £ 0.0 1.9+ 29 0.1 £0.2
[88.3;100.0] [0.0;0.0] [0.0;11.3] [0.0;0.5]

FINANCIAL 99.7 £ 0.2 0.0 £ 0.0 0.0 &£ 0.0 0.2 +£0.2
[99.4;100.0] [0.0;0.1] [0.0;0.0] [0.0;0.6]

Table 4. Results (percentages) concerning the likelihood of the answers when the
reasoner is not able to assess the class membership

SWM BioPAx LUBM NTN SWSD FINANCIAL
3-valued case 76.26 99.99 99.99 98.36 76.27 92.55
2-valued case 100.0 99.99 99.99 98.36 76.27 92.55

very similar neighbors, seldom tight cases occurred during the majority votes of
the NN, hence the observed likelihood of the answers turned out quite high on
average.

We also took into account the top-10 (positive) answers provided by the in-
ductive procedure for the various queries, ranked according to the likelihood
of the decision. Most of the values amounted to 100%. In order to assess the
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Table 5. Average differences of likelihood values (%) observed comparing the NN
procedure to the reasoner on the top-10 (positive) answers

SWM BioPAx LUBM NTN SWSD FINANCIAL
likelihood diff. 0.0 0.2 0.0 0.3 2.5 0

accuracy of such answers, we compared their related likelihood values to those
of the deductive decisions made by the reasoner. Namely, we assigned a maxi-
mum likelihood of 100% to the decisions on membership (and 0% to the non-
membership answer, if any) while 50% was assigned to cases when the reasoner
was uncertain on the answer. The pairwise difference of likelihood are averaged
over the top-10 answers of the various queries per each ontology. In Tab [l we
report such average difference. As expected such difference values are quite low,
reflecting the fact that the top-ranked answers are also the most accurate ones.

5 Conclusions and Outlook

This paper explored the application of a distance-based procedure for semantic
search applied knowledge bases represented in OWL. We extended a family of se-
mantic dissimilarity measures based on feature committees [7] taking into account
the amount of information conveyed by each feature based on an estimate of its en-
tropy. The measure were integrated in an distance-based search procedure that can
be exploited for the task of approximate instance retrieval which can be demon-
strated to be effective even in the presence of incomplete (or noisy) information.

One of the advantages of the measures is that their computation can be very
efficient in cases when statistics (on class-membership) are maintained by the
KBMS [10]. As previously mentioned, the subsumption relationships among con-
cepts in the committee is not explicitly exploited in the measure for making the
relative distances more accurate. The extension to the case of concept distance
may also be improved. Hence, scalability should be guaranteed as far as a good
committee has been found and does not change also because of the locality
properties observed for instances in several domains (e.g. social or biological
networks).

The experiments made on various ontologies showed that the method is quite
effective, and while its performance depends on the number (and distribution)
of the available training instances, even working with quite limited training sets
guarantees a good performance in terms of accuracy. Moreover, even if the mea-
sure accuracy embedded into the system depends on the chosen feature set,
the high accuracy registered for almost all considered data sets shows that the
method can be applied to any domain and its performances are not connected
to a particular domain. Besides, the procedure appears also robust to noise since
it seldom made commission errors in the experiments carried out so far.

Various developments for the measure can be foreseen as concerns its
definition. Namely, since it is very dependent on the features included in the
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committee, two immediate lines of research arise: 1) reducing the number of con-
cepts saving those concepts which are endowed of a real discriminating power;
2) learning optimal sets of discriminating features, by allowing also their compo-
sition employing the specific constructors made available by the representation
language of choice [7]. Both these objectives can be accomplished by means of
machine learning techniques especially when ontologies with a large set of indi-
viduals are available. Namely, part of the entire data can be drawn in order to
learn optimal feature sets, in advance with respect to the successive usage.

As mentioned, the distance measures are applicable to other instance-based
tasks which can be approached through machine learning techniques. The next
step has been plugging the measure in flat or hierarchical clustering algorithms
where clusters would be formed grouping instances on the grounds of their sim-
ilarity assessed through the measure [0l [5].
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