
Interprocedural Path Profiling

David Melski and Thomas Reps

Computer Sciences Department, University of Wisconsin
1210 West Dayton Street, Madison, WI, 53706, USA

{melski,reps}@cs.wisc.edu

Abstract. In path profiling, a program is instrumented with code that
counts the number of times particular path fragments of the program are
executed. This paper extends the intraprocedural path-profiling tech-
nique of Ball and Larus to collect information about interprocedural
paths (i.e., paths that may cross procedure boundaries).

1 Introduction

In path profiling, a program is instrumented with code that counts the number
of times particular finite-length path fragments of the program’s control-flow
graph — or observable paths — are executed. A path profile for a given run of a
program consists of a count of how often each observable path was executed. This
paper extends the intraprocedural path-profiling technique of Ball and Larus [3]
to collect information about interprocedural paths (i.e., paths that may cross
procedure boundaries).

Interprocedural path profiling is complicated by the need to account for a
procedure’s calling context. There are really two issues:

– What is meant by a procedure’s “calling context”? Previous work by Ammons
et al. [1] investigated a hybrid intra-/interprocedural scheme that collects
separate intraprocedural profiles for a procedure’s different calling contexts.
In their work, the “calling context” of procedure P consists of the sequence
of call sites pending on entry to P . In general, the sequence of pending call
sites is an abstraction of any of the paths ending at the call on P .
The path-profiling technique presented in this paper profiles true
interprocedural paths, which may include call and return edges between pro-
cedures, paths through pending procedures, and paths through procedures
that were called in the past and completed execution. This means that, in
general, our technique maintains finer distinctions than those maintained by
the profiling technique of Ammons et al.

– How does the calling-context problem impact the profiling machinery? In
the method presented in this paper, the “naming” of paths is carried out
via an edge-labeling scheme that is in much the same spirit as the path-
naming scheme of the Ball-Larus technique, where each edge is labeled with
a number, and the “name” of a path is the sum of the numbers on the
path’s edges. However, to handle the calling-context problem, in our method

S. Jähnichen (Ed.): CC’99, LNCS 1575, pp. 47–63, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

48 David Melski and Thomas Reps

edges are labeled with functions instead of values. In effect, the use of edge-
functions allows edges to be numbered differently depending on the calling
context.
At runtime, as each edge e is traversed, the profiling machinery uses the edge
function associated with e to compute a value that is added to the quantity
pathNum. At the appropriate program points, the profile is updated with the
value of pathNum.
Because edge functions are always of a particularly simple form (i.e., linear
functions), they do not complicate the runtime-instrumentation code greatly:
• The Ball-Larus instrumentation code performs 0 or 1 additions in each

basic block; a hash-table lookup and 1 addition for each control-flow-
graph backedge; 1 assignment for each procedure call; and a hash-table
lookup and 1 addition for each return from a procedure.

• The technique presented in this paper performs 0 or 2 additions in each
basic block; a hash-table lookup, 1 multiplication, and 4 additions for
each control-flow-graph backedge; 2 multiplications and 2 additions for
each procedure call; and 1 multiplication and 1 addition for each return
from a procedure.

(The frequency with which our technique and the Ball-Larus technique can
avoid performing any additions in a basic block should be about the same.)
Thus, while interprocedural path profiling will involve more overhead than
intraprocedural path profiling via the Ball-Larus technique, the overheads
should not be prohibitive.

The specific technical contributions of this paper include:

– In the Ball-Larus scheme, a cycle-elimination transformation of the (in gen-
eral, cyclic) control-flow graph is introduced for the purpose of numbering
paths. We present the interprocedural analog of this transformation.

– In the case of intraprocedural path profiling, the Ball-Larus scheme produces
a dense numbering of the observable paths within a given procedure: That
is, in the transformed (i.e., acyclic) version of the control-flow graph for a
procedure P , the sum of the edge labels along each path from P ’s entry
vertex to P ’s exit vertex falls in the range [0..number of paths in P], and
each number in the range [0..number of paths in P] corresponds to exactly
one such path.
The techniques presented in this paper produce a dense numbering of inter-
procedural observable paths. The significance of the dense-numbering prop-
erty is that it ensures that the numbers manipulated by the instrumentation
code have the minimal number of bits possible.

Our work encompasses two main algorithms for interprocedural path profil-
ing, which we call context path profiling and piecewise path profiling, as well as
several hybrid algorithms that blend aspects of the two main algorithms. Con-
text path profiling is best suited for software-maintenance applications, whereas
piecewise path profiling is better suited for providing information about inter-
procedural hot paths, and hence is more appropriate for optimization applica-
tions [4].

Interprocedural Path Profiling 49

This paper focuses on context path profiling, and, except where noted, the
term “interprocedural path profiling” means “context path profiling”. We chose
to discuss the context-path-profiling algorithm because the method is simpler to
present than the algorithm for piecewise path profiling. However, the same basic
machinery is at the heart of both algorithms (see [4]).

The remainder of the paper is organized into four sections: Section 2 presents
background material and defines terminology needed to describe our results.
Section 3 gives an overview of interprocedural context path profiling. Section 4
describes the technical details of this approach. Section 5 discusses future work.

2 Background

2.1 Supergraph

As in many interprocedural program-analysis problems, we work with an in-
terprocedural control-flow graph called a supergraph. Specifically, a program’s
supergraph G∗ consists of a unique entry vertex Entryglobal , a unique exit vertex
Exitglobal , and a collection of control-flow graphs (one for each procedure), one
of which represents the program’s main procedure. For each procedure P , the
flowgraph for P has a unique entry vertex, EntryP , and a unique exit vertex,
ExitP . The other vertices of the flowgraph represent statements and predicates
of the program in the usual way,1 except that each procedure call in the pro-
gram is represented in G∗ by two vertices, a call vertex and a return-site vertex.
In addition to the ordinary intraprocedural edges that connect the vertices of
the individual control-flow graphs, for each procedure call (represented, say, by
call vertex c and return-site vertex r) to procedure P , G∗ contains a call-edge,
c → EntryP , and a return-edge, ExitP → r. The supergraph also contains the
edges Entryglobal → Entrymain and Exitmain → Exitglobal . An example of a
supergraph is shown in Fig. 1(a).

For purposes of profiling, we assume that all branches are logically indepen-
dent, i.e., the result of one branch does not affect the ability to take any other
branch. However, we do not wish to consider paths in G∗ that violate the nature
of procedure calls (as the path in Fig. 1(b) does). We now develop a language
for describing the set of paths in G∗ that we wish to consider valid. To do this,
let each call site be assigned a unique index between 1 and NumCallSites, where
NumCallSites is the total number of call sites in the program. Then, for each call
site with index i, let the call-edge from the call site be labeled with the symbol
“(i”, and let the return-edge to the call site be labeled with the symbol “)i”.
Let each edge of the form Entryglobal → EntryP be labeled with the symbol
“(P ” and each edge of the form ExitP → Exitglobal be labeled with the symbol
“)P ”. Let all other edges be labeled with the symbol e. Then a path p in G∗ is a
same-level valid path if and only if the string formed by concatenating the labels

1 The vertices of a flowgraph can represent individual statements and predicates; al-
ternatively, they can represent basic blocks.

50 David Melski and Thomas Reps

pow

main

Entryglobal Exitglobal

Entrypow Exitpow

c1 r1 c2 r2

Entrymain Exitmain

pow

main

Entryglobal Exitglobal

pow

main

Entryglobal Exitglobal

(a) (b) (c)

Fig. 1. (a) Schematic of the supergraph of a program in which main has two
call sites on the procedure pow . (b) Example of an invalid path in a supergraph.
(c) Example of a cycle that may occur in a valid path.

of p’s edges is derived from the non-terminal SLVP in the following context-free
grammar:

SLVP ::= e SLVP SLVP ::= (i SLVP)i SLVP for 1 ≤ i ≤ NumCallSites
SLVP ::= ε SLVP ::= (P SLVP)P SLVP for each procedure P

Here, ε denotes the empty string. A same-level valid path p represents an exe-
cution sequence where every call-edge is properly matched with a corresponding
return-edge and vice versa.

We also need to describe paths that correspond to incomplete execution
sequences in which not all of the procedure calls have been completed. (For ex-
ample, a path that begins in a procedure P , crosses a call-edge to a procedure Q,
and ends in Q.) Such a path p is called an unbalanced-left path. The string formed
by concatenating the labels on p’s edges must be derived from the non-terminal
UnbalLeft in the following context-free grammar:

UnbalLeft ::= UnbalLeft (i UnbalLeft for 1 ≤ i ≤ NumCallSites
UnbalLeft ::= UnbalLeft (P UnbalLeft for each procedure P
UnbalLeft ::= SLVP

Interprocedural Path Profiling 51

2.2 Modifying G∗ to Eliminate Backedges and Handle Recursion

For purposes of numbering paths, the Ball-Larus technique modifies a proce-
dure’s control-flow graph to remove cycles. This section describes the analogous
step for interprocedural context profiling. Specifically, this section describes mod-
ifications to G∗ that remove cycles from each procedure and from the call graph
associated with G∗. The resulting graph is called G∗

fin . Each unbalanced-left path
through G∗

fin defines an “observable path” that can be logged in an interprocedu-
ral profile. The number of unbalanced-left paths through G∗

fin is finite [4], which
is the reason for the subscript “fin”.

In total, there are three transformations that are performed to create G∗
fin .

Fig. 3 shows the transformed graph G∗
fin that is constructed for the example

program in Fig. 2 (the labels on the vertices and edges of this graph are explained
in Section 3.1).

Transformation 1: For each procedure P , add a special vertex GExitP . In
addition, add an edge GExitP → Exitglobal .

The second transformation removes cycles in each procedure’s flow graph. As
in the Ball-Larus technique, the procedure’s control-flow graph does not need
to be reducible; backedges can be determined by a depth-first search of the
control-flow graph.

Transformation 2: For each procedure P , perform the following steps:
1. For each backedge target v in P , add a surrogate edge EntryP → v.
2. For each backedge source w in P , add a surrogate edge w → GExitP .
3. Remove all of P ’s backedges.

The third transformation “short-circuits” paths around recursive call sites,
effectively removing cycles in the call graph. First, each call site is classified as
recursive or nonrecursive. This can be done by identifying backedges in the call
graph using depth-first search; the call graph need not be reducible.

Transformation 3: The following modifications are made:
1. For each procedure R called from a recursive call site, add the edges

Entryglobal → EntryR and ExitR → Exitglobal .
2. For each pair of vertices c and r representing a recursive call site that

calls procedure R, remove the edges c → EntryR and ExitR → r, and
add the summary edge c → r. (Note that c → r is called a “summary”
edge, but not a “surrogate” edge.)

As was mentioned above, the reason we are interested in these transfor-
mations is that each observable path—an item we log in an interprocedural
path profile—corresponds to an unbalanced-left path through G∗

fin . Note that
the observable paths should not correspond to just the same-level valid paths
through G∗

fin : as a result of Transformation 2, an observable path p may end
with . . . → GExitP → Exitglobal , leaving unclosed left parentheses. Further-
more, a path in G∗

finthat is not unbalanced-left cannot represent any feasible
execution path in the original graph G∗.

52 David Melski and Thomas Reps

double pow�double base� long exp� f
double power � ����

while� exp � � � f
power 	� base�

exp

�

g
return power�

g

Fig. 2. Example program used to il-
lustrate the path-profiling technique.
(The program computes the quantity
(
∑9

j=1(2 · j)2)) + (
∑6

k=1(3 · k)2).)

int main�� f
double t� result � ����

int i � ��

while� i �� �	 � f
if� �i
�� �� � � f

t � pow� i� � ��

result �� t�

g
if� �i

� �� � � f

t � pow� i� � ��

result �� t�

g
i���

g
return ��

g

Indirect Procedure Calls The easiest way to handle indirect procedure
calls is to treat them as recursive procedure calls, and not allow interprocedural
paths that cross through an indirect procedure call. Another possibility does
allow interprocedural paths to cross through an indirect procedure call: For
purposes of numbering the paths in G∗

fin , each indirect procedure call through
a procedure variable fp is turned into an if-then-else chain that has a separate
(direct) procedure call for each possible value of fp. Well-known techniques
(e.g., such as flow insensitive points-to analysis [2,6]) can be used to obtain a
reasonable (but still conservative) estimate of the values that fp may take on.

3 Overview

In this section, we illustrate, by means of the example shown in Fig. 2, some of
the difficulties that arise in collecting an interprocedural path profile. Fig. 1(a)
shows a schematic of the supergraph G∗ for this program. One difficulty that
arises in interprocedural path profiling comes from interprocedural cycles. Even
after the transformations described in Section 2.2 are performed (which break
intraprocedural cycles and cycles due to recursion), G∗ will still contain cyclic
paths, namely, those paths that enter a procedure from distinct call sites (see
Fig. 1(c)). This complicates any interprocedural extension to the Ball-Larus
technique, because the Ball-Larus numbering scheme works on acyclic graphs.
There are several possible approaches to overcoming this difficulty:

– One possible approach is to create a unique copy of each procedure for each
nonrecursive call site and remove all recursive call and return edges. In our
example program, we would create the copies pow1 and pow2 of the pow
function, as shown in Fig. 4. pow1 can be instrumented as if it had been

Interprocedural Path Profiling 53

0
,
1
7

v 1
:

E
nt

ry
m

ai
n

v 2
:

r
e
s
u
l
t

=

0
;

v 3
:

i
=
1
;

v 4
:

w
h
i
l
e
(

i

<
=

1
8

)

v 5
:

i
f
(

(
i
%
2
)

=
=

0
)

v 6
:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 7
:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 8
:

r
e
s

+
=

t
;

v 9
:

i
f
(

(
i
%
3
)

=
=

0

)

v 1
0:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 1
1:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 1
2:

r
e
s

+
=

t
;

v 1
3:

i
+
+
;

v 1
4:

G
E

xi
t m

ai
n

v 1
5:

r
e
t
u
r
n

0
;

v 1
6:

E
xi

t m
ai

n

m
ai

n

E
xi

t gl
ob

al

E
nt

ry
gl

ob
al

u 1
:

E
nt

ry
po

w

u 2
:

p
o
w
e
r

=

1
.
0
;

u 3
:

w
h
i
l
e
(
e
x
p

>

0
)

u 4
:

p
o
w
e
r

*
=

b
a
s
e
;

u 5
:

e
x
p
-
-
;

u 7
:

r
e
t
u
r
n

p
o
w
e
r
;

u 6
:

G
E

xi
t po

w

u 8
:

E
xi

t po
w

po
w

1
,
1
7

2
,
3
4 1
,
1
7

1
,
1
7

1
,
1
7

0
,
1
7

0
,
1
2

0
,
5

0
,
1
2

0
,
5

0
,
5

0
,
4

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
4

1
,
0

1
,
0

1
,
0

1
,
1

1
,
1

1
,
1

2
,
2

1
,
0

1
,
0

0
,
1
2

Fig. 3. G∗
fin for the code in Fig. 2. Dashed edges represent surrogate edges; the

supergraph for the program in Fig. 2 includes the backedges v13 → v4 and u5 →
u3, which have been removed here by Transformation 2. Here the ordered pair
〈a, b〉 represents the linear function λx.a · x + b. Each vertex v is assigned the
linear function ψv, which is shown in a rounded box. Each intraprocedural edge e
is assigned the linear function ρe, which is shown in a doubled, rounded box.
Unlabeled intraprocedural edges have the function 〈0, 0〉. Interprocedural edges
do not have ρ functions.

inlined in main, and likewise for pow2. In many cases, this approach is im-
practical because of the resulting code explosion.

– A second approach—which is the one developed in this paper—is to pa-
rameterize the instrumentation in each procedure to behave differently for
different calling contexts. In our example, pow is changed to take an extra
parameter. When pow is called from the first call site in main, the value of

54 David Melski and Thomas Reps

v 1
:

E
nt

ry
m

ai
n

v 2
:

r
e
s
u
l
t

=

0
;

v 3
:

i
=
1
;

v 4
:

w
h
i
l
e
(

i

<
=

1
8

)

v 5
:

i
f
(

(
i
%
2
)

=
=

0
)

v 6
:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 7
:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 8
:

r
e
s

+
=

t
;

v 9
:

i
f
(

(
i
%
3
)

=
=

0

)

v 1
0:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 1
1:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 1
2:

r
e
s

+
=

t
;

v 1
3:

i
+
+
;

v 1
4:

G
E

xi
t m

ai
n

v 1
5:

r
e
t
u
r
n

0
;

v 1
6:

E
xi

t m
ai

n

m
ai

n

E
xi

t gl
ob

al

E
nt

ry
gl

ob
al

u 1"
:

E
nt

ry
po

w

u 2"
:

p
o
w
e
r

=

1
.
0
;

u 3"
:

w
h
i
l
e
(
e
x
p

>

0
)

u 4"
:

p
o
w
e
r

*
=

b
a
s
e
;

u 5"
:

e
x
p
-
-
;

u 7"
:

r
e
t
u
r
n

p
o
w
e
r
;

u 6"
:

G
E

xi
t po

w

u 8"
:

E
xi

t po
w

po
w

po
w

2

u 1’
:

E
nt

ry
po

w

u 2’
:

p
o
w
e
r

=

1
.
0
;

u 3’
:

w
h
i
l
e
(
e
x
p

>

0
)

u 4’
:

p
o
w
e
r

*
=

b
a
s
e
;

u 5’
:

e
x
p
-
-
;

u 7’
:

r
e
t
u
r
n

p
o
w
e
r
;

u 6’
:

G
E

xi
t po

w

u 8’
:

E
xi

t po
w

po
w

po
w

1

1

11

1

1

1

14

5
4

5

51
2

1
2

1
7

1
7

1
8

1
8

1
81
8

3
6

3
6

15

5

1

1

6
1

6

6

1
2

11

1

1

1

2
1

2

2

4

Fig. 4. Modified version of G∗
fin from Fig. 3 with two copies of pow. Labels on

the vertices and edges show the results of applying the Ball-Larus numbering
technique to the graph. Each vertex label is shown in a circle, and each edge
label are shown in a double circle. Unlabeled edges are given the value 0 by the
Ball-Larus numbering scheme.

Interprocedural Path Profiling 55

the new parameter causes the instrumentation of pow to mimic the behav-
ior of the instrumentation of pow1 in the first approach above; when pow
is called from the second call site in main, the value of the new parameter
causes pow ’s instrumentation to mimic the behavior of the instrumentation
of pow2. Thus, by means of an appropriate parameterization, we gain the
advantages of the first approach without duplicating code.

Section 3.1 gives a high-level description of our path-numbering technique and
Section 4 gives a detailed description of the profiling algorithm.

3.1 Numbering Unbalanced-Left Paths

Extending the Ball-Larus technique to number unbalanced-left paths in G∗
fin is

complicated by the following facts:

1. While the number of unbalanced-left paths is finite, an unbalanced-left path
may contain cycles (such as those in Fig. 1(c)).

2. The number of paths that may be taken from a vertex v is dependent on
the path taken to reach v: for a given path p to vertex v, not every path q
from v forms an unbalanced-left path when concatenated with p.

These facts mean that it is not possible to assign a single integer value to each
vertex and edge of G∗

fin as the Ball-Larus technique does. Instead, each occur-
rence of an edge e in a path p will contribute a value to the path number of p, but
the value that an occurrence of e contributes will be dependent on the part of p
that precedes that occurrence of e. In particular, e’s contribution is determined
by the sequence of unmatched left parentheses that precede the occurrence of e
in p. (The sequence of unmatched left parentheses represents a calling context
of the procedure containing e.)

Consider the example shown in Figs. 2 and 3. Notice that G∗
fin in Fig. 3

contains cyclic, unbalanced-left paths. For example, the following path is a cycle
from u1 to u1 that may appear as a subpath of an unbalanced-left path:

u1 → u3 → u7 → u8 → v7 → v8 → v9 → v10 → u1.

Fig. 4 shows a modified version of G∗
fin with two copies of the procedure

pow, one for each call site to pow in main. This modified graph is acyclic and
therefore amenable to the Ball-Larus numbering scheme: Each vertex v in Fig. 4
is labeled with numPaths [v], the number of paths from v to Exitglobal ; each
edge e is labeled with its Ball-Larus increment [3]. Note that there is a one-to-
one and onto mapping between the paths through the graph in Fig. 4 and the
unbalanced-left paths through the graph in Fig. 3. This correspondence can be
used to number the unbalanced-left paths in Fig. 3: each unbalanced-left path p
in Fig. 3 is assigned the path number of the corresponding path q in Fig. 4.

The following two observations capture the essence of our technique:

56 David Melski and Thomas Reps

– Because the labeling passes of the Ball-Larus scheme work in reverse topolog-
ical order, the values assigned to the vertices and edges of a procedure are de-
pendent upon the values assigned to the exit vertices of the procedure. For in-
stance, in Fig. 4, the values assigned to the vertices and edges of pow1 are de-
termined by the values assigned to Exitpow1 and GExitpow1 (i.e., the values 5
and 1, respectively), while the values assigned to the vertices and edges of
pow2 are determined by the values assigned to Exitpow2 and GExitpow2 (i.e.,
the values 1 and 1, respectively). Note that numPaths[GExitP] = 1 for any
procedure P (since the only path from GExitP to Exitglobal is the path con-
sisting of the edge GExitP → Exitglobal). Thus, the values on the edges and
the vertices of pow1 differ from some of the values on the corresponding edges
and vertices of pow2 because numPaths [Exitpow1] �= numPaths [Exitpow2].

– Given that a program transformation based on duplicating procedures is
undesirable, a mechanism is needed that assigns vertices and edges different
numbers depending on the calling context. To accomplish this, each vertex u
of each procedure P is assigned a linear function ψu that, when given a
value for numPaths [ExitP], returns the value of numPaths [u]. Similarly, each
edge e of each procedure P is assigned a linear function ρe that, when given
a value for numPaths [ExitP], returns the Ball-Larus value for e.

Fig. 3 shows G∗
fin labeled with the appropriate ψ and ρ functions. Note that

we have the desired correspondence between the linear functions in Fig. 3 and the
integer values in Fig. 4. For example, in Fig. 3 vertex u1 has the function ψu1 =
λx.2 ·x+2. This function, when supplied with the value numPaths [Exitpow1] = 5
from Fig. 4 evaluates to 12, which is equal to numPaths [u′

1] in Fig. 4. However,
when λx.2 · x + 2 is given the value numPaths [Exitpow2] = 1, it evaluates to 4,
which is equal to numPaths[u′′

1] in Fig. 4.
To collect the number associated with an unbalanced-left path p in G∗

fin , as p
is traversed, each edge e contributes a value to p’s path number. As illustrated
below, the value that e contributes is dependent on the path taken to e:

Example 1. Consider the edge u1 → u3 in G∗
fin , and an unbalanced-left path s

that begins with the following path prefix:

Entryglobal → v1 → v4 → v5 → v6 → u1 → u3 (1)

In this case, the edge u1 → u3 contributes a value of 6 to s’s path number. To see
that this is the correct value, consider the path prefix in Fig. 4 that corresponds
to (1):

Entryglobal → v1 → v4 → v5 → v6 → u′
1 → u′

3

In Fig. 4, the value on the edge u′
1 → u′

3 is 6.
In contrast, in an unbalanced-left path t that begins with the path prefix

Entryglobal → v1 → v4 → v5 → v9 → v10 → u1 → u3 (2)

the edge u1 → u3 will contribute a value of 2 to t’s path number. (To see that this
is the correct value, consider the path prefix in Fig. 4 that corresponds to (2).)

Interprocedural Path Profiling 57

It can even be the case that an edge e occurs more than once in a path p, with
each occurrence contributing a different value to p’s path number. For example,
there are some unbalanced-left paths in G∗

fin in which the edge u1 → u3 appears
twice, contributing a value of 6 for the first occurrence and a value of 2 for the
second occurrence.

To determine the value that an occurrence of the edge e should contribute
to a path number, the profiling instrumentation will use the function ρe and the
appropriate value for numPaths [ExitP], where P is the procedure containing e.
Thus, as noted above, an occurrence of the edge u1 → u3 may contribute the
value (λx.x + 1)(1) = 2 or the value (λx.x + 1)(5) = 6 to a path number,
depending on the path prior to the occurrence of u1 → u3.

unsigned int profile����� �� �� possible paths in total ��

double pow�double base� long exp�

unsigned int �pathNum� unsigned int numValidCompsFromExit�f
unsigned int pathNumOnEntry � pathNum� �� Save the calling context ��

double power � 	
��

while� exp
 � � f
power �� base�

exp���

profile�pathNum����

�� From surrogate edge u	�
u�� ��

pathNum � � 	 numValidCompsFromExit � � � pathNumOnEntry�

g
pathNum ��
 	 numValidCompsFromExit � �� �� From edge u��
u� ��

return power�

g

Fig. 5. Part of the instrumented version of the program from Fig. 2. Instru-
mentation code is shown in italics. (See also Fig. 6.)

Figs. 5 and 6 show the program from Fig. 2 with additional instrumentation
code — based on the linear functions in Fig. 3 — that collects an interprocedural
path profile. The output from the instrumented program is as follows:

0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 7: 0 8: 0

9: 0 10: 0 11: 0 12: 0 13: 0 14: 0 15: 0 16: 1 17: 0

18: 9 19: 0 20: 0 21: 0 22: 0 23: 0 24: 9 25: 3 26: 0

27: 3 28: 3 29: 6 30: 3 31: 0 32: 3 33: 3 34: 5 35: 1

Section 4 presents an algorithm that assigns linear functions to the vertices
and edges of G∗

fin directly, without referring to a modified version of G∗
fin , like

the one shown in Fig. 4, in which procedures are duplicated.

58 David Melski and Thomas Reps

int main�� f
unsigned int pathNum � ��

unsigned int pathNumOnEntry � ��

unsigned int numValidCompsFromExit � ��

double t� result � ����

int i � ��

while� i �� �	 � f
if� �i
�� �� � � f

t � pow� i� �� pathNum� � � numValidCompsFromExit � � ��

�
 On entry to pow� pathNum is � or �	� fourth arg� always �
�

�
 On exit from pow� pathNum is �� �� ��� or ��
�

result �� t�

g else

pathNum �� � � numValidCompsFromExit � ���

if� �i
�� �� � � f
t � pow� i� �� pathNum� � � numValidCompsFromExit � � ��

�
 On entry to pow� pathNum is �� �� ��� ��� ��� or ��� �th arg� always �
�

�
 On exit from pow� pathNum is �� �� 	� �� ��� ��� ��� ��� ��� ��� ��� or ��
�

result �� t�

g else

pathNum �� � � numValidCompsFromExit � 	� �
 From edge v���v��
�

i���

profile
pathNum����

�
 From surrogate edge v���v��
�

pathNum � � � numValidCompsFromExit � �� � pathNumOnEntry�

g
pathNum �� � � numValidCompsFromExit � ��� �
 From edge v���v��
�

profile
pathNum����

for
i � �� i � ��� i��� f
cout�width
��� cout �� i �� ���� cout�width
��� cout �� profile
i� �� � ��

if

i��� � � �� �� cout �� endl�

g
return ��

g

Fig. 6. Part of the instrumented version of the program from Fig. 2. Instru-
mentation code is shown in italics. (See also Fig. 5.)

3.2 What Do You Learn From a Profile of Unbalanced-Left Paths?

Before examining the details of interprocedural path profiling, it is useful to
understand the information that is gathered in this approach:

– Each unbalanced-left path p through G∗
fin from Entryglobal to Exitglobal can

be thought of as consisting of a context-prefix and an active-suffix. The
active-suffix q′′ of p is a maximal-size, surrogate-free subpath at the tail
of p (though the active-suffix may contain summary edges of the form c → r,
where c and r represent a recursive call site). The context-prefix q′ of p is the
prefix of p that ends at the last surrogate edge before p’s active suffix. (The
context-prefix q′ can be the empty path from Entryglobal to Entryglobal .)

– The counter associated with the unbalanced-left path p counts the number
of times during a program’s execution that the active-suffix of p occurs in
the context summarized by p’s context-prefix.

Interprocedural Path Profiling 59

Example 2. Consider the path in Fig. 3 with path number 24:

24 :Entryglobal →v1→v4→v5 → v6 → u1 → u3 → u4 → u5 → u6 → Exitglobal

This path consists of the context-prefix Entryglobal → v1 → v4 → v5 → v6 → u1

and the active-suffix u3 → u4 → u5. The output obtained from running the
program shown in Figs. 5 and 6 indicates that the active suffix was executed 9
times in the context summarized by the context-prefix. Note that the context-
prefix not only summarizes the call site in main from which pow was called, but
also the path within main that led to that call site. In general, a context-prefix
(in an interprocedural technique) summarizes not only a sequence of procedure
calls (i.e., the calling context), but also the intraprocedural paths taken within
each procedure in the sequence.

4 Interprocedural Path Profiling

In this section, we discuss the ψ and ρ functions that serve as replacements for
the vertex and edge values of the Ball-Larus technique.

4.1 Assigning ψ and ρ Functions

Solving for ψ Functions For a vertex v in procedure P , the function ψv

takes the number of valid completions from ExitP (for an unbalanced-left path p
to EntryP concatenated with any same-level valid path to ExitP) and returns
the number of valid completions from v (for the path p concatenated with any
same-level valid path to v).

We can find the ψ functions by setting up and solving a collection of equa-
tions. For an exit vertex ExitP , ψExitP

is the identity function: ψExitP
= id .

For a vertex of the form GExitP , we have the equation ψGExitP
= λx.1. This

equation reflects the fact that the number of valid completions from GExitP is
always 1, regardless of the number of valid completions from ExitP . For a call
vertex c to a procedure Q associated with the return-site vertex r, where c and r
represent a non-recursive call site, we have the equation ψc = ψEntryQ

◦ ψr. For
all other cases, for a vertex m, we have the equation ψm =

∑
n∈succ(m)ψn, where

succ(m) denotes the successors of m, and the addition f +g of function values f
and g is defined to be the function λx.f(x) + g(x).2

Because id(= λx.x) and λx.1 are both linear functions of one variable, and
the space of linear functions of one variable is closed under function composi-
tion and function addition, each ψ function is a linear function of one variable.
Furthermore, each ψ function λx.a · x + b can be represented as an ordered
pair 〈a, b〉.

To find ψ functions that satisfy the above equations, each procedure P is
visited in reverse topological order of the call graph, and each vertex v in P is
2 The equations for the ψ functions closely resemble the φ functions of Sharir and

Pnueli’s functional approach to interprocedural data-flow analysis [4,5].

60 David Melski and Thomas Reps

visited in reverse topological order of P ’s control-flow graph. (For purposes of
ordering the vertices of a procedure P , a return-site vertex r is considered to
be a successor of its associated call vertex c.) As each vertex v is visited, the
appropriate equation given above is used to determine the function ψv.

The order of traversal guarantees that when vertex v is visited, all of the
functions that are needed to determine ψv will be available. This follows from
the fact that the call graph associated with G∗

fin is acyclic and the fact that the
flow graph of each procedure in G∗

fin is acyclic. (The fact that the call graph and
flow graphs are acyclic also explains why each vertex needs to be visited only
once.)

Solving for ρ functions Each intraprocedural edge e in procedure P is
assigned a linear function ρe. The function ρe, when supplied with the number
of valid completions from ExitP (for an unbalanced-left path p to EntryP con-
catenated with any same-level valid path from EntryP to ExitP), returns the
value that e contributes (to the path number of the path p concatenated with
any same-level valid path to e).

Let v be an intraprocedural vertex that is the source of one or more in-
traprocedural edges. (Note that v cannot be a call vertex for a nonrecursive call
site, nor have the form ExitP , nor have the form GExitP .) Let w1 . . . wk be the
successors of v. Then we make the following definition:

ρv→wi =
{

λx.0 if i = 1∑
j<i ψwj otherwise (3)

Clearly, each ρ function is a linear function of one variable. Furthermore, (3)
can be used to find each ρ function when the ψ functions are known.

4.2 Computing Values for Interprocedural Edges

Unlike intraprocedural edges, an interprocedural edge e always contributes the
same value, independent of the path taken to e [4]. For interprocedural edges
that are not of the form Entryglobal → EntryP , this value is always 0.

For each edge Entryglobal → EntryP and each unbalanced-left path p that
starts with this edge, we define the integer value
edgeValue[Entryglobal → EntryP] to be the value that Entryglobal → EntryP con-
tributes to p’s path number. To find the edgeValue values, it is necessary to use
a fixed (but arbitrary) ordering of the edges of the form Entryglobal → EntryP .
For convenience, we number each edge Entryglobal → EntryP according to this
ordering, and use the notation Qi to refer to the procedure that is the target of
the ith edge. We have the following:

edgeValue[Entryglobal → EntryQi
] =

{
0 if i = 0∑

j<i ψEntryQj
(1) otherwise

4.3 Calculating the Path Number of an Unbalanced-Left Path

In this section, we show how to calculate the path number of an unbalanced-
left path p through G∗

fin from Entryglobal to Exitglobal . This is be done during

Interprocedural Path Profiling 61

a single traversal of p that sums the values contributed by each edge e for each
path prefix p′ such that [p′ ‖ e] is a prefix of p.

For an interprocedural edge e, the value edgeValue[e] contributed by e is cal-
culated as described in Section 4.2. For an intraprocedural edge e in procedure P ,
the value contributed by e (for the path p′ leading to e) is calculated by applying
the function ρe to the number of valid completions from ExitP . (The number
of valid completions from ExitP is determined by the path taken to EntryP —in
this case a prefix of p′.)

We now come to the crux of the matter: how to determine the contribution of
an edge e when the edge is traversed without incurring a cost for inspecting the
path p′ taken to e. The trick is that, as p is traversed, we maintain a variable,
numValidCompsFromExit, that holds the number of valid completions from the
exit vertex ExitQ of the procedure Q that is currently being visited. The number
of valid completions from ExitQ is uniquely determined by p′—specifically, the se-
quence of unmatched left parentheses in p′. The value numValidCompsFromExit
is maintained by the use of a stack, NVCStack, and the ψ functions for return-site
vertices. The following steps describe the algorithm to compute the path number
for a path p (this number is accumulated in the variable pathNum):

– When the traversal of p is begun, numValidCompsFromExit is set to 1. This
indicates that there is only one valid completion from ExitR, where R is
the first procedure that p enters: if p reaches the exit of the first procedure
it enters, then it must follow the edge ExitP → Exitglobal . The value of
pathNum is initialized to the value edgeValue[e] on the first edge e of p (see
Section 4.2).

– As the traversal of p crosses a call-edge c → EntryT from a procedure S
to a procedure T , the value of numValidCompsFromExit is pushed on the
stack, and is updated to ψr(numValidCompsFromExit), where r is the return-
vertex in S that corresponds to the call-vertex c. This reflects the fact that
the number of valid completions from ExitT is equal to the number of valid
completions from r.

– As the traversal of p crosses a return-edge ExitT → r from a procedure T
to a procedure S, the value of numValidCompsFromExit is popped from the
top of the stack. This reflects the fact that the number of valid completions
from the exit of the calling procedure S is unaffected by the same-level valid
path through the called procedure T .

– As the traversal of p crosses an intraprocedural edge e, the value of pathNum
is incremented by ρe(numValidCompsFromExit).

– At the end of the traversal of p, pathNum holds the path number of p.

4.4 Runtime Environment for Collecting a Profile

We are now ready to describe the instrumentation code that is introduced to col-
lect an interprocedural path profile. In essence, the instrumentation code threads
the algorithm described in Section 4.3 into the code of the instrumented pro-
gram. Thus, the variables pathNum and numValidCompsFromExit become pro-
gram variables. There is no explicit stack variable corresponding to NVCstack;

62 David Melski and Thomas Reps

instead, numValidCompsFromExit is passed as a value-parameter to each pro-
cedure and the program’s execution stack is used in place of NVCstack. The
instrumentation also makes use of two local variables in each procedure:

pathNumOnEntry stores the value of pathNum on entry to a procedure. When an
intraprocedural backedge is traversed in a procedure P , the instrumentation
code increments the count associated with the current observable path and
begins recording a new observable path that has the context-prefix indicated
by the value of pathNumOnEntry.

pathNumBeforeCall stores the value of pathNum before a recursive procedure
call is made. When the recursive procedure call is made, the instrumentation
begins recording a new observable path. When the recursive call returns, the
instrumentation uses the value in pathNumBeforeCall to resume recording
the observable path that was executing before the call was made.

Figs. 5 and 6 show an instrumented version of the code in Fig. 2. Reference [4]
gives a detailed description of the instrumentation used to collect an interpro-
cedural path profile and describes how the intrumentation can be made more
efficient than the code shown in Figs. 5 and 6.

5 Future Work

We are currently in the process of implementing the algorithm described in the
paper, and thus do not yet have performance figures to report. The main reasons
for believing that the technique described (or a variation on it) will prove to be
practical are:

– The Ball-Larus technique for intraprocedural profiling has very low overhead
(31% on the SPEC benchmarks [3]). As discussed in the Introduction, al-
though interprocedural path profiling involves more overhead than the Ball-
Larus technique, the additional overhead should not be prohibitive.

– In the worst case, the number of paths through a program is exponential in
the number of branch statements b, and thus the number of bits required to
represent paths is linear in b. However, as in the Ball-Larus approach, it is
possible to control the explosion in the number of paths by altering G∗

fin to
remove paths from it (and adjusting the instrumentation code accordingly).
There are a variety of techniques that can be applied without having to fall
back on pure intraprocedural profiling [4].

Acknowledgements

This work was supported in part by the NSF under grants CCR-9625667 and
CCR-9619219, by an IBM Partnership Award, by a Vilas Associate Award from
the Univ. of Wisconsin, and by the “Cisco Systems Wisconsin Distinguished
Graduate Fellowship”.

Interprocedural Path Profiling 63

References

1. G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance counters with
flow and context sensitive profiling. In PLDI’97, June 1997. 47

2. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Univ. of Copenhagen, May 1994. (DIKU report 94/19).
52

3. T. Ball and J. Larus. Efficient path profiling. In MICRO 1996, 1996. 47, 55, 62
4. D. Melski and T. Reps. Interprocedural path profiling. Tech. Rep. TR-1382,

Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, September 1998. Available
at “http://www.cs.wisc.edu/wpis/papers/tr1382.ps”. 48, 49, 51, 59, 60, 62

5. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.
59

6. B. Steensgaard. Points-to analysis in almost-linear time. In Symp. on Princ. of
Prog. Lang., pages 32–41, 1996. 52

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

