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Abstract. Current parallelizing compilers cannot identify a significant
fraction of parallelizable loops because they have complex or statically
insufficiently defined access patterns. We advocate a novel framework
for the identification of parallel loops. It speculatively executes a loop
as a doall and applies a fully parallel data dependence test to check
for any unsatisfied data dependencies; if the test fails, then the loop is
re—executed serially. We will present the principles of the design and
implementation of a compiler that employs both run-time and static
techniques to parallelize dynamic applications. Run-time optimizations
always represent a tradeoff between a speculated potential benefit and a
certain (sure) overhead that must be paid. We will introduce techniques
that take advantage of classic compiler methods to reduce the cost of
run-time optimization thus tilting the outcome of speculation in favor of
significant performance gains. Experimental results from the PERFECT,
SPEC and NCSA Benchmark suites show that these techniques yield
speedups not obtainable by any other known method.

1 Run-Time Optimization Is Necessary

To achieve a high level of performance for a particular program on today’s super-
computers, software developers are often forced to tediously hand—code optimiza-
tions tailored to a specific machine. Such hand—coding is difficult, increases the
possibility of error over sequential programming, and the resulting code may not
be portable to other machines. Restructuring, or parallelizing, compilers address
these problems by detecting and exploiting parallelism in sequential programs
written in conventional languages. Although compiler techniques for the auto-
matic detection of parallelism have been studied extensively over the last two
decades, current parallelizing compilers cannot extract a significant fraction of
the available parallelism in a loop if it has a complex and/or statically insuffi-
ciently defined access pattern. Typical examples are complex simulations such
as SPICE [16], DYNA-3D [27], GAUSSIAN [141], CHARMM [1].
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It has become clear that static (compile-time) analysis must be comple-
mented by new methods capable of automatically extracting parallelism at run—
time [6]. Run—time techniques can succeed where static compilation fails because
they have access to the input data. For example, input dependent or dynamic
data distribution, memory accesses guarded by run—time dependent conditions,
and subscript expressions can all be analyzed unambiguously at run—time. In
contrast, at compile-time the access pattern of some programs cannot be deter-
mined, sometimes due to limitations in the current analysis algorithms but often
because the necessary information is just not available, i.e., the access pattern is
a function of the input data. For example, most dependence analysis algorithms
can only deal with subscript expressions that are affine in the loop indices. In the
presence of non—linear expressions, or of subscripted subscripts, compilers gener-
ally conservatively assume data dependences. Although more powerful analysis
techniques could remove this last limitation when the index arrays are computed
using only statically-known values, nothing can be done at compile-time when
the index arrays are a function of the input data [12,25,28].

We will present the principles of the design and implementation of a com-
piling system that employs run-time and classic techniques in tandem to auto-
matically parallelize irregular, dynamic applications. We will show that run-time
optimizations always represent a tradeoff between a speculated potential benefit
and a certain (sure) overhead that must be paid. This work models the com-
peting factors of this optimization technique and outlines a guiding strategy for
increasing performance. We will introduce techniques that take advantage of
classic compiler methods to reduce the cost of run-time optimization thus tilting
the outcome of speculation in favor of significant performance gains. *

The scope of presented work will be initially limited to loop level paralleliza-
tion and optimization of Fortran programs in a shared memory environment
using the SPMD programming paradigm. The run—time techniques described
here are designed to be used in the automatic parallelization of "legacy’ Fortran
applications as well as in explicit parallel coding of new, dynamic codes, where
concurrency is a function of the input data.

2 Run-Time Optimization

Maximizing the performance of an application executing on a specific parallel
system can be derived from three fundamental optimization principles: (i) max-
imizing parallelism while minimizing overhead and redundant computation, (ii)
minimizing wait-time due to load imbalance, and (iii) minimizing wait-time due
to memory latency.

Maximizing the parallelism in a program is probably the most important
factor affecting parallel, scalable performance. It allows full concurrent use of all
the resources of any given architecture without any idle (wait) time. At the limit,

! This paper and the techniques presented in detail here is complimentary to those
recently published in [18].
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full parallelism also allows perfect scalability with the number of processors and
can be efficiently used to improve memory latency and load balancing.

The most effective vehicle for improving multiprocessor performance has been
the restructuring compiler [5,10,19,9]. Compilers have incorporated sophisticated
data dependence analysis techniques(e.g., [3,20]) to detect intrinsic parallelism in
codes and transform them for parallel execution. These techniques usually rely on
a static (compile time) analysis of the memory access pattern (array subscripts
in the case of Fortran programs) and on parallelism enabling transformations like
privatization, reduction parallelization, induction variable substitution, etc. [7].
When static information is insufficient to safely perform an optimizing transfor-
mation the classic compiler emits conservative code. Alternatively it might delay
the decision to execution time, when sufficient information becomes available.
This strategy implies that a certain amount of code analysis has to be performed
during the time which was initially allocated to useful data processing. This shift
of activity will inherently account for a priori performance degradation. Only
when the outcome of the run-time analysis is a safe optimization can we hope
that the overall execution time will decrease. For example, if the parallelization
of a loop depends on the value of a parameter that is statically unavailable the
compiler can generate a two-version loop (one parallel and one sequential) and
code that will test the parameter at run-time and decide which version to ex-
ecute. While this is a very simple case it shows that time will be ’lost’ testing
the parameter and, depending on the outcome, may or may not lead to an op-
timization. Furthermore, even if the loop under question is executed in parallel,
performance gains are not certain. All this implies that run-time optimizations
always represent a tradeoff which needs a guiding strategy; they represent a spec-
ulation about a potential benefit for which a certain (sure) overhead will have
to be paid.

2.1 Principles of Run-Time Optimization

Loop parallelization is the most effective and far reaching optimization for scien-
tific applications. Briefly stated, a loop can be safely executed in parallel if and
only if its later iterations do not use data computed in its earlier iterations, i.e.,
there are no flow dependences. The safety of this and other related transforma-
tions (e.g., privatization, reduction parallelization) is checked at compile time
through data dependence analysis (i.e., analyzing array subscript functions).
When static analysis is not possible the access pattern is analyzed at run-time
through various techniques which we will shortly introduce and analyze.

Inspector/Executor vs. Speculative run-time testing. All run-time op-
timizations in general, and parallelization in particular, consist of at least two
activities: (a) a test of a set of run-time values (e.g., the values taken by array
subscripts) and (b) the execution of one of the compiler generated options (e.g.,
multi-version loops).

If the test phase is performed before the execution of the loop and has no side
effects, i.e., it does not modify the state of the original program (shared) variables
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then this technique is called inspector/executor [1]. Its run-time overhead consists
only of the time to execute the inspection phase.

If the test phase is done at the same time as the execution of the aggressively
optimized loop and, in general, the state of the program is modified during
this process, then the technique is called speculative execution. Its associated
overhead consists at least of the test itself and the saving of the program state
(checkpointing). If the optimization test fails, then extra overhead is paid during
a program ante loop state restoration phase before the conservative version of the
code can be executed. In this scenario the the initial optimized loop execution
time becomes additional overhead too.

Although it might appear that the more ’sedate’ inspector/executor method
is a better overall strategy than the speculative technique, there is in fact a much
more subtle trade-off between the two. An inspector loop represents a segment of
code that must always be executed before any decision can be made and always
adds to the program’s critical path. However, if the test is executed concurrently
with the actual computation (it is always quasi-independent of it — computation
cannot possibly depend on the test) then some of the overhead may not add
additional wall-clock time. The same is true if checkpointing is done ’on-the-fly’,
just before a variable is about to be modified. In other words with respect to
performance alone the two methods are competitive.

A potential negative effect of speculative execution is that the optimization
test’s data structures are used concurrently with those of the original program,
which could increase the working set of the loop and degrade its cache perfor-
mance.

The previous comparison assumes an important principle: any run-time par-
allelization technique must be fully parallel to scale with the number of proces-
sors. For the speculative method this is always implicitly true — we test during
a speculative parallel execution. Inspectors may be executed sequentially or in
parallel — but, with the exception of simple cases, only parallel execution can
lead to scalable performance. Inspector loops cannot always be parallelized. If
there exists a data or control dependence cycle between shared data and its ad-
dress computation then it is not possible to extract an address inspector that
can be safely parallelized and/or that is side effect free. In fact the inspector
would contain most of the original loop, in effect degenerating into a speculative
technique (will need checkpointing) without its benefits.

In summary we conclude that both run-time techniques are generally com-
petitive but that the speculative method is the only generally applicable one.

2.2 Obtaining Performance

Run-time optimization can produce performance gains only if the associated
overhead for its validation is outweighed by the obtained speedup or,

Speedup = SuccessRate x (Optimization_Speedup — Testing_Overhead) > 0

This Speedup function can be maximized by increasing the power of the intended
optimization and decreasing the time it takes to validate it. Because run-time
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optimizations are speculative, their success is not guaranteed and therefore, their
SuccessRate, needs to be maximized.

Performance through Run-time Overhead Reduction. The optimization
representing the focus of this paper is loop parallelization within a SPMD com-
putation. This transformation generally scales with data size and number of
processors and its overall potential for speedup is unquestionable. Its general
profitability (when and where to apply it) has been the topic of previous re-
search and its conclusions remain valid in our context.

Thus, the task at hand is to decrease the second term of our performance
objective function, the testing-overhead. Regardless of the adopted testing strat-
egy (inspector/executor or aggressive speculation) this overhead can be broken
down into (a) the time it takes to extract data dependence information about the
statically un-analyzable access pattern, and (b) the time to perform an analysis
of the collected data dependence information.

The first rule we have adopted is that all run-time processing (access tracing
and analysis) must be performed in parallel — otherwise it may become the
sequential bottleneck of the application. The access pattern tracing will be per-
formed within a parallel region either before the loop in case of the inspector ap-
proach or during the speculative execution of the transformed loop. The amount
of work can be upper bounded by the length of the trace but (see Section 5) can
be further reduced (at times dramatically) through reference aggregation and
elimination of duplicated (redundant) address records. This type of optimiza-
tion can be achieved through the use of static, i.e., compile time information.
Usually, when a compiler cannot prove independence for all referenced variables,
the partial information obtained during static analysis is discarded. In such a
case our run-time compiler phase will retrieve all previously considered useless,
but valid information and complement it with only the really dynamic data. This
tight integration of the run-time technique with the classic compiler methods is
the key to the reduction of tracing overhead.

Another important tool in reducing overhead is the development of static
heuristics for uncovering the algorithms and data structures used in the original
program. For example, pattern matching a reduction can encourage the use of a
run-time reduction validation technique. An inference about the use of structures
may reduce the number of addresses shadowed.

Increasing the Success Rate of Speculation. Collecting the outcome of
every speculation and using this data in the computation of a statistic could
drastically alter the success rate of speculation. The use of meaningful statistics
about the parallelism profile of dynamic programs will require some evidence
that different experiments on one application with different input sets produces
similar results (with respect to parallelism). Feeding back the results of specula-
tive parallelization during the same execution of a code may be, for the moment,
a more practical approach. For example, after failing speculation on loop several
consecutive times a more conservative approach can adopted ’on-the-fly’.

A more difficult but more effective strategy in enhancing both the success
rate of speculation as well as lowering run-time overhead is to find heuristics that
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can ’guess’ the algorithmic approach and/or data structure used by the original
program and drive the speculation in the right direction. A simple example
is reduction recognition: if a statement ’looks’ like a reduction then it can be
verified by generating a speculative test for it — the chances of success are very
high. Making the correct assumption at compile time whether an access pattern
is sparse or dense or whether we use linked lists or arrays (regardless of their
implementation) can go a long way in making run-time optimization profitable
(see Section 5).

3 Foundational Work: Run-Time Parallelization

We have developed several techniques [21,22,23,24] that can detect and exploit
loop level parallelism in various cases encountered in irregular applications: (i)
a speculative method to detect fully parallel loops (The LRPD Test), (ii) an
inspector/executor technique to compute wavefronts (sequences of mutually in-
dependent sets of iterations that can be executed in parallel) and (iii) a technique
for parallelizing while loops (do loops with an unknown number of iterations
and/or containing linked list traversals). We now briefly describe a simplified
version of the speculative LRPD test (complete details can be found in [21,22]).

The LRPD Test. The LRPD test speculatively executes a loop in parallel
and tests subsequently if any data dependences could have occurred. If the test
fails, the loop is re-executed sequentially. To qualify more parallel loops, array
privatization and reduction parallelization can be speculatively applied and their
validity tested after loop termination.? For simplicity, reduction parallelization is
not shown in the example below; it is tested in a similar manner as independence
and privatization. The LRPD test is fully parallel and requires time O(a/p +
log p), where p is the number of processors, and a is the total number of accesses
made to A in the loop.

Consider a do loop for which the compiler cannot statically determine the
access pattern of a shared array A (Fig. 1(a)). We allocate the shadow arrays for
marking the write accesses, A,, and the read accesses, A;, and an array Anp, for
flagging non-privatizable elements. The loop is augmented with code (Fig. 1(b))
that will mark during speculative execution the shadow arrays every time A
is referenced (based on specific rules). The result of the marking can be seen
in Fig. 1(c). The first time an element of A is written during an iteration, the
corresponding element in the write shadow array A, is marked. If, during any
iteration, an element in A is read, but never written, then the corresponding
element in the read shadow array A, is marked. Another shadow array Anp is

2 Privatization creates, for each processor cooperating on the execution of the loop,
private copies of the program variables. A shared variable is privatizable if it is always
written in an iteration before it is read, e.g., many temporary variables. A reduction
variable is a variable used in one operation of the form x = x ® exp, where ® is
an associative and commutative operator and x does not occur in exp or anywhere
else in the loop. There are known transformations for implementing reductions in
parallel [26,15,13].
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used to flag the elements of A that cannot be privatized: an element in Ay is
marked if the corresponding element in A is both read and written, and is read
first, in any iteration.

A post-execution analysis, illustrated in Fig. 1(c), determines whether there
were any cross-iteration dependencies between statements referencing A as fol-
lows. If any(A,(:) A A:(:))? is true, then there is at least one flow- or anti-
dependence that was not removed by privatizing A (some element is read and
written in different iterations). If any(Anp(:)) is true, then A is not privatizable
(some element is read before being written in an iteration). If Atw, the total
number of writes marked during the parallel execution, is not equal to Atm,
the total number of marks computed after the parallel execution, then there is
at least one output dependence (some element is overwritten); however, if A is
privatizable (i.e., if any(Aqp(:)) is false), then these dependencies were removed
by privatizing A.

doi=1,5 . Value
z = A(K(1) . Operation 1 2 3 45
if (B1(i) .eq. .true.) then doi=1,5 )
AL®@) =z+C(@) markread(K(i)) Aw 01010
endif z=A(K(D) Ar 11110
enddo if (B1(i) .eq. .true.) then Anp 1 1110
o markwrite(L(i))
Bl(1:5)=(10101) AL(G)) = 2 + C(i) Aw() AAKG) |0 1 0 10
K(1:5)=(12341) endif Aw(:) Mnp(:)[ 0 1 0 10
L(1:5)=(22442) enddo
Atw 3
() (b) © Atm 2

Fig.1. Do loop (a) transformed for speculative execution, (b) the markwrite and
markread operations update the appropriate shadow arrays, (c¢) shadow arrays after
loop execution. In this example, the test fails.

4 Variations of the LRPD Test

Static compilation can generate a wealth of incomplete information that, by it-
self, is insufficient to decide whether parallelization is safe but can be exploited
to reduce run-time overhead. When we can establish statically that, for example,
all iterations of a loop first read and then write a shared array (but nothing else)
then we can conclude that privatization is not possible, and therefore should not
test for it. This approach of using partial information has led to the develop-
ment of simplified variants of the LRPD test. The overall purpose of the various
specialized forms of the LRPD test presented in this section is (a) to reduce
the overhead of run-time processing to the minimum necessary and sufficient
to achieve safe parallelization (but without becoming conservative), and (b) to
extend the number of access patterns that can be recognized as parallelizable.

3 any returns the “OR” of its vector operand’s elements, i.e., any(v(1 : n)) = (v(1) V

v(2) V...V v(n)).
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We will now enumerate some of the more frequently used variants of the LRPD
test that we have developed and elaborate on those that have not been presented
in our earlier paper [18]. Further refinements and related issues (such as choice
of marking data structures) are discussed in Section 5.

— Processor—wise LRPD test for testing cross-processor instead of cross-
iteration dependences, qualifying more parallel loops with less overhead.

— A test supporting copy-in of external values to allow loops that first read-in
a value to be executed in parallel.

— Early failure detection test to reduce the overhead of failed speculation.

— Early success detection test with on-demand cross-processor analysis.

— A test that can distinguish between fully independent and privatizable ac-
cesses to reduce private storage replication for privatized arrays.

— An Aggregate LRPD test — aggregates individual memory the references in
contiguous intervals or sets of points.

4.1 A Processor—Wise Version of the LRPD Test

The LRPD Test determines whether a loop has any cross—iteration data depen-
dences. It turns out that essentially the same method can be used to test whether
the loop, as executed, has any cross—processor data dependences [2]. The only dif-
ference is that all checks in the test refer to processors rather than to iterations,
i.e., replace “iteration” by “processor” in the description of the LRPD test so
that all iterations assigned to a processor are considered as one “super—iteration”
by the test. It is important to note that a loop that is not fully parallel (it has
cross-iteration dependences) could potentially pass the processor-wise version of
the LRPD test because data dependences among iterations assigned to the same
processor will not be detected. This is desirable (and correct) provided that each
processor executes its assigned iterations in increasing order. The processor—wise
version of the test can therefore parallelize more loops and, at the same time
incur less time and space costs: the shadow structures need to be initialized only
once and can use boolean values (bits) for marking. When last value assignment
is required, i.e., when the last written value needs to be copied out from the pri-
vatized array to the original shared array, the needed last—write timestamps can
be expressed implicitly in the value of the processor identifier if static scheduling
of iterations is used.

4.2 Supporting Copy-In of External Values

Suppose that a loop is determined as fully parallel by the LRPD test except for
the accesses to one element a. If the first time(s) a is accessed it is read, and
for every later iteration that accesses a it is always written before it is read,
then the loop could be executed as a doall by having the initial accesses to
a copy—in the global value of a, and the iterations that wrote a used private
copies of a. In this way a loop with a (read)*(write|read)* access pattern can



Implementation Issues of Loop—Level Run—-Time Parallelization 191

be safely transformed into a doall. The LRPD test can be augmented to de-
tect this situation by keeping track of the maximum iteration i that read a
(before it was ever written), and the minimum iteration i,, that wrote a. Then,
if it <, the loop can be executed in parallel. Two additional private shadow
structures are needed to verify this condition. In the processor—wise LRPD test,
these additional shadow structures are not necessary because the information
is available implicitly if static scheduling is employed. If the iteration space is
assigned to the processors in contiguous chunks, i.e., processor i gets iterations
(n/p) i through (n/p) * (i + 1) — 1, 0 <4 < p, then, we need only check that
the first write to a appears on a processor with an id that is not less than the
last processor id in which a is marked as non-privatizable or read-only.

4.3 Aggregate LRPD Test

The simple, and rather naive way to insert the marking code into a loop is to
simply add a markwrite, markread, markredux macro for every occurrence of
a write and read access to the shadowed array.

There are however many programs that although irregular in general have
a specific ’local’ or partial regularity. These types of access patterns can be
classified in the following manner:

— Arrays in nested loops accessed by an index of the form (ptr, affine_fcn).
The innermost loop index generates points for the affine function, and the
outermost loop for the pointer. Generally the first dimension of the array
is relatively small and is often traversed in an innermost loop or, for very
small loop bounds, completely unrolled. It usually represents the access to
the components of an n-dimensional vector. The bounds of this inner loop
never change throughout the program.

— Multi-dimensional access patterns described by complex but statically de-
termined functions, but where one more of the inner dimensions are simple
functions.

A commonality in these cases is the fact that they all perform portion-wise
contiguous accesses. The length of this regular interval can be either fixed (vec-
tors with n-components, structures) or of variable length (e.g., in sparse matrix
solvers). This characteristic can be exploited by marking contiguous intervals
rather than every element accessed. Depending on the actual length of the inter-
vals this technique can lead to major performance improvements. In the case of
fixed-size intervals the information is kept implicitly (not stored in the shadow
structures themselves) and the analysis phase needs only minor adjustment to
the generic LRPD test. When intervals are variable in size within the context of
the tested loop, their length will be kept explicitly and the shadow structures
adapted accordingly into shadow interval structures (e.g., interval trees). The
analysis phase will change to a more complex algorithm to reflect the parallel
merge of complex data structures. While the asymptotic complexity increases
the problem size can decrease dramatically (depending on the average length of
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intervals). We detect of these types of semi-irregular access patterns by using
recently developed array region analysis techniques [17].

5 Implementation Issues

Merging the Phases of LRPD Test

In Section 3 we have presented the LRPD test as a sequence of phases: initial-
ization, checkpointing, speculative execution, analysis and possible sequential
re-execution. Every phase adds its contribution to the critical path of the pro-
gram and may negatively affect the state of the caches. Some of the steps of
a speculative execution can be merged, i.e., they can be executed concurrently.
The major advantage of merging the various steps is that without increasing the
working set, they add fine grain parallelism and thus may hide communication
latencies.

Through on-demand copy-in we can copy-in values that are read from the
original shared array and write them into their private counterparts by taking
advantage of the shadow information. (If an element has not been written before,
then read from the original array, else read from the private array; always write
to the private array) On-demand checkpointing allows us to copy ’on-the-
fly’, to a private storage area, only the memory elments modified by the loop
instead of saving entire data structures (e.g., arrays), a significant saving in
the case of sparse access patterns. Cross-processor last value assignment,
merge-out and reduction, when necessary, can be done concurrently after
a successful speculation. For example, the shadow structures give the needed
information on the processors contributing to the reductions (those that have
their elements marked as reductions) to schedule the update of the shared arrays
without contention.

Choosing Shadow Structures

The choice of shadow structures is dictated by the characteristics of the access
pattern and the data structures used (implicitly or explicitly) of the original pro-
gram. From our experience we have seen arrays used as arrays, C-like structures,
linked lists, etc. The access pattern can be regular dense, regular sparse (fixed
strides), or irregular sparse. Heuristics (omitted here for brevity but explained in
final version of the paper) are used to guess the character of the access pattern.
In the following, we will give a few examples of how these choices are made in
our implementation.

Sparse/Dense access pattern can be inferred from the ratio between array
dimension and number of references (distinct references if known). If the ratio is
much larger than unity, then we can conclude that we have a sparse access. For
the dense case we choose shadow arrays where the Write / Read / NotPrivate /
NotReduction tags are represented by a maximum of 4 bits for the processor-
wise test. For the sparse case we choose hash-table shadow structures or other
specialized data structures.
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Irregular/regular access pattern. Use of pointers (subscripted subscripts) is
an indication of irregular accesses. If it is also sparse, then hash tables can be
useful.

Portion-wise contiguous regular accesses. If intervals are fixed size, then
regular arrays are chosen. Alternatively, when intervals are loop variant, interval
trees are a better choice.

Repetitive Program Behavior

Schedule reuse, inspector decoupling. If the speculatively executed loop
is re-executed during the program with the same data access pattern, then the
results of the first LRPD test can be reused (this is an instance of schedule
reuse [25]). If the defining parameters of an inspector loop are available well be-
fore the loop will be executed, then the test code can be executed early, perhaps
during a portion of the program that does not have enough (or any) parallelism,
possibly hiding the run-time testing overhead completely.

Use of statistics. One of the most effective ways to reduce the cost of failed
parallelization attempts is to 'guess’ correctly when a loop might be parallel. A
powerful heuristic could be using statistics collected during past instantiations of
the loop. Simply put, if the loop has been found to be parallel in the past, then
there is a good chance that it will be parallel in the future. Such techniques have
been extensively used in predicting paging behavior, cache misses and branch
outcome. Unfortunately there is no experimental evidence that statistics about
loop data dependence structure are significant.

5.1 The Run-Time Pass in Polaris

Based on the previously presented techniques, we have implemented a first ver-
sion of run-time parallelization in the Polaris compiler infrastructure [8] that is
loosely based on the experimental work described in [22] and [ 1]. Due to space
limitations we only give a very general overview of this 'run-time pass’.

Currently, candidate loops for run-time parallelization are marked by a spe-
cial directive in the Fortran source code. Alternatively, all loops that Polaris
leaves sequential are run-time parallelized. As a statistical model of loop paral-
lelism in irregular applications will be developed we will be able to automatically
select the candidates which have the highest possibility of success.

The bulk of the run-time pass is placed after all other static analysis has
been completed and just before the post-pass (code generation). It can therefore
use all the information uncovered by the existing Polaris analysis. In this pass
the compiler proceeds as follows:

1. From all candidate loops, all those containing I/O statements, premature
exits and while loops will be removed (these last two limitation will be soon
relaxed).

2. For every loop we filter from the list of all their variables found independent
or privatizable by previous Polaris analysis. The remainder will be run-time
tested.



194

Devang Patel and Lawrence Rauchwerger

3. The selection of the appropriate LRPD test variant will be made based on a
heuristic. If a reduction has been pattern matched then we apply reduction
test. If it cannot be proven that a memory element is read before it is written

the we test for privatization.

All references to variables under test will be instrumented with a call to
the marking (shadowing) routines. These subroutines have been developed
in a separate parallel Fortran library. A significant effort is made to remove
redundant shadowing. For instance, any reference with the same subscript
may have its shadow removed if its dominator has already been instrumented.
Finally, the code is generated by cloning the loop into a speculative parallel
version (with shadowing instrumentation) and a serial loop. Calls for memory
allocation, initialization, checkpointing and analysis are inserted.
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6 Experimental Results of Run-Time Test in Polaris

We will now present experimental results obtained on several important loops
from three applications that Polaris could not parallelize, namely, TFFT2,
P3M and TRACK. After inserting run-time test directives before the loop,
the codes have been automatically transformed by the compiler and executed
in dedicated mode on an SGI Power Challenge with R10K processors at NCSA,
University of Illinois. All test variant selections and other optimizations are au-
tomatic and no special, application specific compiler switches have been used.
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Fig. 4. Loop P3M_PP_DO_100: (a) Timing of test phases, (b) Speedup

TFFT2, a SPEC code has a fairly simple structure and all access patterns are
statically defined, i.e., they are not dynamic or input dependent. Nevertheless,
difficulties in its analysis arise due to (1) five levels of subroutine calls within
a loop, (2) array reshaping between subroutine calls , (3) exponential relations
between inner and outer loop bounds, and (4) array index offsets that depend
on outer loop index. We have transformed all important loops of this program
for speculative execution.

The speedups shown in Figure 3 reflect the application of the speculative
LRPD test to the five most important loops of the program: CFFTZ_DO#1,
CFFTZ_DO#2, CFFTZ.DO_#3, RCFFTZ.DO_110, CRFFTZ_.DO.100. While
speedups are generally good Loop CFFTZ_DO_#2 performs poorly because we
allocated a shadow array four times larger than the actual access region (al-
location based on dimension rather than access region) and because the loop
itself is relatively small. The overall speedup of the TFFT2 program is 2.2 on 8
Processors.

From the P3M, NCSA benchmark, a N-body simulation we have considered
the triply nested loop in subroutine pp which takes about 50% of the actual
sequential execution time. For better load balancing we have coalesced the loop
nest and then applied speculative parallelization to several arrays that could
not be proven privatizable by Polaris. For the best result we have employed
the processor-wise privatization test (with dynamic scheduling) with shadow
arrays and early success detection. No checkpointing was necessary because all
arrays are privatized and the final reduction is performed on private arrays that
are merged after loop execution. Figure 4 shows good speedup and scalability.
The obtained speedup is significantly less than the manually parallelized version
because the initialization phase, though short, has a cache flushing effect, thus
causing the speculative loop to slow down; misses are experienced on all read-
only arrays.

TRACK, a PERFECT code that simulates missile tracking, is one of the more
interesting programs we have encountered. The tested loop, NLFILT_DO_300, has
cross-iteration dependences in some of its instantiations and their frequency is
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input dependent. For the data set presented in Figure 2 the loop fails the cross-
iteration dependence once in its 60 instantiations. However, the processor-wise
test ’hides’ the dependences and passes every time. The checkpointing overhead
is quite important when array sizes are large with respect to the actual work
that the loops performs. We believe that an improved on-demand checkpointing
scheme will reduce this overhead. Note: The hand-parallel speedup in Figure 2
is in fact an ideal speedup because the loop cannot be manually parallelized
(because its parallelism is input dependent). The value shown is still correct
because the hand-parallel version has been statically scheduled and there are no
cross-processor dependences.

7 Conclusion

While the general LRPD algorithm has been extensively presented in [24] and
briefly shown here for clarity of the presentation, this paper emphasizes the
practical aspects of its application and integration in a compiler. In essence we
advocate a very tight connection between static information obtained through
classical compiler methods and the run-time system. This resulting optimized
code will make use of all available static information and test only the necessary
and sufficient conditions for safe parallelization. This interplay between compiler
and run-time system results in testing methods that are tailored to a particular
application (within limits) and that perform better.

A major source of optimization in speculative parallelization is the use of
heuristics for inferring the data structure and access pattern characteristics of
the program. Once a hypothesis is made, it can be tested at run-time much
faster than a general method. For example, guessing the use of linked list or a
structure and testing accordingly can improve performance dramatically.

Reducing run-time overhead may also require the speculative application of
known code transformations, e.g., loop distribution, forward substitution. Their
validity will be checked simultaneously with the previously presented run-time
data dependence test, without incurring any additional overhead.
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