
A Comparison of Compiler Tiling Algorithms

Gabriel Rivera and Chau-Wen Tseng

Department of Computer Science, University of Maryland
College Park, MD 20742

Abstract. Linear algebra codes contain data locality which can be ex-
ploited by tiling multiple loop nests. Several approaches to tiling have
been suggested for avoiding conflict misses in low associativity caches. We
propose a new technique based on intra-variable padding and compare
its performance with existing techniques. Results show padding improves
performance of matrix multiply by over 100% in some cases over a range
of matrix sizes. Comparing the efficacy of different tiling algorithms, we
discover rectangular tiles are slightly more efficient than square tiles.
Overall, tiling improves performance from 0-250%. Copying tiles at run
time proves to be quite effective.

1 Introduction

With processor speeds increasing faster than memory speeds, memory access
latencies are becoming the key bottleneck for modern microprocessors. As a
result, effectively exploiting data locality by keeping data in cache is vital for
achieving good performance. Linear algebra codes, in particular, contain large
amounts of reuse which may be exploited through tiling (also known as blocking).
Tiling combines strip-mining and loop permutation to create small tiles of loop
iterations which may be executed together to exploit data locality [4,11,26].
Figure 1 illustrates a tiled version of matrix multiplication of NxN arrays.

do KK=1,N,W // W = tile width
do II=1,N,H // H = tile height
do J=1,N

do K=KK,min(KK+W-1,N)
do I=II,min(II+H-1,N)
C(I,J) = C(I,J) + A(I,K) * B(K,J)

Fig. 1. Tiled matrix multiplication

Due to hardware constraints, caches have limited set associativity, where
memory addresses can only be mapped to one of k locations in a k-way asso-
ciative cache. Conflict misses may occur when too many data items map to the

S. Jähnichen (Ed.): CC’99, LNCS 1575, pp. 168–183, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Comparison of Compiler Tiling Algorithms 169

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

After paddingOriginal

CACHE CACHE

Fig. 2. Example of conflict misses and padding

same set of cache locations, causing cache lines to be flushed from cache be-
fore they may be reused, despite sufficient capacity in the overall cache. Conflict
misses have been shown to severely degrade the performance of tiled codes [13].
Figure 2 illustrates how the columns of a tile may overlap on the cache, prevent-
ing reuse. A number of compilation techniques have been developed to avoid
conflict misses [6,13,23], either by carefully choosing tile sizes or by copying tiles
to contiguous memory at run time. However, it is unclear which is the best
approach for modern microprocessors.

We previously presented intra-variable padding, a compiler optimization for
eliminating conflict misses by changing the size of array dimensions [20]. Unlike
standard compiler transformations which restructure the computation performed
by the program, padding modifies the program’s data layout. We found intra-
variable padding to be effective in eliminating conflict misses in a number of
scientific computations. In this paper, we demonstrate intra-variable padding
can also be useful for eliminating conflicts in tiled codes. For example, in Figure 2
padding the array column can change mappings to cache so that columns are
better spaced on the cache, eliminating conflict misses.

Our contributions include:

– introducing padding to assist tiling
– new algorithm for calculating non-conflicting tile dimensions
– experimental comparisons based on matrix multiply and LU decomposition

We begin by reviewing previous algorithms for tiling, then discuss enhance-
ments including padding. We provide experimental results and conclude with
related work.

170 Gabriel Rivera and Chau-Wen Tseng

2 Background

We focus on copying tiles at run-time and carefully selecting tile sizes, two strate-
gies studied previously for avoiding conflict misses in tiled codes. In remaining
sections, we refer to the cache size as Cs, the cache line size as Ls, and the
column size of an array as Cols. The dimensions of a tile are represented by H
for height and W for width. All values are in units of the array element size.

2.1 Tile Size Selection

One method for avoiding conflict misses in tiled codes is to carefully select a
tile size for the given array and cache size. A number of algorithms have been
proposed.

– Lam, Rothberg, and Wolf [13] pick the largest non-conflicting square tile
using an O(

√
Cs) algorithm for selecting tile size.

– Esseghir [7] picks a rectangular tile containing the largest number of non-
conflicting array columns. I.e., H = Cols and W = �Cs/Cols�.

– Coleman and McKinley [6] compute rectangular non-conflicting tiles and
select one using their cost model. They applied the Euclidean GCD algorithm
to generate possible tile heights, where:

Hnext = Hprev mod H (1)

using Cs and Cols as the initial heights. A complicated formula is presented
for calculating non-conflicting tile widths, based on the gap between tile
starting addresses and number of tile columns which can fit in that gap.

– Wolf, Maydan, and Chen [24] choose a square tile which uses a small frac-
tion of the cache (5–15%) in order to avoid excessive conflicts. For instance,
the tile H = W = �√0.10Cs� uses 10% of the cache. The particular frac-
tion of the cache utilized is chosen based on cache characteristics such as
associativity and line size.

2.2 Copying

An alternative method for avoiding conflict misses is to copy tiles to a buffer
and modify code to use data directly from the buffer [13,23]. Since data in the
buffer is contiguous, self-interference is eliminated. However, performance is lost
because tiles must be copied at run time. Overhead is low if tiles only need to
be copied once, higher otherwise.

Figure 3 shows how copying may be introduced into tiled matrix multiply.
First, each tile of A(I,K) may be copied into a buffer BUF. Because tiles are
invariant with respect to the J loop, they only need to be copied once outside
the J loop.

It is also possible to copy other array sections to buffers. If buffers are ad-
jacent, then cross-interference misses are also avoided. For instance, in Figure 3

A Comparison of Compiler Tiling Algorithms 171

do KK=1,N,W
do II=1,N,H
copy(A(...),BUF) // copy A(I,K)
do J=1,N

copy(C(...),BUF2) // copy C(I,J)
do K=KK,min(KK+W-1,N)
do I=II,min(II+H-1,N)
BUF2(...) = BUF2(...) + BUF(...) * B(K,J)

copy(BUF2,C(...)) // copy back C(I,J)

Fig. 3. Tiled matrix multiplication with copying

the column accessed by array C(I,J) in the innermost loop is copied to BUF2 to
eliminate interference between arrays C and A. Since the location of the column
varies with the J loop, we must copy it on each iteration of the J loop, causing
data in C to be copied multiple times [23]. In addition, the data in the buffer
must be written back to C since the copied region is both read and written to.
Whether copying more array sections is profitable depends on the frequency and
expense of cross-interference.

3 Tiling Improvements

We present two main improvements to existing tiling algorithms. First, we derive
a more accurate method for calculating non-conflicting tile dimensions. Second,
we integrate intra-variable padding with tiling to handle pathological array sizes.

3.1 Non-conflicting Tile Dimensions

We choose non-conflicting tile heights using the Euclidean GCD algorithm from
Coleman and McKinley [6]. However, we compute tile widths using a simple
recurrence. The recurrences for both height and width may be computed simul-
taneously using the recursive function ComputeTileSizes in Figure 4. The initial
invocation is ComputeTileSizes (Cs, Cols, 0, 1).

ComputeTileSizes (H,Hnext, Wprev, W)
H ′ = H − Ls + 1 /* shrink height for long cache lines */
/* consider tile with dimensions (H ′, W) */
if (Hnext ≥ Ls) then

ComputeTileSizes (Hnext, H mod Hnext, W, �H/Hnext�W + Wprev)
endif

Fig. 4. Recursive function for computing nonconflicting tile sizes

172 Gabriel Rivera and Chau-Wen Tseng

Table 1. H and W at invocation i given Cs = 2048, Cols = 300

i 1 2 3 4 5 6 7

H 2048 300 248 52 40 12 4
W 1 6 7 34 41 157 512

At each invocation of ComputeTileSizes, a new tile size, determined by tile
height H and width W , is guaranteed not to conflict when Ls = 1. (The proof
supporting this result is too long to appear in this paper.) To account for longer
cache lines, an adjusted tile height H ′ = H − Ls + 1 is used in place of H . By
subtracting most of the cache line size Ls from the tile height H , we slightly
under-utilize the cache but guarantee no conflicts will occur. To choose between
the different non-conflicting tile dimensions, we select the tile (H, W) minimizing
1
H + 1

W . This cost function favors square tiles over rectangular tiles with the same
area; it is similar to that used by Coleman and McKinley [6].

Table 1 illustrates the sequence of H and W values computed by Com-
puteTileSizes at each invocation when Cs = 2048 and Cols = 300. An important
result is that each of the computed tile sizes are maximal in the sense that neither
their heights nor widths may be increased without causing conflicts. Moreover,
ComputeTileSizes computes all maximal tile sizes. Note that at invocation 1,
(H, W) is not a legal tile size since H = 2048 exceeds Cols. In general, this
can occur only at the first invocation, and a simple comparison with Cols will
prevent consideration of such tile sizes. The formula used by ComputeTileSizes
for finding non-conflicting tile widths is simpler than that of the Coleman and
McKinley algorithm. In addition, it avoids occasionally incorrect W values that
result from their algorithm.

3.2 Padding

Our second improvement is to incorporate intra-variable padding with tiling.
Previously we found memory access patterns common in linear algebra com-
putations may lead to frequent conflict misses for certain pathological column
sizes, particularly when we need to keep two columns in cache or prevent self-
interference in rows [20]. Bailey [2] first noticed this effect and defined stride
efficiency as a measure of how well strided accesses (e.g., row accesses) avoid
conflicts. Empirically, we determined that these conflicts can be avoided through
a small amount of intra-variable padding. In tiled codes a related problem arises,
since we need to keep multiple tile columns/rows in cache.

Table 2. H and W at invocation i given Cs = 2048, Cols = 768

i 1 2 3 4

H 2048 768 512 256
W 1 2 3 8

A Comparison of Compiler Tiling Algorithms 173

When ComputeTileSizes obtains tile sizes for pathological column sizes,
though the resulting tile sizes are nonconflicting, overly “skinny” or “fat” (non-
square) tiles result, which decrease the effectiveness of tiling. For example, if
Cols = 768 and Cs = 2048, ComputeTileSizes finds only the tile sizes shown
in Table 2. The tile closest to a square is still much taller than it is wide. For
this Cols, any tile wider than 8 will cause conflicts. This situation is illustrated
Figure 2, in which the column size for the array on the left would result in in-
terference with a tile as tall as shown. On the right we see how padding enables
using better tile sizes. Our padding extension is thus to consider pads of 0–8 el-
ements, generating tile sizes by running ComputeTileSizes once for each padded
column size. The column size with the best tile according to the cost model is
selected. By substituting different cost models and tile size selection algorithms,
we may also combine this padding method with the algorithms used by Lam,
Rothberg, Wolf and Coleman and McKinley.

Padding may even be applied in cases where changing column sizes is not
possible. For example, arrays passed to subroutines cannot be padded without
interprocedural analysis, since it is not known whether such arrays require pre-
serving their storage order. In many linear algebra codes the cost of pre-copying
to padded arrays is often small compared to the cost of the actual computa-
tion. For instance, initially copying all of A to a padded array before executing
the loop in Figure 1 adds only O(N2) operations to an O(N3) computation. We
may therefore combine padding with tile size selection by either directly padding
columns or by pre-copying.

Table 3. Tiling Heuristics

Program version Description

orig No tiling
ess Largest number of non-conflicting columns (Esseghir)
lrw Largest non-conflicting square (Lam, Rothberg, Wolf)
tss Maximal non-conflicting rectangle (Coleman, McKinley)
euc Maximal (accurate) non-conflicting rectangle (Rivera, Tseng)

wmc10 Square tile using 10% of cache (Wolf, Maydan, Chen)
lrwPad lrw with padding
tssPad tss with padding
eucPad euc with padding

eucPrePad euc with pre-copying to padded array
copyTile Tiles of array A copied to contiguous buffer

copyTileCol Tiles of array A and column of C copied to contiguous buffer

174 Gabriel Rivera and Chau-Wen Tseng

10

15

20

25

30

35

10
0

11
3

12
6

13
9

15
2

16
5

17
8

19
1

20
4

21
7

23
0

24
3

25
6

26
9

28
2

29
5

30
8

32
1

33
4

34
7

36
0

37
3

38
6

39
9

Matrix Size

M
F

lo
ps

(U
lt

ra
sp

ar
c1

)

5

15

25

35

45

55

10
0

11
3

12
6

13
9

15
2

16
5

17
8

19
1

20
4

21
7

23
0

24
3

25
6

26
9

28
2

29
5

30
8

32
1

33
4

34
7

36
0

37
3

38
6

39
9

Matrix Size

M
F

lo
ps

(A
lp

ha
)

ess euc lrw orig tss wmc10

Fig. 5. Matrix multiplication: MFlops of tiling heuristics

4 Experimental Evaluation

4.1 Evaluation Framework

To compare tiling heuristics we varied the matrix sizes for matrix multiplication
(mult) from 100 to 400 and applied the heuristics described in Table 3. For each
heuristic, performance on a Sun UltraSparc I and a DEC Alpha 21064 were mea-
sured. Both processors use a 16k direct-mapped Level 1 (L1) cache. In addition,
several heuristics were applied to varying problem sizes of LU decomposition
(lu). We also computed the percent cache utilization for several heuristics.

4.2 Performance of mult

Tile Size Selection. We first consider heuristics which do not perform copy-
ing or padding. Ultra and Alpha megaflop rates of mult for these heuristics
are graphed in Figure 5. The X-axis represents matrix size and the Y-axis gives
Mflops. In the top graph we see that tiled versions usually outperform orig ver-
sions by 4 or more Mflops on the Ultra, improving performance by at least 20%.
We find that for sizes beginning around 200, ess and wmc10, the heuristics
which do not attempt maximality of tile dimensions, obtain a lesser order im-
provement than euc, lrw, and tss, usually by a margin of at least 2 Mflops.
Performance of the latter three heuristics appears quite similar, except at the

A Comparison of Compiler Tiling Algorithms 175

-60%

-40%

-20%

0%

20%

40%

60%

80%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

%
M

F
lo

p
Im

pr
ov

(U
lt

ra
sp

ar
c1

)

-100%
-50%

0%
50%

100%
150%
200%
250%
300%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
M

F
lo

p
Im

pr
ov

(A
lp

ha
)

euc lrw tss

Fig. 6. Matrix multiplication: MFlop improvements of tiling heuristics

clusters of matrix sizes in which performance of all heuristics drops sharply. In
these cases we see euc does not do nearly as bad, and that tss drops the most.
The lower graph gives the same data with respect to the Alpha. Behavior is
similar, though variation in performance for individual heuristic increases, and
ess is a competitive heuristic until matrix sizes exceed 250.

These results illuminate the limitations of several heuristics. Lower ess per-
formance indicates a cost model should determine tile heights instead of the ar-
ray column size, as using the column size results in overly “skinny” tiles. Lower
wmc10 performance underscores the need to better utilize the cache. tss would
benefit from accuracy in computing tile widths. A prominent feature of both
graphs is the gradual dip in performance of orig and ess beginning at 256. This
occurs as matrix sizes exceed the Level 2 (L2) cache, indicating ess is also less
effective in keeping data in the L2 cache than other heuristics.

The top graph in Figure 6 focuses on euc, lrw, and tss, giving percent Mflops
improvements on the Ultra compared to orig. While all heuristics usually im-
prove performance by about 25%–70%, we again observe clusters of matrix sizes
in which performance drops sharply, occasionally resulting in degradations (neg-
ative improvement). euc does best in these cases, while lrw and especially tss
do considerably worse. The lower graph shows results are similar on the Alpha,
but the sudden drops in performance tend to be greater. Also, performance im-

176 Gabriel Rivera and Chau-Wen Tseng

0%
10%
20%
30%
40%
50%
60%
70%
80%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0%

M
F

lo
p

Im
pr

ov
(U

lt
rs

pa
rc

1)

-50%

0%

50%

100%

150%

200%

250%

300%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
M

F
lo

p
Im

pr
ov

(A
lp

ha
)

euc eucPad eucPrePad

Fig. 7. Matrix multiplication: MFlop improvements of tiling w/ padding

provements are much larger beyond 256, indicating L2 cache misses are more
costly on the Alpha.

Averaging over all problem sizes, euc, lrw, and tss improve performance
on the Ultra by 42.1%, 38.0%, and 38.5%, respectively, and by 92.3%, 76.6%,
and 76.4% on the Alpha. The advantage of euc over lrw indicates that using
only square tiles is an unfavorable restriction. For instance, at problem size 256,
where euc selects a 256x8 tile, lrw selects an 8x8 tile, at the expense of over 40%
of performance on both architectures. Though euc handles such problem sizes
better than lrw, performance still degrades for euc since the only tile sizes
possible at this column size are too “skinny”. Thus, pathological problem sizes
adversely affect all three heuristics dramatically.

Padding. To avoid pathological problem sizes which hurt performance, we com-
bine padding with tile size selection. Figure 7 compares euc with eucPad and
eucPrePad. In both graphs, eucPad and eucPrePad improvements demon-
strate that padding is successful in avoiding these cases. Moreover, the cost
of pre-copying is acceptably small, with eucPrePad attaining improvements
of 43.3% on the Ultra whereas eucPad improves performance by 45.5%. On the
Alpha, eucPrePad averages 98.5% whereas eucPad averages 104.2%. Since
pre-copying requires only O(N2) instructions, the overhead becomes even less

A Comparison of Compiler Tiling Algorithms 177

0%
10%
20%
30%
40%
50%
60%
70%
80%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0%

M
F

lo
p

Im
pr

ov
(U

lt
ra

sp
ar

cI
)

0%

50%

100%

150%

200%

250%

300%

350%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
M

F
lo

p
Im

pr
ov

(A
lp

ha
)

copyTile copyTileCol eucPad

Fig. 8. Matrix multiplication: MFlop improvements of copying heuristics

significant for problem sizes larger than 400. Improvements for lrwPad and
tssPad, which do not appear in Figure 7, resemble those of eucPad. Both
are slightly less effective, however. On average, lrwPad and tssPad improve
performance on the Ultra by 44.3% and 43.8% respectively.

Copying Tiles. An alternative to padding is to copy tiles to a contiguous buffer.
Figure 8 compares improvements from copyTile and copyTileCol with those
of eucPad, the most effective noncopying heuristic. On the Ultra, copyTile
is as stable as eucPad, and overall does slightly better, attaining an average
improvement of 46.6%. Though copyTileCol is just as stable, overhead results
in improvements consistently worse than both eucPad and copyTile, and the
average improvement is only 38.1%. We find a different outcome on the Alpha,
on which both copyTile and copyTileCol are superior to eucPad. This is
especially true for larger matrix sizes, where copying overhead is less significant.

Summary. From the above results, we observe that tile size selection heuristics
which compute maximal square or rectangular non-conflicting tiles are most
effective. Also, padding can enable these heuristics to avoid pathological cases in
which substantial performance drops are unavoidable. Moreover, we find copying
tiles to be advantageous in mult.

178 Gabriel Rivera and Chau-Wen Tseng

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

%
M

F
lo

p
Im

pr
ov

(U
lt

ra
sp

ar
cI

)

-100%

-50%

0%

50%

100%

150%

200%

250%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
M

F
lo

p
Im

pr
ov

(A
lp

ha
)

euc lrw

Fig. 9. LU Decomposition: MFlop improvements of tiling heuristics

4.3 Performance of lu

Tile Size Selection. We also compare padding heuristics euc and lrw on lu.
Figure 9 gives percent Mflops improvements for euc and lrw. As with mult, on
both the Ultra and the Alpha, large drops in performance occur at certain clus-
ters of matrix sizes, and euc is again more effective in these cases. However, tiling
overhead has a greater impact, leading to frequent degradations in performance
until tiling improves both L1 and L2 cache performance at 256. As a result,
overall improvements on the Ultra for euc and lrw are only 17.8% and 11.4%,
respectively. On the Alpha, overall performance, even worse for matrix sizes less
than 256, is 53.8% and 31.6% for euc and lrw.

Padding. We see again that padding helps to stabilize performance in Fig-
ure 10. In the top graph, eucPad and eucPrePad consistently improve Ultra
Mflop rates, achieving overall improvements of 19.7% and 15.5% respectively. An
interesting feature of this graph are the three spikes in performance of eucPad
and eucPrePad at 128, 256, and 384. These correspond to column sizes con-
taining a large power-of-2 factor, leading to ping-pong conflict misses between
references to unpadded arrays [20]. Thus, a side effect of padding to prevent tile
self-interference is the elimination of ping-pong cross-interference misses in some
cases. The lower graph shows that padding stabilizes performance improvements

A Comparison of Compiler Tiling Algorithms 179

-20%

-10%

0%

10%

20%

30%

40%

50%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0%

M
F

lo
p

Im
pr

ov
(U

lt
ra

sp
ar

cI
)

-100%

-50%

0%

50%

100%

150%

200%

250%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
M

F
lo

p
Im

pr
ov

(A
lp

ha
)

euc eucPad eucPrePad

Fig. 10. LU Decomposition: MFlop improvements of tiling w/ padding

on the Alpha as well, but large performance increases do not begin until 256.
Average improvements for eucPad and eucPrePad are 58.5% and 49.8% re-
spectively.

4.4 Cache Utilization

Finally, cache utilization, computed as HW/Cs, appears in Figure 11 for four
heuristics. The top graph give cache utilization for euc and lrw. Here, the X-
axis again gives problem size while the Y-axis gives percent utilization for a
16k cache. We see that for lrw, which chooses only square tiles, utilization
varies dramatically for different matrix sizes. Low cache utilization for lrw occurs
when the largest nonconflicting square tile is very small. For matrix size 256, for
instance, lrw computes an 8x8 tile. Utilization for euc is comparatively high,
since it may choose rectangular tiles. The lower graph gives cache utilization
for eucPad and lrwPad. Utilization for lrwPad is much higher overall than
for lrw since padding is used to avoid small tiles. Often we see utilization by
both lrwPad and eucPad remain level for small intervals of problem sizes.
This occurs when an especially favorable tile is available at a particular column
size N . In these cases, lrwPad and eucPad will perform the padding necessary
to attain that tile in several of the problem sizes leading up to N .

180 Gabriel Rivera and Chau-Wen Tseng

0%

20%

40%

60%

80%

100%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

%
C

ac
he

U
ti

liz
at

io
n

(1
6k

)

euc lrw

0%

20%

40%

60%

80%

100%

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Matrix Size

%
C

ac
he

U
ti

li
za

ti
on

(1
6k

)

eucPad lrwPad

Fig. 11. Matrix multiplication: Cache utilization of tiling heuristics

5 Related Work

Data locality has been recognized as a significant performance issue for both
scalar and parallel architectures. A number of researchers have investigated tiling
as a means of exploiting reuse. Lam, Rothberg, Wolf show conflict misses can
severely degrade the performance of tiling [13]. Wolf and Lam analyze tempo-
ral and spatial reuse, and apply tiling when necessary to capture outer loop
reuse [25], Coleman and McKinley select rectangular non-conflicting tile sizes [6]
while others focus on using a portion of cache [24]. Temam et al. analyze the pro-
gram to determine whether a tile should be copied to a contiguous buffer. Mitchel
et al. study interactions between tiling for multiple objectives at once [16].

In addition to tiling, researchers working on locality optimizations have con-
sidered both computation-reordering transformations such as loop permuta-
tion [9,17,25] and loop fission/fusion [15,17]. Scalar replacement replaces array
references with scalars, reducing the number of memory references if the com-
piler later puts the scalar in a register [3]. Many cache models have been designed
for estimating cache misses to help guide data locality optimizations [8,9,17,25].
Earlier models assumed fully-associative caches, but more recent techniques take
limited associativity into account [10,22].

Researchers began reexamining conflict misses after a study showed conflict
misses can cause half of all cache misses and most intra-nest misses in scientific
codes [18]. Data-layout transformations such as array transpose and padding

A Comparison of Compiler Tiling Algorithms 181

have been shown to reduce conflict misses in the SPEC benchmarks when ap-
plied by hand [14]. Array transpose applied with loop permutation can improve
parallelism and locality [5,12,19]. Array padding can also help eliminate conflict
misses [1,20,21] when performed carefully.

6 Conclusions

The goal of compiler optimizations for data locality is to enable users to gain
good performance without having to become experts in computer architecture.
Tiling is a transformation which can be very powerful, but requires fairly good
knowledge of the caches present in today’s advanced microprocessors. In this
paper, we have examined and improved a number of tiling heuristics. We show
non-conflicting tile widths can be calculated using a simple recurrence, then
demonstrate intra-variable padding can avoid problem spots in tiling. Exper-
imental results on two architectures indicate large performance improvements
are possible using compiler heuristics. By improving compiler techniques for au-
tomatic tiling, we allow users to obtain good performance without considering
machine details. Scientists and engineers will benefit because it will be easier for
them to take advantage of high performance computing.

References

1. D. Bacon, J.-H. Chow, D.-C. Ju, K. Muthukumar, and V. Sarkar. A compiler
framework for restructuring data declarations to enhance cache and TLB effective-
ness. In Proceedings of CASCON’94, Toronto, Canada, October 1994. 181

2. D. Bailey. Unfavorable strides in cache memory systems. Technical Report RNR-
92-015, NASA Ames Research Center, May 1992. 172

3. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted
variables. In Proceedings of the SIGPLAN ’90 Conference on Programming Lan-
guage Design and Implementation, White Plains, NY, June 1990. 180

4. S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Pro-
ceedings of Supercomputing ’92, Minneapolis, MN, November 1992. 168

5. M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared-memory machines. In Proceedings of the SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, La Jolla, CA, June 1995. 181

6. S. Coleman and K. S. McKinley. Tile size selection using cache organization and
data layout. In Proceedings of the SIGPLAN ’95 Conference on Programming
Language Design and Implementation, La Jolla, CA, June 1995. 169, 170, 171,
172, 180

7. K. Esseghir. Improving data locality for caches. Master’s thesis, Dept. of Computer
Science, Rice University, September 1993. 170

8. J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache ef-
fectiveness. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing, Fourth International Workshop,
Santa Clara, CA, August 1991. Springer-Verlag. 180

9. D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformation. Journal of Parallel and Distributed
Computing, 5(5):587–616, October 1988. 180

182 Gabriel Rivera and Chau-Wen Tseng

10. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical rep-
resentation of cache misses. In Proceedings of the 1997 ACM International Con-
ference on Supercomputing, Vienna, Austria, July 1997. 180

11. F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth
Annual ACM Symposium on the Principles of Programming Languages, San Diego,
CA, January 1988. 168

12. M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algorithm for op-
timizing locality in loop nests. In Proceedings of the 1997 ACM International
Conference on Supercomputing, Vienna, Austria, July 1997. 181

13. M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), Santa Clara, CA, April 1991. 169, 170, 180

14. A. Lebeck and D. Wood. Cache profiling and the SPEC benchmarks: A case study.
IEEE Computer, 27(10):15–26, October 1994. 181

15. N. Manjikian and T. Abdelrahman. Fusion of loops for parallelism and locality.
IEEE Transactions on Parallel and Distributed Systems, 8(2):193–209, February
1997. 180

16. N. Mitchell, L. Carter, J. Ferrante, and K. Hogstedt. Quantifying the multi-level
nature of tiling interactions. In Proceedings of the Tenth Workshop on Languages
and Compilers for Parallel Computing, Minneapolis, MN, August 1997. 180

17. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424–453, July 1996. 180

18. K. S. McKinley and O. Temam. A quantitative analysis of loop nest locality.
In Proceedings of the Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VIII), Boston, MA,
October 1996. 180

19. M. O’Boyle and P. Knijnenburg. Non-singular data transformations: Definition, va-
lidity, and applications. In Proceedings of the 1997 ACM International Conference
on Supercomputing, Vienna, Austria, July 1997. 181

20. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.
In Proceedings of the SIGPLAN ’98 Conference on Programming Language Design
and Implementation, Montreal, Canada, June 1998. 169, 172, 178, 181

21. G. Rivera and C.-W. Tseng. Eliminating conflict misses for high performance
architectures. In Proceedings of the 1998 ACM International Conference on Su-
percomputing, Melbourne, Australia, July 1998. 181

22. O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proceed-
ings of the 1994 ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systems, Santa Clara, CA, May 1994. 180

23. O. Temam, E. Granston, and W. Jalby. To copy or not to copy: A compile-
time technique for assessing when data copying should be used to eliminate cache
conflicts. In Proceedings of Supercomputing ’93, Portland, OR, November 1993.
169, 170, 171

24. M. Wolf, D. Maydan, and D.-K. Chen. Combining loop transformations consid-
ering caches and scheduling. In Proceedings of the 29th IEEE/ACM International
Symposium on Microarchitecture, Paris, France, December 1996. 170, 180

A Comparison of Compiler Tiling Algorithms 183

25. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991. 180

26. M. J. Wolfe. More iteration space tiling. In Proceedings of Supercomputing ’89,
Reno, NV, November 1989. 168

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

