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Abstract. We transpose a conservative extension theorem from struc-
tural operational semantics to conditional term rewriting. The result is
useful for the development of software renovation factories, and for mod-
ular specification of abstract data types.

1 Introduction

There is a strong link between the worlds of conditional term rewriting [30,8]
and of structural operational semantics (SOS) [35]. In fact, from a conceptual
level they can be seen as identical. In both fields, terms are built from a set of
function symbols. The binary relations on terms, rewrite steps and transitions,
both are defined inductively by means of proof rules, called conditional rewrite
rules or transition rules, respectively. Those rules, together with the validity, or
non-validity, of a number of relations between terms, may imply the validity of
another relation between terms.

There is one small distinction between both worlds. For a conditional term
rewriting system (CTRS), provability is closed under context, in other words, if
s → t is provable, then Con [s] → Con [t] is provable for every context Con []. The
set of transitions provable from a Transition System Specification (TSS) does
not have to satisfy this characteristic, so in general a TSS cannot be expressed as
a CTRS. However, the reverse transposition is possible, that is, for each CTRS
there is an equivalent TSS. This transformation is obtained by adding context
rules for all function symbols.

This correspondence was noted, but not exploited, by Groote and Vaan-
drager [28, Example 3.5]. They refrain from transposing their congruence for-
mat from TSSs to CTRSs, because it would not serve any practical purpose.
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Namely, although term rewriting and SOS theory are rooted on the same basis,
their aims are fundamentally different. Term rewriting seeks for termination and
confluence of reductions, while in SOS theory in general behaviour is infinite and
non-confluent. Usually, TSSs need to define a congruence relation with respect
to a certain semantics, i.e., if two terms s and t are semantically equivalent,
then Con [s] and Con [t] are semantically equivalent for all contexts Con []. Sev-
eral formats for TSSs have been developed which guarantee that they define a
congruence relation for bisimulation semantics [28,9,3,44,17]. Most CTRSs from
the literature do not fit these formats.

When a TSS is extended with new transition rules, the question arises
whether or not such an extension influences the transitions of terms in the origi-
nal domain. Usually, it is desirable that an extension is conservative, in the sense
that the transitions for an original term are the same both in the original and
in the extended TSS. Several formats have been developed which imply that an
extended TSS is conservative over the original TSS [28,9,43,20,14]. Groote and
Vaandrager [28, Theorem 7.6] proposed the first syntactic restrictions for an orig-
inal TSS and its extension. Bol and Groote [9] adapted this conservativity format
to the setting with negative conditions. Verhoef [43] proposed more general syn-
tactic criteria, which were later on extended to a setting with inequalities [14].
In [20], Verhoef’s format was transposed to higher-order languages.

This SOS notion of conservative extension is also useful in the realm of con-
ditional term rewriting. Namely, if a CTRS R0 ⊕ R1 is both confluent and an
operational conservative extension of the CTRS R0, then this extension is con-
servative in the classic sense. That is, then the CTRSs R0 ⊕ R1 and R0 induce
exactly the same initial model for original terms. In this paper we exploit the
link between TSSs and CTRSs to transpose the conservative extension theorem
from the world of SOS to CTRSs. The conservativity result formulates syntactic
requirements on the form of conditional rewrite rules in CTRSs R0 and R1, to
ensure that the rewrite relation induced by R0 on original terms is not affected
by rewrite rules in R1. It requires that each conditional rewrite rule in R0 is
deterministic [21]. Furthermore, each rewrite rule in R1 should contain a fresh
function symbol in its left-hand side.

The current paper arose from the final section in [18], where a simplified
version of the conservativity format is transposed to the setting of conditional
term rewriting. Simplifications are that we only treat first-order terms and that
we do not allow the possibility that the left-hand side of a rewrite rule in the
extension is an original term. We refrain from transposing the conservativity
format to CTRSs in full generality for the sake of presentation, and to leave
space to indulge in relevant applications. We refer to [19] where the SOS result
has been transposed to higher-order CTRSs.

The conservativity format is applicable in the field of abstract data types,
where there is a long tradition in specifying by means of modules of CTRSs.
In abstract data types, modular specification means conservative extension, in
our terminology. Namely, original modules fix the semantics of original terms,
which should not be changed thereafter; new modules give meaning to fresh
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terms, which did not have a semantics before; see [5]. Our result is also appli-
cable in the area of automated software engineering. In this paper we give a
formal definition of a software renovation factory that may consist of numerous
CTRSs. In order to build such a factory those CTRSs are combined, and then
our result comes into play: it gives sufficient conditions so that the functionality
of each separate component is not influenced in the presence of other compo-
nents. This enables reuse of components and a component-based development
of such factories. Of course, it cannot be demanded of an operator in a software
renovation factory that she remembers our conservativity result upon adding a
module to another component. It is, however, possible to implement this check;
an automated check on determinism in the SOS world has been incorporated in
the tool LATOS [29]. To demonstrate the use of our result, we provide examples
from the literature, concerning term rewriting, abstract data types, and software
renovation factories.

We study positive/negative CTRSs [31], which may contain negative condi-
tions of the form s¬Dt for relations D, to express that there does not exist a
relation sDt. We give meaning to such negative conditions using three-valued
stable models [37,22] from logic programming. Van de Pol [36] used instances
of this semantic notion to provide negative answers to three open questions in
term rewriting with priorities [4].

2 A Conservative Extension Theorem

2.1 Conditional Rewrite Rules

Definition 1. A (single-sorted) signature Σ consists of a countably infinite
set V of variables, and a non-empty set of function symbols f with fixed ari-
ties.

A function symbol of arity zero is called a constant.

Definition 2. Let Σ be a signature. The collection of (open) terms s, t, . . .
over Σ is defined as the least set satisfying:

- each variable from V is a term;
- if function symbol f has arity n, and t1, ..., tn are terms over Σ, then

f(t1, ..., tn) is a term over Σ.

A term is called closed if it does not contain any occurrences of variables.
We assume a signature Σ, and a set D of relation symbols. The symbols

in D represent binary rewrite relations between closed terms over Σ. Following
Kaplan [31] we study positive/negative CTRSs, which may contain negative
conditions of the form s¬Dt, meaning that the relation sDt is not valid.

Definition 3. For closed terms s, t over Σ, and D ∈ D, sDt is called a positive
rewrite step, and s¬Dt is called a negative rewrite step.

The standard rewrite relation is the one-step relation →. But we will also en-
counter its transitive-reflexive closure �, the join ↓, and the equality sign =.
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Definition 4. A (positive/negative) conditional rewrite rule is of the form
p ⇐ C, where.

- the conclusion p is of the form sDt;
- C is a (possibly empty) set of conditions of the form sDt or s¬Dt;

with s and t open terms. A (positive/negative) conditional term rewriting system
(CTRS) is a set of positive/negative conditional rewrite rules.

We extend the notion of a deterministic conditional rewrite rule [21] to the
setting with negative conditions.

Definition 5. For a conditional rewrite rule p ⇐ C, the deterministic variables
in this rule are defined inductively as follows.

– All variables in the left-hand side of p are deterministic.
– If sDt is a positive condition in C, and all variables in s are deterministic,

then all variables in t are also deterministic.

A conditional rewrite rule is called deterministic if all its variables are so.

Definition 6. A proof from a CTRS R for a closed rewrite rule p ⇐ C (which
contains only closed terms) consists of an upwardly branching tree in which all
upward paths are finite, where the nodes of the tree are labelled by positive and
negative rewrite steps, such that:

– the root has label p,
– if some node has label q, and K is the set of labels of nodes directly above

this node, then
1. either K = ∅, and q ∈ C,
2. or q ⇐ K is a closed substitution instance of a rewrite rule in R.

2.2 Conservative Extension

We define a notion of (operational) conservative extension for CTRSs, which is
related to an equivalence notion for TSSs in [24,17]: two TSSs are equivalent if
they prove exactly the same rewrite rules N/τ where N contains only negative
transitions.

Definition 7. Let Σ0 and Σ1 be signatures. Their sum (or union) Σ0 ⊕ Σ1 is
well-defined if each function symbol and each variable in Σ0 ∩ Σ1 has the same
functionality in both signatures.

We assume two CTRSs R0 and R1 over (Σ0,D0) and (Σ1,D1) respectively, where
Σ0 ⊕ Σ1 is well-defined. Their sum (or union) is denoted by R0 ⊕ R1.

Definition 8. R0⊕R1 is a conservative extension of R0 if for each closed rewrite
rule p ⇐ C with
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- C contains only negative conditions;
- the left-hand side of p is a term over Σ0;
- there exists a proof from R0 ⊕ R1 for p ⇐ C;

then there exists a proof from R0 for p ⇐ C.

We give an example of an extension that is not conservative.

Example 1. Σ0 consists of the constant a, and R0 of the rewrite rule a →
x ⇐ x → x. Furthermore, Σ1 consists of the constant b, and R1 of the rewrite
rule b → b. Clearly the rewrite step a → b is valid in R0 ⊕ R1, but not in R0.
Since a is an original term, R0 ⊕ R1 is not a conservative extension of R0.

Note that the CTRS R0 in Example 1 is not deterministic, because the variable x
in the rewrite rule in R0 is not deterministic (see Definition 5).

Theorem 1. Assume two CTRSs R0 and R1 over (Σ0,D0) and (Σ1,D1) respec-
tively, where Σ0 ⊕ Σ1 is well-defined. Under the following conditions, R0 ⊕ R1

is a conservative extension of R0.

1. R0 is deterministic.
2. For each rewrite rule in R1, the left-hand side of its conclusion contains a

function symbol from Σ1\Σ0.

Proof. This result follows almost directly from a similar result for TSSs; see [20,
Theo. 3.20]. We only need to resolve the distinction in the notion of provability
for TSSs and CTRSs. For this reason we introduce for each function symbol f
of arity n, and for each argument i ∈ {1, ..., n} of f , a so-called context rule

f(x1, ..., xi−1, xi, xi+1, ..., xn) → f(x1, ..., xi−1, y, xi+1, ..., xn) ⇐ xi → y.

We make two observations.

1. For each original function symbol f , the context rules for its arguments are
all deterministic. Namely, since x1, ..., xn occur in the left-hand side of the
conclusion it is deterministic. Moreover, since the variable xi is deterministic,
the condition xi → y makes that y is also deterministic.

2. For each fresh function symbol f , the context rules for its arguments all
contain the fresh function symbol f in their source.

So if we add the context rules for original function symbols to R0, and the
context rules for fresh function symbols to R1, then R0 and R1 still comply with
the syntactic requirements that were formulated in the theorem.

Owing to the extra context rules, we can use the provability notion from the
SOS world, where closure under context is not taken for granted. hence, we can
apply the conservative extension result for TSSs [20, Theo. 3.20] to conclude
that R0 ⊕ R1 is a conservative extension of R0.
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2.3 Three-Valued Stable Models

When there are negative conditions around, it is no longer straightforward to
define a sensible rewrite relation. We consider some well-established notions from
logic programming [37,22]. See [24] for a thorough overview of possibilities to give
meaning to negative conditions.

The notion of a three-valued stable model was introduced by Przymusin-
ski [37] in logic programming. It consists of two disjoint collections of positive
rewrite steps: intuitively, T contains the true rewrite steps, while U contains the
rewrite steps of which it is unknown whether or not they are true. All positive
rewrite steps outside T∪ U are considered to be false. These intuitions are made
precise in the definition of a three-valued stable model.

Definition 9. The collections (T, U) of positive rewrite steps are a three-valued
stable model for a CTRS R, if the following two requirements hold.

1. The elements of T are exactly those positive rewrite steps sDs′ for which
there exists a closed rewrite rule tDt′ ⇐ C such that:
– s = Con [t] and s′ = Con [t′] for some context Con [],
– there exists a proof from R for tDt′ ⇐ C,
– C contains only negative rewrite steps,
– for each s¬Dt ∈ C we have sDt �∈ T ∪ U.

2. The elements of T∪ U are exactly those positive rewrite steps sDs′ for which
there exists a closed rewrite rule tDt′ ⇐ C such that:
– s = Con [t] and s′ = Con [t′] for some context Con [],
– there exists a proof from R for tDt′ ⇐ C,
– C contains only negative rewrite steps,
– for each s¬Dt ∈ C we have sDt �∈ T.

Example 2. The CTRS that consists of the rewrite rules a → b ⇐ a �→ c and
a → c ⇐ a �→ b allows several three-valued stable models: ({a → b}, ∅) and
({a → c}, ∅) and (∅, {a → b, a → c}).

If R0 ⊕ R1 is a conservative extension of R0, then each three-valued sta-
ble model for R0 can be obtained by restricting a three-valued stable model
for R0 ⊕ R1 to the positive rewrite steps that have a closed original term as
left-hand side. This theorem follows immediately from similar results for TSSs,
Theorems 3.24 and 3.25 in [20], by the introduction of context rules.

Theorem 2. Let R0 be a CTRS over Σ0. For three-valued stable models (T, U)
for R0 ⊕ R1, we define

T|Σ0 = {sDt ∈ T | s a closed term over Σ0}
U|Σ0 = {sDt ∈ U | s a closed term over Σ0}.

If R0 ⊕ R1 is a conservative extension of R0, then:
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1. if (T, U) is a three-valued stable model for R0 ⊕ R1, then (T|Σ0, U|Σ0) is a
three-valued stable model for R0;

2. each three-valued stable model for R0 is of the form (T|Σ0, U|Σ0), with (T, U)
a three-valued stable model for R0 ⊕ R1.

According to Przymusinski [37], each CTRS allows a unique three-valued
stable model (T, U) for which the set U of unknown positive rewrite steps is
maximal. Furthermore, Przymusinski showed that this model coincides with the
well-founded model of Van Gelder, Ross and Schlipf [22]. The next corollary
follows from Theorem 2.

Corollary 1. Let R0 be a CTRS over Σ0. If R0⊕R1 is a conservative extension
of R0, and (T, U) is the well-founded model for R0 ⊕R1, then (T|Σ0, U|Σ0) is the
well-founded model for R0.

Two other semantic notions are related to three-valued stable models:

- A stable model [23] is a three-valued stable model (T, ∅).
- A CTRS is complete [24] if its well-founded model is a stable model.

Suppose that the CTRS R0⊕R1 is complete; i.e., it has a well-founded model
of the form (T, ∅). Furthermore, let R0 ⊕ R1 be a conservative extension of R0;
item 1 in Theorem 2 implies that (T|Σ0, ∅) is the well-founded model for R0.
If R0 ⊕ R1 is confluent, then it follows that R0 ⊕ R1 is conservative over R0 in
the classic sense from logic. That is, if the rewrite rules in R0 ⊕ R1 and R0 are
taken to be equations, then both systems induce the same equations between
original terms.

Remark 1. A positive CTRS induces a unique initial model of rewrite steps,
which together constitute a minimal model for the CTRS. A rewrite step is in
the initial model of a CTRS if and only if there exists a constructive proof for
it. This is also the case for the rewrite steps in a three-valued stable model.

For a positive/negative CTRS, a quasi-initial model [31] of equations (instead
of rewrite steps) is also required to constitute a minimal model for the CTRS.
A quasi-initial model is not necessarily unique: the positive/negative CTRS R0

that consists of the single rule a → c ⇐ a �= b allows two quasi-initial models,
{a = c} and {a = b}. There does not exist a constructive proof for a = b; this
contrasts with the semantics for positive CTRSs.

Theorem 2 does not hold if we replace ”three-valued stable” by ”quasi-
initial”. A counter-example is the extension of R0 with the constant d and the
CTRS R1 that consists of the rewrite rules d → b and d → c; this yields a unique
quasi-initial model {a = b = c = d}. However, according to Theorem 1, R0 ⊕R1

is a conservative extension of R0. The CTRS R0 allows a unique three-valued
stable model ({a → c}, ∅), and R0 ⊕ R1 allows a unique three-valued stable
model ({a → c, d → b, d → c}, ∅).
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3 Application to CTRSs of Type III

A CTRS of type III consists of conditional rewrite rules of the form

s → t ⇐ s1 � t1, . . . , sn � tn.

� denotes the transitive-reflexive closure of the one-step relation →. It is defined
by two rewrite rules, which we add explicitly to each CTRS of type III:

x � x and x � z ⇐ x → y, y � z.

The first rule is clearly deterministic. In the second rule, x occurs in the left-hand
side of the conclusion, so it is deterministic. Then y is deterministic by condition
x → y, so z is deterministic by condition y � z.

On a rewrite rule p ⇐ C we often see the following three requirements.

A. The left-hand side of p is not a single variable.
B. Variables in the right-hand side of p also occur in the left-hand side of p.
C. Variables in C also occur in p.

Criteria A and B are natural in the unconditional case, because then they are
essential in order to obtain termination. According to Middeldorp [33, page 114],
criterion C is often imposed “due to severe technical complications”. We left out
these criteria, because our results do not require to impose them. Criteria A
and B would even be a hindrance, because the two rewrite rules that define the
relation � do not satisfy these criteria.

We give an example of an extension of a CTRS of type III, taken from [15],
to demonstrate the use of our conservativity result.

Example 3. The CTRS N0 implements addition on natural numbers. It assumes
the constant 0, the unary successor function S, and the binary addition func-
tion A. Its standard rules are

A(0, x) → x
A(S(x), y) → S(A(x, y))

The two rules in the CTRS N0 are clearly deterministic, because they do not
have conditions, and they satisfy criterion B.

The CTRS N1 implements the Fibonacci numbers. It assumes 0 and S and A,
together with the unary Fibonacci function Fib. The rules of N1 are

Fib(0) → (0, S(0))
Fib(S(x)) → (z, A(y, z)) ⇐ Fib(x) � (y, z)

The second rule in N1 is considered difficult, because it does not satisfy crite-
rion B: the variables y and z do not occur in the left-hand side of its conclusion.
Nevertheless, since the left-hand sides of the conclusions of the two rules in N1

contain the fresh function symbol Fib, and since N0 is deterministic, Theorem 1
yields that N0 ⊕ N1 is a conservative extension of N0. The first rule in N1 is
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clearly deterministic. In the second rule, x occurs in the left-hand side of the con-
clusion of the rule, so it is deterministic. Then condition Fib(x) � (y, z) makes
that y and z are deterministic. So the second rule in N1 is also deterministic.

We extend N0 ⊕N1 with the following two standard module N2 for a binary
equality function eq, which decides whether or not two natural numbers are
syntactically equal.

eq(x, x) → true
eq(x, y) → false ⇐ eq(x, y) �� true

Since the left-hand side of the conclusions of both rules contain the fresh function
symbol eq, and since N0⊕N1 is deterministic, it follows from Theorem 1 that N0⊕
N1 ⊕ N2 is conservative over N0 ⊕ N1.

In a CTRSs of type IIIn (also called ‘normal’), conditions are conjuncts of ex-
pressions s � t where t is a closed normal form. In particular, terms at the
right-hand sides of conditions are closed, so it follows that the only determinis-
tic variables in a type IIIn rule are the ones that occur in the left-hand side of
its conclusion. Hence, a rule of type IIIn is deterministic if all its variables occur
in the left-hand side of its conclusion, that is, if it satisfies criteria B and C.

In a CTRSs of type II (also called ‘join’), conditions are conjuncts of ex-
pressions s ↓ t, which denote that s and t reduce to the same term. This can
be formulated in type III style: s � y and t � y, where y is a fresh variable.
Since the y is fresh, again the only deterministic variables in a type II rule are
the variables that occur in the left-hand side of its conclusion. Hence, a rule of
type II is deterministic if it satisfies criteria B and C.

Finally, in a CTRSs of type I (also called ‘semi-equational’), conditions are
conjuncts of expressions s = t, which denote that s rewrites to t if the rewrite
rules may be applied both from left to right and from right to left. The following
example shows that the syntactic criteria from Theorem 1 are not sufficient to
ensure that an extension of a CTRS of type I is conservative.

Example 4. Let Σ0 = {a, b} and Σ1 = {a, b, c}, where a, b, c are constants.
Let R0 consist of the single rule a → b ⇐ a = b. Furthermore, let R1 con-
sist of the two rules c → a and c → b.

R0 is deterministic, and even satisfies criteria A, B, and C. Also, the left-hand
side of the conclusions of the rules in R1 contain the fresh function symbol c.
However, a → b is provable from R0⊕R1, but not from R0. Since a is an original
term, R0 ⊕ R1 is not a conservative extension of R0.

4 Application to Software Renovation Factories

One way of looking at renovating a software system is to consider it as an anno-
tated abstract syntax tree (AST) that needs to be manipulated. This manipula-
tion can be rewriting. This idea underlies the following definition of a software
renovation factory (this definition is implicitly assumed in [11] where it is shown
how to generate useful rewrite systems from a context-free grammar).
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Definition 10. A software renovation factory is a set of software renovation
assembly lines. A software renovation assembly line is an ordered set of (reno-
vation) components. A (renovation) component is a positive/negative CTRS.

We explain what our theorem and software renovation factories have in com-
mon (the reader is referred to [10,16] for a quick introduction to the field of
reverse engineering and system renovation). Code that needs to be renovated
is first parsed, resulting in an abstract syntax tree (AST). Renovation of code
amounts to conditionally rewriting the AST to a desired normal form. Then the
AST is unparsed, resulting in renovated code. To renovate code, it is customary
to combine existing renovation components. This can be done sequentially in
an assembly line by applying components in a fixed order, or simultaneously by
taking the sum of components, or as a combination of these two. Our theorem is
important for the simultaneous combination of components, which amounts to
taking the sum of positive/negative CTRSs. The question that arises is whether
the sum is conservative over the separate components, i.e., is the functionality
of an extended component the same as before?

We give an example, and apply our theorem to it, to ensure that the combi-
nation of components does not influence the behaviour of the separate compo-
nents. The example uses COBOL (Common Business Oriented Language) [1]. It
focuses on a many-sorted TRS; the conservative extension theorem in this paper
generalizes to a many-sorted setting without any complications; see [18,20].

In the example below we follow [39] in departing from the standard prefix
notation for terms (see Definition 2). For example, a function symbol with three
arguments can be defined as IF Boolean THEN Statement ELSE Statement
END-IF -> Statement; this notations resembles Backus Naur Forms [2]. The
name of the function symbol IF THEN ELSE END-IF is interspersed with
its domain that would be Boolean×Statement×Statement in the standard no-
tation. The form that we used here is known as distributed fix operators, distfix
operators, or mixfix operators; these names are due to Mosses and Goguen [25].
The terms over a signature of distfix operators are constructed as usual.
In [32, p. 202] an elegant correspondence between many-sorted terms and Backus
Naur Forms is made, illustrating the natural connection of universal algebra and
formal language definitions. In [32, p. 210] the syntax of while programs is dis-
cussed where the connection between distributed fix operations and terms in
prefix notation is elegantly illustrated.

Example 5. Suppose that a company moves to Japan and that they wish to
migrate their mission-critical business software from MicroFocus COBOL to Fu-
jitsu COBOL, since the local programmers are familiar with the latter dialect.
One of the components that we introduce migrates MicroFocus specific 78 level
constant definitions to the SYMBOLIC CONSTANT clause (a Fujitsu COBOL spe-
cific feature) of the SPECIAL-NAMES paragraph. In fact, in the first dialect, the
declaration of constants is done in a certain subtree of the AST, and we need
to move this information from this subtree to another subtree (the word ‘move’
is loosely phrased since we also have to modify the syntax of the declarations).
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An extra problem with the other subtree is that we may need to create it, since
it may not yet be present in the original code. The move is implemented in the
CTRS R0 below. It contains five hand crafted rewrite rules that represent the
above requirements, plus hundreds of rewrite rules that take care of traversal
of the AST, which are generated automatically from the grammar. For detailed
information on this generative technology we refer to [11].

Before explaining the rewrite rules, first we focus on notations. The function
symbols f_1-f_4 are generated automatically from the COBOL grammar (we re-
named them for explanatory reasons). All other expressions that contain numer-
als are variables; the remaining expressions are terminals (or constant symbols
in CTRS terminology). For example, Ident-div1 is a variable that matches a
complete IDENTIFICATION DIVISION of a COBOL program; COMMENT2* stands
for zero or more COBOL comments; Special-name1+ stands for one or more
symbolic constants in a SPECIAL-NAMES section; and VALUE is a terminal repre-
senting the COBOL keyword VALUE. The five rewrite rules are:

[1] f_1(

COMMENT1*

Ident-div1

Env-div1

DATA DIVISION. COMMENT2*

File-sec1

WORKING-STORAGE SECTION. COMMENT3*

Data-desc1*

78 Id1 Dd-item1* VALUE Id2 Dd-item2*. COMMENT4*

Dd-body1*

Data-desc2*

Link-sec1

Proc-div1

)^{ } =

COMMENT1*

Ident-div1

f_2(Env-div1)^{ Id1 Id2 }

DATA DIVISION. COMMENT2*

File-sec1

WORKING-STORAGE SECTION. COMMENT3*

Data-desc1*

Data-desc2*

Link-sec1

Proc-div1

[2] f_2( )^{ Id1 Id2 } = ENVIRONMENT DIVISION. f_3( )^{ Id1 Id2 }

[3] f_3( )^{ Id1 Id2 } = CONFIGURATION SECTION. f_4( )^{ Id1 Id2 }

[4] f_4( )^{ Id1 Id2 } = SPECIAL-NAMES. Id1 IS Id2.

[5] f_4(Special-name1+)^{ Id1 Id2 } = Special-name1+ Id1 IS Id2
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First notice that R0 is unconditional: for explanatory reasons we did not im-
pose any conditions on the term rewriting rules of this example. From a software
renovation point of view this is unrealistic. However, since we wish to illustrate
our conservativity result rather than develop a software renovation factory in
this paper, we keep the renovation components as simple as possible.

We explain the above rewrite rules in detail. Function symbol f_1 takes as
input a MicroFocus COBOL program and has as output the desired Fujitsu
COBOL program; see the end of this section for a typical example of an original
and a rewritten COBOL program. Rule [1] defines f_1. The argument of f_1
is a textual representation of an AST containing a pattern that matches a com-
plete COBOL program. It can start with comments, then an IDENTIFICATION
DIVISION (matched by Ident-div1), an ENVIRONMENT DIVISION (matched by
Env-div1), a DATA DIVISION (specified in such detail that it matches the 78 level
constant definitions that we wish to move to another subtree), and a PROCEDURE
DEFINITION (matched by the variable Proc-div1). The output of f_1 shows that
the first and last divisions are not modified: the parts COMMENT1* Ident-div1
and Proc-div1 are invariant. In the DATA DIVISION the 78 level constants are
removed. The essential information, residing in variables Id1 and Id2, is stored
in memory. This memory is simply a second argument of the function sym-
bols f_1 – f_4, which we call an attribute, denoted using curly braces. The
function f_2 that appears in the output of f_1 takes care of addition of the
constants in the Fujitsu dialect. This is implemented in the rules [2]–[5]. If
there is no ENVIRONMENT DIVISION in the COBOL program, then the variable
Env-div1matches an empty subtree, so that rule [2] creates a subtree with top-
node ENVIRONMENT DIVISION and an empty subtree, which is handled by f_3.
Rule [2] passes on the attributes to f_3. If the ENVIRONMENT DIVISION already
exists, then rule [2] does not apply; in this case one of the generated rules
for f_2 renames f_2 into f_3, and passes on the attributes to f_3 as well. We
emphasize that whatever the initial situation was, we always end up in the sit-
uation that the next function is f_3. Rule [3] is similar to rule [2]; it creates
a CONFIGURATION SECTION if it is not present. If the CONFIGURATION SECTION
already exists, then rule [3] does not apply; in this case one of the generated
rules for f_3 renames f_3 into f_4, and passes on the attributes to f_4 as well.
Rule [4] is also similar to [2] and [3] in that it creates the SPECIAL-NAMES para-
graph if it is not present. It also adds the Fujitsu specific SYMBOLIC CONSTANT
clause and uses the removed variables that reside in the attributes. In the case
that there was already such a paragraph, rule [5] matches those in the variable
Special-name1+, copies them to the output, and adds the SYMBOLIC CONSTANT
clause.
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Since COBOL was intended to look like written English, sentences ending
with separator periods were introduced. Such a separator period terminates the
scope of all still open IF statements. Later on, in 1985, an explicit END-IF for IF
statements in COBOL was introduced. Suppose that MicroFocus COBOL code
is written by a programmer before 1985, and that we want to change the im-
plicit separator periods in such programs into END-IF statements. This can be
implemented by means of a CTRS R1 with four handwritten rewrite rules (plus
hundreds of generated ones). The first three rewrite rules handle the three pos-
sible ways to implicitly terminate a COBOL IF phrase (see [1]), respectively:

- by an END-IF phrase at the same level of nesting;
- by a separator period;
- if nested, by an ELSE phrase associated with an IF statement at a higher

level of nesting.

An additional fourth rewrite rule removes separator periods. See [11, p. 150]
for an elaborate discussion, explanation and implementation of the four rewrite
rules constituting R1, and [12] for more background on COBOL grammars.

[1] g_1(Bad-cond)^{Attr*} = g_4(Bad-cond)^{Attr*} END-IF

[2] g_2(IF L-exp Sent)^{Attr*} = IF L-exp g_3(g_2(Sent)^{Attr*}) END-IF.

[3] g_2(IF L-exp Cond-body ELSE Sent)^{Attr*} =

IF L-exp g_1(Cond-body)^{Attr*}

ELSE g_3(g_2(Sent)^{Attr*}) END-IF.

[4] g_3(Stat.) = Stat

Both R0 and R1 serve the purpose of uniformizing the code. It is useful to
uniformize code before restructuring, since it decreases the number of possibili-
ties in rewriting the AST in a later phase. For performance reasons we combine
both uniformizing components R0 and R1. The question arises whether we can
do this safely. This is the case indeed, since R0 is deterministic, and each rewrite
rule in R1 contains a fresh function symbol from g_1-g_3 at the left-hand side
of its conclusion. Such uniformization techniques are common practice in soft-
ware renovation factories; see [13,38] for a factory approach where an elimination
assembly line for an important class of legacy systems is implemented.

Below we provide an original COBOL program and its rewritten code, which
both print the word HAIKU. We explain the code fragments, and show where the
rewrite rules changed the original code at the left-hand side. The 78 level con-
stant CON and its value 1 are moved from the DATA DIVISION to the ENVIRONMENT
DIVISION. They appear in the SYMBOLIC CONSTANT clause of the paragraph
called SPECIAL-NAMES. Indeed, the appropriate paragraph, section and division
have been created. The syntax of constants in MicroFocus COBOL and Fujitsu
COBOL differs; of course, the rewrite rules take care of that. The IF is termi-
nated by the separator period after the first print statement DISPLAY ’HAI’.
The rewrite system adds an explicit scope terminator END-IF in the rewritten
code.
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IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM-ID. HAIKU. PROGRAM-ID. HAIKU.

DATA DIVISION. ENVIRONMENT DIVISION.

WORKING-STORAGE SECTION. CONFIGURATION SECTION.

01 VAR-1. SPECIAL-NAMES.

02 SUB-1 PIC X COMP-X. SYMBOLIC CONSTANT

78 CON VALUE 1. CON IS 1.

02 SUB-2 PIC X COMP-X VALUE CON. DATA DIVISION.

PROCEDURE DIVISION. WORKING-STORAGE SECTION.

IF SUB-2 = 1 01 VAR-1.

DISPLAY ’HAI’. 02 SUB-1 PIC X COMP-X.

DISPLAY ’KU’. 02 SUB-2 PIC X COMP-X VALUE CON.

PROCEDURE DIVISION.

IF SUB-2 = 1

DISPLAY ’HAI’

END-IF.

DISPLAY ’KU’.

This transformation can be obtained automatically, using the implementation
of the CTRSs R0 and R1. The CTRS R1 has been implemented in [11]; the
CTRS R0 has been defined for the sake of this example, and has been imple-
mented using the same technology.

Our theorem has also been applied in [38], where incrementally an algorithm
was developed for eliminating very difficult GO TO statements from
COBOL/CICS programs from a Swiss Bank. The use of the theorem was that
already developed patterns for eliminating GO TOs could safely be extended with
new patterns without distroying the original functionality. This important conse-
quence of our theorem gives therefore rise to incremental development of software
renovation factories. This is important since then we can heavily reuse already
developed components which is cost-effective.

5 Related Work

The conservativity format for structural operational semantics has a direct ap-
plication to term rewriting, as was noticed in [43]. It can help, for example,
to obtain a simple completeness proof for the process algebra ACP [7]. In that
paper, completeness of the equations for ACP is derived by means of a term
rewriting analysis. The confluence proof of the TRS consists of about 400 cases.
Completeness of the equations for ACP could also be obtained by the combina-
tion of a much simpler completeness result, a conservative extension result for
the operational semantics, and an elimination result; see [43].

In general, studies on modular properties of term rewriting systems deal with
the following question: given two (mostly unconditional) TRSs with a certain de-
sirable property, such as confluence or termination, does the combination of these
TRSs also satisfy this property? It is often assumed that the signatures of the
two rewrite systems are disjoint, and that the variables in a rewrite rule all occur
in its left-hand side. CTRSs that satisfy these requirements are automatically
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within our conservativity format. In this paper it is investigated whether the full
rewriting relation is preserved for terms over only one of the signatures. The sig-
natures of the original CTRS and its extension need not be disjoint. Toyama [40]
showed that confluence is a modular property for TRSs [40], but that in gen-
eral termination is not [41]. Klop and Barendregt gave a counter-example which
shows that completeness is not modular, but Toyama, Klop and Barendregt [42]
proved that completeness in combination with left-linearity is modular for TRSs.
Ohlebusch [34] showed that if a combination of two TRSs does not terminate,
then one of the TRSs is not CE-terminating, while the other TRS is collapsing.
(This generalizes a similar result for finitely branching TRSs of Gramlich [27]).
Middeldorp [33] presented a panorama of positive and negative results on mod-
ular properties of CTRSs. For example, he showed that confluence constitutes a
modular property for CTRSs. Gramlich [26] showed that his main results in [27]
extend to CTRSs.
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