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Abstract. Attribute-Oriented Induction (AOI) is a set-oriented data mining
technique used to discover descriptive patterns in large databases. The classical
AOI method drops attributes that possess a large number of distinct values or
have either no concept hierarchies, which includes keys to relational tables.
This implies that the final rule (s) produced have no direct link to the tuples that
form them. Therefore the discovered knowledge cannot be used to efficiently
query specific data pertaining to this knowledge in a different relation to the
learning relation.
This paper presents the key-preserving AOI algorithm (AOI-KP) with two
implementation approaches. The order complexity of the algorithm is O (np),
which is the same as for the enhanced AOI algorithm where n and p are the
number of input and generalised tuples respectively. An application of the
method is illustrated and prototype tool support and initial results are outlined
with possible improvements.

1 Introduction

Data mining is the extraction of interesting patterns concealed in large databases [1].
There are various algorithms for extracting these patterns such as association,
sequencing and classification [2]. Attribute-Oriented induction (AOI) [3] is a set-
oriented generalisation technique used to find various types of rules.

The method integrates learning-from-examples techniques with database
procedures. The AOI method basically involves three primitives that specify the
learning task. These are collection of initial task-relevant data (Data Collection), use
of background knowledge (Domain knowledge) [9] during the mining process and
representation of the learning result (Rule formation). The fundamental principle in
AOI is to generalise the initial relation to a prime relation and then to a final relation
using background knowledge and user-defined threshold (s). Tuples found similar are
merged as one with counts accumulated.
The AOI method is widely applicable and this underlines its importance. For
example, mining characteristic and classification rules [3], multiple level
generalisation [9] and cooperative or intelligent query answering [8]10].
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The contribution of this paper is two-fold. Firstly, AOI is extended by preserving
keys from the initial task relevant relation and associating them to the final rules
while at the same time keeping the complexity of the key-preserving algorithm (AOI-KP)
to O(np), which is the same as for the enhanced AOI algorithm [4].

Secondly, the approach allows a user to make more efficient data queries on large
data relations other than the learning relation if the preserved keys index this data. We
are unaware of other specific work on AOI using the key-preserving method for
performing such queries.

This paper is organised as follows: in section 2, related work is considered; in
section 3 the proposed algorithm, AOI-KP, is presented and its complexity is
discussed in section 4; in section 5 the application of the approach is illustrated;
section 6 describes results from a prototype support tool for the method with further
improvements and section 7 conclusion.

2 Related Work

The work builds on the classical AOI method introduced in [3]-[6], the rule-based
approach [11] and intelligent query answering [10].

 In [11], the information loss problem due to generalisation in the rule-based AOI
is addressed by introducing a backtracking method using a generalised tuple called a
covering tuple. However, the method cannot uniquely distinguish each covered tuple
and so may be inefficient in performing queries directly on the discovered knowledge.

In [7], a framework is proposed for answering both data and knowledge queries
to a knowledge base of substantial volume. Our work mainly concerns data queries on
the usual database data [11].

In [8], key-preserving and key altering generalisations are discussed. If a key is
generalised, information is lost if joins are made on the generalised relations.

Two memory-based AOI algorithms are reported in [3][4] and run in O(n log n)
and O(np) times respectively, where n and p are the number of tuples in the input and
generalised relations respectively. Further, two extensions to AOI that run in O(n)
have been implemented [5,6]. However, in all these approaches, key preservation of
the attribute identifying each tuple is not addressed to our requirements.

3 The Key-Preserving AOI Method

When data is retrieved, the system stores the table in memory and applies the
induction process within the user-supplied thresholds. An implementation concern is
how to determine the size of the key list a priori. The default value assumed could be
the number of input tuples in the initial relation. The actual size can only be
determined dynamically.
We introduce definitions relevant to the key-preserving algorithm. We assume an
input relation with n tuples and each tuple is uniquely identified by a key, which is an
integer value. Keys are stored in a static or dynamic array, here called a key list for
convenience. We also assume that the keys are unaffected by database updates. For
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any attribute Ai, (i = 1,..,n ), let  tp and tq be any two tuples with keys p and q such that
tp(A1) = p, tq (A1) = q, p<q.

Definition 1. Equivalence. Two tuples tp and tq are said to be equivalent if tp(Ai) = tq

(Ai), i � 1, i=2,..,n.

Definition 2. Indexing key. A key p of tuple tp is an indexing key in a row of a given

key list if p is positioned in the first column of that row.

Definition 3. Ordinary key. A key q of tuple tq is an ordinary key in a row of a given
key list if q is positioned in any column of that row.

The AOI-KP algorithm is shown in figure 1. The first column of the key list is
automatically sorted by the insertion method provided the initial input table is sorted.
In the next section, we present the complexity of the algorithm and compare it with
other algorithms developed in the literature.

4 Algorithm Complexity

AOI can be applied to large databases as it progressively reduces the search space
(see figure 3). The initial problem is that all the examples forming the initial relation
will be loaded into memory. Data mining algorithms should be both space and time
efficient [5]. To save time, the construction of attribute concept hierarchies is done
dynamically as the input is read to avoid re-scanning the input data or retrieving from
disk. The algorithm proposed here works in the same way as AOI [4] but preserves
the keys of the initial table.

The order complexity of AOI-KP is calculated as follows, assuming p = n*k,
0<k<1, for large values of n where p is the number of tuples in the prime relation.

For a key list using static arrays with row and column size of up to p and n
respectively, it is only necessary to find an empty column in the row of an equivalent
tuple key. This means the row a key is positioned in the prime table is the same row it
will be inserted in the key list. Thus, the worst time complexity for the key list
insertion is O(np) for the row linear space search. This gives a total order complexity
of O(np) plus O(np) or 2*O(np), taking tuple insertion into account. In addition, the
space required is O(n+p) plus O(np) for the data tables and the key list array
respectively. This approach is, therefore, not space and time efficient1.

However, when using dynamic arrays, the O(np) linear search is eliminated as keys
are only added to the dynamic array corresponding to the row of the prime table. The
space required by this approach using dynamic arrays is O(n+p) for both the initial
and prime table. For m attributes where m is large (>10), the key list space
requirement for dynamic arrays at any point during program execution is O(n/m+c),
where c is a small space increment due to equivalent tuples’ key insertions which is
much less than O(np) for the static key approach.

                                                          
1  See Figure 4 of section 6
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STEP 1: Collect Data and determine distinct values of Ai

BEGIN
    Declare Key_list array with two dimensions
    Assign first key to Key_list as an indexing key and insert the table
    FOR EACH attribute Ai  (1 � i �n, Ai != A1) DO
      Construct hierarchy for attribute AI

      WHILE attribute threshold not reached DO
      BEGIN
          IF Ai  has no hierarchy THEN  Remove attribute Ai

ELSE Substitute Ai by its next level generalised concept;
 STEP 2: Merge any identical tuples tp, tq propagate counts, keys
  IF any two tuples tp,tq are equivalent THEN

BEGIN
         Assign key p of tuple tp to variable KEY
                 Look for indexing key KEY in Key_list to determine its row
                 IF KEY is found THEN
                 BEGIN
                     Insert key (s) of tuple tq as ordinary key(s) in KEY’s row
                     Increase tuple count of inserted row in table
                     Merge the tuples
                  END
                  ELSE BEGIN
                            Insert indexing key KEY, ordinary key q in next available row

              Increase tuple count of inserted row in table
              Merge the tuples

                   END // end if key = found
               END
   ELSE IF next row in table is empty THEN

 BEGIN
                     Insert tuple with key q in table
                     Insert key q as indexing key in next empty row of Key_list
                     Assign one to tuple count of inserted row in table
                END
            END// end if any two tuples
      END // end while
Repeat step 2 until entire table and key-list are checked.
 STEP 3: Check tuple threshold and produce final table
     WHILE number of tuples is more than rule threshold DO
     BEGIN
               Selectively generalise an attribute with distinct value > rule threshold
              Merge tuples, propagate keys and increase counts using STEP 2.
  END
   END. // Key-preserving AOI

Fig. 1. The Key-Preserving Algorithm (AOI-KP)
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This gives a total order complexity of O(np) for large values of n. The space
requirement is O(n+p) plus O(n/m+c) or simply O(n). The dynamic key propagation
approach therefore executes much faster and uses less memory than the static
approach2.

5 Application of the Approach

Consider a University database with the following schema:

Student (Sno, Sname, Sex, Major, Department, Birth_place, Residence)
Course (Cunit, Ctitle, Department, Ts, Te)
Exam (Cunit, Sno, GPA)
Calendar (Period, Acc_year, Ts, Te)
Registration (Sno, Rstatus, Ctitle, Acc_year)

where Cunit is course unit, Ctitle is course title, Acc_year is a user-defined time for
academic year, Sno is student number, Rstatus is registration status and Ts and Te are
time start and time end of the respective periods of study and courses.

In addition, assume the instance-based concept hierarchy for the attributes Sex,
Major and Birth_place in figure 2. The initial table is retrieved with attributes Sno,
Sex and Birth_place for learning about postgraduate students in a chosen academic year.
the temporal attribute ‘Acc_year’ is used in the WHERE clause of SQL thus making the
discovered rules temporal.

{M.Sc, Ph.D,..}� postgraduate,
{Postgraduate, Undergraduate} � ANY (Major)
{Female, Male} � ANY (Sex)
{Bradford, Liverpool, Manchester, Edinburgh,.., London} �  UK
{Chicago, Boston, New York,..,Washington} � USA
{Calcutta, Bombay,.., New Delhi} � India
{Shanghai, Nanjing,.., Beijing} � China, {India, China,..} � Asia
{UK, France, Germany,..} � Europe
{USA, Canada,..} � America, {America, Asia, Europe,..} � ANY (Birth_place)

Fig. 2.  Concept hierarchies for Sex, Major and Birth_place

After choosing a threshold of 3, the generalisation process preserves the key
column ‘Sno’ associated with each tuple. The generalisation process continues until
thresholds are reached.

                                                          
2 See execution times for both methods on Figure 4 of section 6
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Sno Sex Birth_place Sno Sex Birth_place Count

1 M USA 1 M USA 2

2 F UK 2 F UK 3

3 F USA 3 F USA 1

4 M INDIA 4 M INDIA 2

5 M INDIA 8 M CHINA 2

6 F UK

7 F UK

8 M CHINA
9 M CHINA
10 M USA

Table 2.  (b) Prime Table

Table 1. (a) Initial Table

Rule 1 1    10      3
Rule 2 2       6        7
Rule 3   4       5        8     9

(d) Key lists linked to the rules

Sno Sex Birth_place Count

1 ANY AMERICA 3

2 F EUROPE 3

4 M ASIA 4

Table 3.  (c) Final Table

Fig. 3. Key propagation in the AOI process

The discovered rule would then be expressed in logic form as:

�(x) Postgraduate(x)�Acc_year(x)=“Year 1“ �
 Birth_place (x)�America [30%][Rule keys =1, 3, 10]
�  Sex(x)= „Female“ � Birth_place (x)�Europe  [30%][Rule keys =2, 6,7]
� Sex(x)= „Male“� Birth_place(x)�Asia [40%][Rule keys = 4, 5, 8, 9]

Knowledge discovered in the AOI algorithm could be used to provide answers to data
and knowledge queries [7,10]. For example, the rule  „All postgraduate students lived
in private accommodation in year one “ would be necessary to answer the queries:
„Did any postgraduate students live in University accommodation then?“ „Who were
they?“ Which of them had an excellent GPA?“ The first query can be answered from
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the rule base. The latter queries, which involve listing and aggregation, can be
answered efficiently with rule keys by querying the relevant tables. Moreover, the
final generalised table, termed a knowledge table, can be used to join other data tables
with at least the remaining tuples.

6. Prototype and Results

A prototype generalisation tool, TAGET (Temporal Attribute-oriented GEneralisation
Tool) to mine temporal characteristic rules using the AOI approach is
under development and initial results are shown in Figure 4. TAGET is a memory-
based approach that uses data structures to store and manipulate data and concept

0

5

10

15

20

25

30

1000 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

No. of tuples

T
im

e 
in

 s
ec

on
ds

Dynamic Approach

Static Approach

Fig. 4. TAGET Performance measures

hierarchies. Performance measures contrasting the dynamic and the static approaches
for AOI-KP are shown in Figure 4 using an Intel P267 MHz with 64MB of memory
and an attribute threshold of 3 as shown in Figure 3. Each set of input tuples was run
five times and the average time computed. The initial results show that even with key
propagation, the performance of AOI-KP is not drastically affected by the dynamic
approach except memory limitations. We briefly explain how to handle this problem
in the conclusion.

7. Conclusion

This paper has described an extension to AOI with key preservation  (AOI-KP) that
maintains the order complexity O(np) of AOG [4]. It has been shown using the
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preserved Keys, the database of the discovered knowledge can be further interrogated
more efficiently. For large databases, the output from the data queries that involve
listing would be enormous for a single rule. This would need a threshold value on
either the size of the key list or the number of keys required by the user.

TAGET can be further improved by using concurrency mechanisms during tuple
and key insertion as well as file I/O for keys. In addition, assuming each tuple read
will be generalised at least once, the order complexity can be improved to O(n) [5] by
pre-generalisation. Using this method, the number of generalised tuples in memory
will be orders smaller than the original task relevant data.
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