
Combinatorial Approach for Data Binarization

Eddy Mayoraz and Miguel Moreira

IDIAP — Dalle Molle Institute for Perceptual Artificial Intelligence
P.O. Box 592, CH-1920 Martigny, Switzerland

mayoraz@idiap.ch, miguel@idiap.ch

Abstract. This paper addresses the problem of transforming arbitrary
data into binary data. This is intended as preprocessing for a supervised
classification task. As a binary mapping compresses the total information
of the dataset, the goal here is to design such a mapping that maintains
most of the information relevant to the classification problem. Most of
the existing approaches to this problem are based on correlation or en-
tropy measures between one individual binary variable and the partition
into classes. On the contrary, the approach proposed here is based on a
global study of the combinatorial property of a set of binary variable.
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1 Introduction

Supervised classification learning addresses the general problem of finding a plau-
sible K-partition into classes of an input space Ω, given a K-partition of a set
of training examples X = X1 ] . . . ] XK ⊂ Ω.

In practical applications of data mining the input spaces Ω are usually very
large and they combine features of different nature. Therefore, for most of the
mining tools to be usable, it is convenient to preprocess the data and an impor-
tant research effort is now spent on problems such as feature selection or feature
discretization.

Some mining technologies require even purely binary data. This is the case
of Logical Analysis of Data (LAD), which is a general approach for knowledge
discovery and automated learning proposed in the mid eighties [5]. Classifica-
tion is one particular usage of this theory, which was extensively developed and
implemented in the mid nineties and which showed great potentialities [3].

Thus, besides data compression, there is a need in data binarization in view
of mining, where the most relevant information for further processing has to be
maintained (Sect. 2). In Sect. 3, the binarization problem is stated and some clas-
sical approaches are briefly presented. Section 4 presents the algorithm IDEAL,
specially designed to fit the needs of LAD. Some experimental results are dis-
cussed in Sect. 5 and Sect. 6 concludes and discusses further work.
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2 Requirements for Binarization

Given a set of training examples X ⊂ Ω partitioned into K-classes X1]. . .]XK ,
the binarization problem consists in finding a mapping m : Ω → {0, 1}d with
the following properties : (i) most of the information relevant to the classification
problem should be preserved through m; (ii) the size d of the binary codes is not
too large. The first property is translated into a sharp and a soft constraint. The
former states that the mapping should be consistent with the training examples,
i.e. m(Xi) ∩ m(Xj) = ∅, ∀i 6= j. The latter asks that two points of Ω, close to
each other according to a reasonable metric, should have their images through
m close to each other in the Hamming distance metric.

The second property has to be taken with some care. Clearly, the size of the
binary codes should be small in order to reduce the complexity of the processing
of binarized data. The research of a binary mapping of minimal size satisfying
the consistency constraint is a challenging combinatorial problem proven to be
NP-Hard in most of its forms [2]. However, experience has shown that the final
performances of any learning method applied to the binarized data can drop
whenever d is too small. This suggests that the consistency constraint is not
sufficient to ensure that the relevant information is not lost in the binarization
of the data.

In practice, it is useful that the method determining the binarization provides
also a way to control the size of the binary codes produced. For this purpose, the
consistency constraint can be extended in a natural way as follows. A mapping
m is c-consistent with the training examples if and only if for any two examples
x ∈ Xi and y ∈ Xj , i 6= j, the Hamming distance between m(x) and m(y) is at
least c. Clearly, 1-consistency is identical to plain consistency. Experimentations
with LAD showed that binary mappings c-consistent with the training examples,
with c = 2 or 3 are still of reasonable size for most of the datasets and allow a
strong improvement of the overall behavior of the method.

For the sake of generality, the binarization methods must be able to handle
input spaces Ω composed of attributes of different kinds : binary, nominal (orde-
red and unordered), or continuous. For the purpose of interpretation simplicity,
each one of the d binary functions of the mapping m : Ω → {0, 1}d involves only
one original attribute of the input space Ω.

In the sequel, each binary function mi : Ω → {0, 1}, composing the binary
mapping m is called a discriminant and is restricted to the following types.
When associated to an unordered attribute (binary or nominal), a discriminant
is identified to one possible value of this attribute (e.g. “color = yellow”). In
the case of an ordered attribute (nominal or continuous), a discriminant is a
comparison to a threshold value (e.g. “age > 45”).

To be usable on real life datasets, a binary mapping must handle properly
unknown data, noisy data as well as a priori knowledge such as monotonic re-
lationship between attributes and the target. The algorithm proposed hereafter
addresses these issues. Though, space constraints prevent us from going into
further details.
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3 Existing Binarization Methods

Some learning methods generate, as a by-product, a discriminant set D that
defines a binary mapping m. For example, when a decision tree is built to learn
a classification task, each internal node of the tree is a discriminant. Moreover,
if no early stopping criterion is used and if the tree is not pruned, all examples
associated to one particular leaf are of the same class. Thus the binary mapping
of size d given by the number of nodes is consistent.

In this paper, the focus is put on global binarization algorithms, which usually
assume a large (implicit or explicit) initial discriminant set, from which a small
subset has to be extracted. For comparisons between global binarization methods
and local approaches such as decision trees, please refer to [6].

Given a training set X of examples partitioned as before into K classes, and
given a large set D of discriminants defining a binary mapping consistent with
X, the problem of finding a small subset of D, still consistent with X, can be
formalized as a minimum set covering problem. For each discriminant τ ∈ D
there is one variable zτ ∈ {0, 1} indicating whether τ belongs to the resulting
subset or not. The constraint matrix A has a row for each pair of examples
x ∈ Xi,y ∈ Xj , i 6= j. A(x,y),τ = 1 if the discriminant τ distinguishes the
example x from y (i.e. ∗ 6= mτ (x) 6= mτ (y) 6= ∗) and is 0 otherwise. A subset
of discriminants defines a binary mapping c-consistent with X if and only if its
characteristic vector z ∈ {0, 1}|D| satisfies Az ≥ c.

The minimum set covering problem is an NP-Complete problem, but for
our purpose, optimality is not critical and thus, any good heuristic is satisfac-
tory. The most obvious heuristic for the resolution of the minimum set covering
problem is the incremental greedy approach. It consists, at each iteration, in
selecting the column of A with the highest number of 1s, introducing the cor-
responding discriminant τ in the solution (i.e. switching zτ from 0 to 1), and
suppressing the rows i in A whenever Aiz ≥ c.

A more critical issue is related to the computational complexity of this ap-
proach. If D denotes the initial number of discriminants and if there are n
examples in X, the construction of the constraint matrix A is in O(n2D). A
naive implementation of this greedy heuristic has a complexity in O(n2Dd) and
has demonstrated its limitations in the experiments reported in [3].

A very nice solution proposed in [1] (denoted “Simple-Greedy” in Sect. 5)
consists in resolving this minimum set covering problem using the same greedy
heuristic, but without enumerating any column of A. A clever data-structure is
used that allows to determine the number of conflicts solved by a discriminant
at a given time in O(n). The total complexity of this approach is O(nDd),
where d is the size of the final subset of discriminants. However, this approach
is designed to solve the problem of the 1-consistent discriminant set and is not
easily generalizable to the c-consistency case.

The algorithm proposed in the next section is an alternative to this problem
as it addresses the c-consistency issue. Even though its worst case complexity is
in O(D log D +n2D), it is shown to be quite efficient in practice even with large
training samples.
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4 An Eliminative Approach

The algorithm Ideal (Iterative Discriminant Elimination Algorithm) is an eli-
minative procedure for finding a minimal c-consistent discriminant set. As for
the other global methods discussed in Section 3, the initial discriminant set D
is obtained by placing : along each ordered attribute, one discriminant between
every two projected examples of different classes and of consecutive values ; and
for each unordered attribute, one discriminant for each one of its possible values.

Ideal iteratively selects discriminants from D minimizing a merit function
w(τ). Each selected discriminant is eliminated if approved on a redundancy test
(checking whether the elimination of this discriminant would still leave at least
c others discriminating every pair distinguished by this discriminant), and kept
otherwise for the final solution. This process is repeated until all the discrimi-
nants have been tested once. Choosing as w(τ) the total number of pairs of
examples from different classes discriminated by τ would lead to an algorithm
very similar to the greedy heuristic described in Section 3. The only difference
would be that in the former case the solution is built iteratively while here it is
pruned iteratively.

Among the various merit functions w(τ) experimented [6], the one finally
selected for Ideal measures the number of local conflicts defined as follows. If
the discriminant τ is based on the original attribute a, w(τ) is the number of
pairs of examples from different classes, discriminated by τ and by no other
discriminants based on a.

This choice for w(τ) has several advantages, the most important one is the
computational complexity. The merit of each discriminant is computed (cheaply)
once at the beginning and then, whenever a discriminant τ is pruned, the merit
changes for only few discriminants (each one associated to the same original
attribute a as τ , and in the case of an ordered attribute even only the two
discriminants just below and just after τ along a). The second advantage of
this merit function is that it makes Ideal sensitive to the relation between
discriminants and original attributes. Consequently, this introduces a bias in
the final solution towards sets of discriminants well spread over the different
attributes, i.e. avoid (if possible) having many discriminants related to the same
attribute. We consider that in many applications, this is a desirable property.

5 Experiments

The response of Ideal to the rise of the consistency constraint has been studied
empirically. The algorithm was tested on 21 datasets from the UCI repository of
machine learning databases [4], with different values of c, from 1 to 4. Table 1
contains the results, including the test done with Simple-Greedy, for comparison
purposes. Table 1 shows that, against expectations, the obtained number of
discriminants increases more than linearly with c for 6 of the datasets. We find
explanation for this in the fact that there is a set of important discriminants
providing large amounts of separations and thus covering a significant part of



446 E. Mayoraz and M. Moreira

Table 1. Evolution of Ideal with the raise of the minimal consistency level. Simple-
Greedy (SG), a 1-consistent, constructive procedure is provided for reference. The
left-hand part of the table shows the size of the obtained discriminant sets. The D
column gives the initial size.

Final Size d Execution Time
consist. level c (Ideal) consist. level c (Ideal)

dataset D 1 2 3 4 SG 1 2 3 4 SG
abalone 5779 192 319 513 861 171 21.1 16.4 11.4 8.2 195e3

allhyper 440 21 36 59 110 18 53.7 43.1 31.6 22.2 16.3
allhypo 548 20 57 110 207 19 60.2 43.7 26.9 15.5 14.6
anneal 134 31 60 88 103 33 3.0 1.3 0.8 0.6 6.2
audiology 92 22 47 70 76 22 0.8 0.9 0.6 0.5 10.4
car 15 14 15 15 15 14 2.2 0.3 0.2 0.2 0.3
dermatology 141 13 21 27 34 13 5.0 7.3 7.9 8.2 1.2
ecoli 301 24 47 93 203 20 0.3 0.3 0.2 0.1 5.9
glass 692 17 30 47 71 15 0.4 0.4 0.4 0.3 5.6
heart-dise. 309 14 21 34 51 12 0.8 0.6 0.7 0.5 1.4
krkopt 39 34 34 34 34 34 35.3 3.8 3.2 3.2 217.6
letter 234 59 90 128 151 58 3598.3 2531.5 1368.2 395.9 2586.9
mushroom 112 7 14 29 42 6 1469.2 1853.2 1453.5 718.3 4.6
nursery 19 17 19 19 19 17 110.7 1.8 1.8 1.8 2.5
page-blocks 3378 45 82 126 193 39 112.0 88.8 64.0 45.1 396.1
diabetes 856 24 40 66 127 22 2.2 1.8 1.5 1.0 17.0
segmentati. 9817 28 53 74 100 24 109.2 147.6 200.9 177.6 698.8
soybean 97 25 35 44 52 22 6.7 9.5 8.0 8.2 43.9
vehicle 1215 34 49 71 92 26 15.0 20.2 17.3 18.4 44.9
vowel 7077 26 38 59 86 22 9.7 10.1 10.3 9.6 773.6
yeast 374 39 82 173 271 41 4.0 2.6 1.0 0.3 139.4
average ratio d/D 20.4 27.1 34.8 42.9 20.1

(std) ±30.3 ±32.4 ±33.5 ±34.2 ±30.4
average evolution 0.7 1.7 3.1 -0.15 -0.28 -0.43

(std) ±0.4 ±1.1 ±2.4 ±0.4 ±0.5 ±0.5

the plain-consistency solution, but as the consistency constraint is tightened,
discriminants of increasing specificity are added to the solution, resulting in
a faster increase of the latter. Nevertheless, for the majority of the remaining
datasets the increase is less than linear, corresponding to the expected behavior.

In terms of execution time, although it generally decreases with c, that is
not a general behavior. Both increases and decreases can be explained. However,
no element allows to predict the particular evolution for a given dataset, that
being dependent on its intrinsic, non-observable characteristics. The redundancy
test of Ideal is composed mainly of two nested loops, the outermost dedicated
to the pairs of examples to be tested and the innermost to the search in other
dimensions for at least c alternative discriminants separating those pairs. The
raise of c abbreviates the outermost loop, since less time will probably be needed
to find a non-compliant pair, but it will prolong the innermost loop because more
alternative dimensions must be analyzed until the minimal separability is found.

The observed decreasing tendency in execution time is an argument in favor
of eliminative procedures, as their search path is shortened when the consistency
constraint is strengthened, as opposed to constructive approaches.
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6 Conclusions and Further Research

We have described the basic concepts of Logical Analysis of Data and highligh-
ted the need for finding a suitable binary mapping that can transform data of
arbitrary form into binary data, unique format tractable by LAD.

Ideal, an eliminative algorithm for finding a minimal discriminant set consi-
stent with a set of training examples, has been described. The relation between
the enlargement of the minimal differentiability among binarized objects with
their resulting size growth was also examined. It has been shown that the growth
rate depends on the data, although in the majority of the tested cases less than
linear growth has been observed.

For comparison, an alternative, constructive approach has been briefly de-
scribed and tested, with 1-consistent constraint. We speculate that constructive
procedures are, in principle, less adapted to the referred constraint tightening,
due to the consequent longer search path. No empirical evidence has been provi-
ded, though, due to the absence of a constructive approach of satisfying efficiency
that is able to deal with the problem.

Concerning further work, we refer that an early stopping criterion could
accelerate the proposed algorithm execution without major result deterioration.
This aspect is discussed in [6], although a suitable solution is yet to be developed.
In fact, the time complexity of the redundancy tests tends to O(n2) as the
elimination of discriminants proceeds. In this latter phase, small decreases are
verified in the discriminant set size.

A natural goal for follow-up activity consists in measuring the quality of the
obtained binary mappings applied to LAD in classification tasks.
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