
Learning from Highly Structured Data by
Decomposition?

René Mac Kinney-Romero and Christophe Giraud-Carrier

Department of Computer Science, University of Bristol
Bristol, BS8 1UB, UK

{romero,cgc}@cs.bristol.ac.uk

Abstract. This paper addresses the problem of learning from highly
structured data. Specifically, it describes a procedure, called decomposi-
tion, that allows a learner to access automatically the subparts of exam-
ples represented as closed terms in a higher-order language. This proce-
dure maintains a clear distinction between the structure of an individual
and its properties. A learning system based on decomposition is also
presented and several examples of its use are described.

1 Introduction

Machine Learning (ML) deals with the induction of general descriptions (e.g.,
decision trees, neural networks) from specific instances. That is, given a set of
examples of a target concept, a ML system induces a representation of the con-
cept, which explains the examples and accurately extends to previously unseen
instances of the concept.

Most ML systems use an attribute-value representation for the examples. Alt-
hough this simple representation allows the building of efficient learners, it also
hinders the ability of such systems to handle directly examples and concepts with
complex structure. To overcome this limitation, two approaches have been used.
The first one is based on data transformation or pre-processing. Here, a structu-
red (e.g., first-order) representation is mapped into an equivalent attribute-value
representation by capturing subparts of structures and n-ary predicates (n > 1)
as new attributes, which can then be manipulated directly by standard attribute-
value learners (e.g., see the LINUS system [7]). The second approach consists
of “upgrading” the learner. Here, the learner is designed so as to be able to
manipulate structured representations directly (e.g., see the ILP framework for
first-order concepts [9]).

From a practitioner’s standpoint, there is a clear advantage in the second
approach since it allows the user to represent the problem in a “natural” way
(i.e., consistent with domain-specific standards or practices), without recourse
to a pre-processing phase, which is tedious, prone to loss of information and
often costly as it may require expert intervention. In keeping with this approach
to make ML techniques more readily available to practitioners, our research
? This work is funded in part by grants from CONACYT and UAM, México

J.M. Żytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 436–441, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Learning from Highly Structured Data by Decomposition 437

focuses on the use of sufficiently expressive representation languages so that
highly-structured data can be manipulated transparently by the corresponding
learning systems. In particular, a novel, higher-order framework, in which exam-
ples are closed terms and concepts are Escher programs, has been developed [5].
This paper describes a learning algorithm for the above higher-order framework
based on a decomposition method. Decomposition can be regarded as an exten-
sion of flattening [10] to higher-order representations, which maintains a clear
distinction between the structure of an individual and its properties.

2 Decomposition

The application of machine learning to real-world problems generally requires the
mapping of the user’s conceptual view of the data to a representation suitable for
use by the learner. In addition to being tedious and often costly, this paradigm is
undesirable as it may cause a loss of information. We argue that learners should
be taylored to representations, rather than the other way around. In other words,
the user should be able to describe the problem as is most natural to him/her and
leave the learner to manipulate the representation and induce generalisations.

To this end, we have proposed an “individuals-as-terms” representation [4],
where examples are highly-structured closed terms in a higher-order logic lan-
guage. As an example, consider the mutagenicity problem, which is concerned
with identifying nitroaromatic and heteroaromatic mutagenic compounds. In this
problem, the examples are molecules together with some of their properties. A
relatively natural representation for such compounds, as proposed in [2], consists
of closed terms, here tuples, of the following form.

type Molecule = (Ind1, IndA, Lumo, {Atom}, {Bond})

where Ind1 and IndA are boolean values relating to structural properties, Lumo
is the energy level of the lowest unoccupied molecular orbital, and {Atom} and
{Bond} capture the structure of the molecule as a graph, i.e., a set of atoms and
the bonds between them. Atoms and bonds are defined as follows.

type Atom = (Label, Element, AtomType, Charge)
type Bond = ({Label}, BondType)

Hence, a sample molecule has the following representation.

(False,False,−1.034, {(1,C, 22,−0.128), (10,H, 3, 0.132),
(11,C, 29, 0.002), ...}, {({1, 2}, 7), ({1, 7}, 1), ...})

Standard transformational techniques, such as flattening [10] do not apply
to such data. We extend these through a technique, called decomposition, whose
task is to extract the structural information of the examples, thus allowing the
learning tool to access directly sub-parts of the structures being represented.

Decomposition takes a highly structured term and a maximum depth, and
returns the set of all possible variables up to the specified depth. A depth of



438 R.M. Kinney-Romero and C. Giraud-Carrier

zero returns only one variable representing the whole structure. A depth of one
returns one variable for each component at the top level (e.g., each element of a
tuple or set) and so on. The decomposition set consists of tuples of the form

{〈name, type, value, structural predicates〉}

so that each variable is qualified by its name, type, value and the structural pre-
dicates needed to obtain it. The following illustrates the decomposition technique
on the the above sample molecule. Assuming a maximum depth of 1, decompo-
sition will return the following set, where v0 refers to the top-level term.

{〈v1, Ind1,False, v0 == (v1, v2, v3, v4, v5)〉,
〈v2, IndA,False, v0 == (v1, v2, v3, v4, v5)〉,
〈v3,Lumo,−1.034, v0 == (v1, v2, v3, v4, v5)〉,
〈v4, {Atom}, {. . .}, v0 == (v1, v2, v3, v4, v5)〉,
〈v5, {Bond}, {. . .}, v0 == (v1, v2, v3, v4, v5)〉}

With a depth of 2, v4 and v5 would be further decomposed. The decomposi-
tion of v4, which has value

{(1, C, 22,−0.128), (10, H, 3, 0.132), (11, C, 29, 0.002), . . .}

for example, would yield

{〈v6,Atom, (1,C, 22,−0.128), v0 == (v1, v2, v3, v4, v5) ∧ v6 ∈ v4〉,
〈v7,Atom, (10,H, 3, 0.132), v0 == (v1, v2, v3, v4, v5) ∧ v7 ∈ v4〉, . . .}

The current implementation of the decomposition algorithm supports only
lists, tuples and sets. It is possible, however, to devise a syntax in which the user
of the learning system is able to give new types along with the information on
how to decompose them.

3 Learning by Decomposition

The approach presented has been implemented in ALFIE, an Algorithm for
Learning Functions In Escher. This implementation is based on the framework
presented in [3], which uses the Escher language [8] as the representation vehicle
for examples and concepts.

ALFIE induces concepts in the form of decision lists, i.e.,

if E1 then t1 else if E2 then t2 else . . . if En then tm else t0

where each Ei is a boolean expression and the tj ’s are class labels. The class t0
is called the default and is generally, although not necessarily, the majority class.
The algorithm uses sequential covering to find each Ei. It uses the decomposition
set of the first example and from it finds the E1 with the highest accuracy
(measured as the information gain on covering). It then computes the set of



Learning from Highly Structured Data by Decomposition 439

Input: decomposition set D of E and set of properties P = {p : σ → Bool}
Output: set of atomic conditions C

C = φ
For all t ∈ D such that value(t) == k

C = C ∪ {name(t) == k}
For all t1, t2 ∈ D such that type(t1) == type(t2) and value(t1) == value(t2)

C = C ∪ {name(t1) == name(t2)}
For all t1, . . . , tn ∈ D that match σ, where p : σ → Bool ∈ P

C = C ∪ {p(t1, . . . , tn)}
return C

Fig. 1. Algorithm to Generate Atomic Conditions

examples that are not yet covered, selects the first one and repeats this procedure
until all examples are covered.

To create the Ei’s, ALFIE builds conjunctions of atomic conditions from the
decomposed examples as shown in Figure 1. ALFIE uses information about the
values of variables to create all possible equality conditions between a variable’s
value and a constant, and between two variables’ values. In addition, the user
may provide a set of boolean functions that can be applied to the elements of the
decomposition set (set P in Figure 1). These functions represent properties which
may be present in the sub-parts of the structure of the data. They constitute the
background knowledge of the learner and may be quite complex. For example,
a function to test whether a molecule contains less than 5 oxygen atoms would
have the following (higher-order) form.

(card(filter(v, v == (l, e, a, c) ∧ a == O)) < 5)

To illustrate the algorithm of Figure 1, consider the following partial decom-
position of a molecule (set D).

{〈v3,Bool,False, v0 == (v1, v2, v3, v4, v5)〉,
〈v4, IndA,−1.387, v0 == (v1, v2, v3, v4, v5)〉,
〈v53,Atom,H, v0 == (v1, v2, v3, v4, v5) ∧ v51 ∈ v4 ∧ v51 == (v52, v53, v54, v55)〉,
〈v98,Atom,H, v0 == (v1, v2, v3, v4, v5) ∧ v96 ∈ v4 ∧ v96 == (v97, v98, v99, v100)〉,
〈v238,Bond, {3, 4}, v0 == (v1, v2, v3, v4, v5) ∧ v237 ∈ v5 ∧ v237 == (v238, v239)〉}

Assume the following function is also given as background knowledge (set P ).

(> −2.368) : IndA → Bool

Then the set C produced by the algorithm is:

{v3 == False, v4 == −1.387, v53 == H, v98 == H, v238 == {3, 4},
v53 == v98, v4 > −2.368}



440 R.M. Kinney-Romero and C. Giraud-Carrier

4 Experiments

Although they do not require decomposition, a number of experiments were
carried out with attribute-value problems to check ALFIE’s ability to generate
accurate theories. The results obtained on these problems compare favourably
with those of standard learners, such as C4.5. The experiments detailled here
focus on learning from highly structured data.

4.1 Bongard

The 47th pattern recognition problem from [1] aims at inducing the concept
“there is a circle inside a triangle” from examples consisting of a set of shapes
that may contain other shapes inside them. One of the simplest representations
consists of encoding a figure as a pair, where the first element is the shape of
the figure and the second a set of the figures contained in it.

Figure = Null | (Shape, {Figure})
Shape = Circle | Triangle

The examples are sets of such figures together with a truth value. Given such
a representation, ALFIE produces the solution

f(v1) = if(v5 ∈ v1 ∧ v5 == (v6, v7) ∧ v8 ∈ v7 ∧ v8 == (v9, v10)
∧v9 == Circle ∧ v6 == Triangle) then True else False

whose English equivalent is “if there is a Circle inside a Triangle then True else
False.”

4.2 Mutagenicity

Mutagenicity is a well known dataset in the ILP community and a number of
experiments with this problem are reported in [6]. The dataset consists of 230
chemical compounds, 42 of which have proven difficult to classify automatically.
The experiment was carried out on the remaining 188. A chemical compound
is represented as a highly-structured closed term consisting of the atoms and
bonds as discussed above. An atom has a label, an element, a type (there are
233 such types) and a partial charge (which is a real number). A bond connects
a pair of atoms and has one of 8 types.

A ten fold cross validation experiment was carried out and gave an average
accuracy of 87.3% with a standard deviation of 4.99%. This is comparable to
the results obtained on the same data by others [6].

Unfortunately, the induced theories seem to rely rather heavily on the addi-
tional properties of the molecules (i.e., Ind1, IndA and Lumo) rather than their
molecular structure. To further test the value of the decomposition technique,
we intend to repeat this problem with only the molecular structure to describe
the examples (i.e., leaving the three “propositional properties” out).



Learning from Highly Structured Data by Decomposition 441

5 Conclusion and Future Work

A new approach to dealing with highly structured examples has been presented.
This approach relies on a technique called decomposition that is able to extract
the structural predicates from an example, thus allowing the learning system
to concentrate on the properties that the components of such structure may
present. A learning system, ALFIE, based on this idea has been implemented
and preliminary experiments demonstrate promise.

A number of issues remain open as the subject of future work. In particular,

– ALFIE, like other similar learning systems, is susceptible to the order of the
examples. In ALFIE’s case, it is interesting to point out that the effect of
ordering seems more evident in problems whose examples have little or no
structure.

– It is possible to have more operators for the construction of the Ei’s, such
as negation and disjunction.

– Decomposition can be improved further by analysing the sets that are pro-
duced. It is likely that information is being repeated. This should be easy to
check and correct. It would also be interesting to see how the depth of the
decomposition affects the accuracy of the learning system.

Finally, more experiments are needed with problems presenting high structures
in their examples and the associated concepts.

References

1. M. Bongard. Pattern Recognition. Spartan Books, 1970.
2. A.F. Bowers. Early experiments with a higher-order decision-tree learner. In

Proceedings of the COMPULOGNet Area Meeting on Computational Logic and
Machine Learning, pages 42–48, 1998.

3. A.F. Bowers, C. Giraud-Carrier, C. Kennedy, J.W. Lloyd, and R. MacKinney-
Romero. A framework for higher-order inductive machine learning. Compulog Net
meeting, September 1997.

4. A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Higher-order logic for knowledge
representation in inductive learning. 1999, (in preparation).

5. P.A. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly typed inductive concept
learning. In Inductive Logic Programming: ILP-98, 1998.

6. R.D. King, S. Muggleton, A. Srinivasan, and M. Sternberg. Structure-activity re-
lationships derived by machine learning: The use of atoms and bonds and their
connectivities to predict mutagenicity in inductive learning programming. Procee-
dings of the National Academy of Sciences, 93:438–442, 1996.

7. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

8. J.W. Lloyd. Declarative programming in Escher. Technical report, University of
Bristol, 1995.

9. S. Muggleton, editor. Inductive Logic Programming. Academic Press Ltd., 24-28
Oval Road, London NW1 7DX, 1992.

10. C. Rouveirol. Flattening and Saturation: Two Representations Changes for Gene-
ralisation, volume 14. Kluwer Academic Publishers, Boston, 1994.


	Introduction
	Decomposition
	Learning by Decomposition
	Experiments
	Bongard
	Mutagenicity

	Conclusion and Future Work



