
Discovery of “Interesting” Data Dependencies
from a Workload of SQL Statements

S. Lopes J-M. Petit F. Toumani

Université Blaise Pascal
Laboratoire LIMOS

Campus Universitaire des Cézeaux
24 avenue des Landais

63 177 Aubière cedex, France
Tel. : 04-73-40-74-92 Fax. : 04-73-40-74-44

{slopes,jmpetit,ftoumani}@libd2.univ-bpclermont.fr

Abstract. Discovering data dependencies consists in producing the whole
set of a given class of data dependencies holding in a database, the task of
selecting the interesting ones being usually left to an expert user. In this
paper we take another look at the problems of discovering inclusion and
functional dependencies in relational databases. We define rigourously
the so-called logical navigation from a workload of sql statements. This
assumption leads us to devise tractable algorithms for discovering “in-
teresting” inclusion and functional dependencies.

1 Introduction and related works

The problem of discovering data dependencies can be formulated as follows:
given a database instance, find all non-trivial data dependencies satisfied by that
particular instance [9].

These problems are known to be hard, at least in the worst case [9]. Existing
KDD approaches consist in producing the whole set of dependencies holding in
a database [4, 1, 8, 3].

Nevertheless, some of the discovered dependencies can be accidental or er-
roneous: The task of selecting the “interesting” dependencies is left to an ex-
pert user. More generally, the issue of interestingness of discovered knowledge is
known to be quite hard in data mining [6, 10].

Example 1. Consider the relations Instructor and Department of Table 1. An
inclusion dependency holds from Instructor[rank] to Department[dnumber]. How-
ever, the attributes rank and dnumber do not represent the same information:
rank gives the level of qualification of instructors whereas dnumber is an inte-
ger denoting the chronology of creation of departments. This kind of inclusion
dependency is erroneous and dangerous to use in database applications: for in-
stance, it does not make sense to enforce a referential integrity constraint from
Instructor[rank] to Department[dnumber].

J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 430−435, 1999.
•

© Springer−Verlag Berlin Heidelberg 1999

Instructor
ssn status rank
1 Assoc. Prof 1
2 Prof. 2
3 Assist. 1
4 Assist. 2
5 Prof. 2
6 Prof. 1
7 Assoc. Prof. 1

TeachesIn
ssn dnum year depname
1 1 85 Biochemistry
1 5 94 Admission
2 2 92 C.S
3 2 98 C.S
4 3 98 Geophysics
5 1 75 Biochemistry
6 5 88 Admission

Department
dnumber dname mgr

1 Biochemistry 5
2 C.S. 2
3 Geophysics 2
4 Medical center 10
5 Admission 12
6 Genetic 6

Table 1. A relational database

In this paper, we consider the problem of finding “interesting” dependencies
from the set of all functional and inclusion dependencies holding in a database.

We argue that “interesting” dependencies concern duplicate attribute se-
quences1 that are used to link together the relation schemas in a database
schema. Such attribute sequences form the so-called logical navigation in a
database schema.

Duplicate attribute sequences are usually used as access paths to navigate in
a relational database schema. When querying a relational database, users have
to explicitly specify logical access paths between relation schemas [7].

Given a workload of sql statements, the intuition is to say that we have to
capture communicating attributes, i.e., attribute sequences involved in sql join
statements. The obtainment of such a workload is rather simple in recent rdbms
(cf. next Section).

Example 2. The inclusion dependency Instructor[rank] ⊆ Department[dnumber] given
in Example 1 cannot be deduced using the logical navigation. Indeed, it is reason-
able to assume that the attributes rank and dnumber will probably never be used
together in a join condition to relate instructors to departments. Conversely, the
pairs of attributes (Instructor[ssn], TeachesIn[ssn]) and (Department[dnumber], Teach-
esIn[dnum]) will certainly occur in a join condition. Therefore, the inclusion depen-
dencies TeachesIn[ssn] ⊆ Instructor[ssn] and TeachesIn[dnum] ⊆ Department[dnumber]
could be found out.

Therefore, we formally define the logical navigation inherently available in
relational databases thanks to an sql workload. By this way, two hard problems
are solved in the same time:

– the number of candidate dependencies is reduced drastically,
– no expert user has to be involved to distinguish interesting dependencies.

Paper organization The logical navigation is formally defined in Section 2. We
point out how to discover inclusion and approximate dependencies in Section 3,
and functional dependencies in Section 4. We conclude in Section 5.

Due to lack of space, we refer the reader to text books such as [9] for relational
database concepts.

1 ordered set of attributes

431Discovery of "Interesting" Data Dependencies from a Workload of SQL Statements

2 The logical navigation

We define the logical navigation w.r.t. a set of join queries on a given database.
Informally, a logical navigation is a binary relation which associates an attribute
sequence Ri.X with another attribute sequence Rj .Y such that X and Y appear
together in a join condition.

Details of discovering a logical navigation from an operational database go
beyond the scope of this paper. In this section, we only give some clues to cope
with this task.

To find out the logical navigation, a simple solution is to have a workload
of sql statements which is representative of the system. In modern dbms, such
representative workload can be generated by logging activity on the server and
filtering the events we want to monitor [2]. For instance, this task can be achieved
using the profiler under ms sql server 7.0 or the trace utilities under
oracle 8.

We represent uniformly the pairs of attribute sequences used in a join condi-
tion in a set called Q. An element of Q is denoted by Ri[A1..Ak] �� Rj [B1..Bk]
and indicates that each attribute Ri[Al], for l ∈ [1, k], is compared with an
attribute Rj [Bl] in a join condition.

We give now a formal definition of the logical navigation.

Definition 1. Let R be a relational database schema and U be the set of its
attributes. Let Q be the set of pairs of attribute sequences extracted from a rep-
resentative sql workload on a database r over R.
The logical navigation of R, denoted by nav, is a binary relation over 2U × 2U

defined by:

nav(Ri.X, Rj .Y)
def
= ∃q ∈ Q s.t. q = Ri[X] �� Rj [Y]

nav is symmetric but neither reflexive nor transitive. Let nav∗ be the reflexive
transitive closure of nav. nav∗ becomes an equivalence relation and let πnav∗ be
the set of equivalence classes of nav∗. By this way, each equivalence class captures
duplicated attribute sequences.

Note that computing the reflexive transitive closure of nav can be achieved
in O(n3) (e.g. Warshall algorithm) where n is the number of attribute sequences
implied in nav.

Example 3. Consider the database given in Table 1. From a representative work-
load of this database, the set Q should be:

Q=

⎧⎨
⎩

Instructor[ssn] �� TeachesIn[ssn],
Department[dnumber] �� TeachesIn[dnum],

Instructor[ssn] �� Department[mgr]

⎫⎬
⎭

Thus, the set of equivalence classes is:

πnav∗=
{

{ Instructor[ssn], Department[mgr], TeachesIn[ssn]},
{Department[dnumber], TeachesIn[dnum]}

}

432 S. Lopes, J−M. Petit, and F. Toumani

We sketch in the two following sections how the logical navigation will give
us valuable clues to discover interesting inclusion dependencies (Section 3) and
interesting functional dependencies (Section 4).
In the sequel, the input parameters of these discovery tasks are a database r over
a database schema R and the logical navigation πnav∗ .

3 Application to inclusion and approximate dependencies
discovery

Binary combinations of attribute sequences of each equivalence class of πnav∗

will deliver approximate inclusion dependencies.

Whatever the database instance, we know exactly the number of pair (R.X, S.Y)
from which approximate inclusion dependencies will be inferred. Indeed, each
equivalence class of n elements will deliver C2

n = n(n − 1)/2 candidates. The
number of database accesses is bounded by the following property.

Property 1. Let l be the number of equivalence classes of πnav∗ . Let Ci be the
ith equivalence class of πnav∗ , i ∈ [1, l] and ki = |Ci|. The number of pair implied
by πnav∗ is equal to

∑l
i=1 ki(ki − 1)/2.

Database accesses Let us introduce approximate inclusion dependencies based
on the error measure g3 [5]. The idea is to count the minimal number of tuples
we have to remove (from the relation of the left-hand side) to obtain a relation
that satisfies the dependency. Then, the error g3 of an approximate inclusion
dependency is defined as:

g3(Ri[Y] ⊆ Rj [Z]) = 1−max{|s||s ⊆ ri and Ri[Y] ⊆ Rj [Z] holds in s and rj }
|ri|

In the sequel, approximate inclusion dependencies will be parameterized by their
error g3 i.e. Ri[Y] ⊆g3 Rj [Z].

From a pair of attribute sequences, it remains to find out the direction of the
associated inclusion dependency and to compute its error.
We decide to determine the direction of an approximate inclusion dependency
between two attribute sequences induced by πnav∗ by comparing the number of
their distinct values.

Let C be an equivalence class of πnav∗ and let Ri.X and Rj .Y be two attribute
sequences of C. If |πX(ri)| ≤ |πY (rj)| then the direction of the approximate
inclusion dependency is from Ri to Rj .

It remains to compute the error measure g3. In fact, the maximal subset s
of the relation ri for which the inclusion dependency Ri[X] ⊆ Rj [Y] holds
is given by the semi-join (denoted by the symbol �) between X and Y , i.e.
g3(Ri[X] ⊆ Rj [Y]) = 1 − |ri �(X=Y) rj |/|ri |.

Given a pair of attribute sequences, we can effectively determine the exis-
tence of approximate inclusion dependency by performing sql queries against
the database.

433Discovery of "Interesting" Data Dependencies from a Workload of SQL Statements

Example 4. Assume that we want to compute the error associated with the
inclusion dependency Department[mgr] ⊆g3 Instructor[ssn]. From Table 1, we have:
|Department �(mgr=ssn) Instructor| = 4 and |Department| = 6. Therefore, the error
g3 is equal to 1/3.

Within this framework, an algorithm has been devised to discover approxi-
mate inclusion dependencies from πnav∗ in [11].

Example 5. For instance, the following approximate inclusion dependencies can
be discovered:
I = {TeachesIn[ssn] ⊆0 Instructor[ssn], TeachesIn[dnum] ⊆0 Department[dnumber],
Department[mgr] ⊆1/3 Instructor[ssn], Department[mgr] ⊆1/3 TeachesIn[ssn]}

4 Application to functional dependencies discovery

Each attribute sequences of each equivalence class of πnav∗ will possibly deliver
left-hand sides of interesting functional dependencies. As for inclusion depen-
dencies, the following property bounds the number of candidates.

Property 2. Let l be the number of equivalence classes of πnav∗ . Let Ci be the
ith equivalence class of πnav∗ , i ∈ [1, l] and ki = |Ci|. The number of left-hand
sides implied by πnav∗ is equal to

∑l
i=1 ki.

Database accesses From a given left-hand side X of a relation schema R, the can-
didate right-hand sides are in R\X. Let A ∈ R\X, the functional dependencies
R : X → A holds in r iff |πX∪A(r)| = |πX(r)| [3].

Such tests can be easily performed with sql queries.

Example 6. From the set πnav∗given in Example 3, the following exact functional
dependencies can be carried out by querying the database given in Table 1:
Instructor : ssn −→ status, rank
TeachesIn : dnum −→ depname
Department : dnumber −→ dname, mgr

5 Conclusion

The main contribution of this paper is to define rigourously the logical navigation
inherently available in relational databases. From it, tractable algorithms for
discovering “interesting” functional and inclusion dependencies can be devised.

In [12], we showed that such dependencies are useful to reverse engineer first
normal form relational databases.

It must be clear that only a subset of all possible functional and inclusion de-
pendencies is discovered from the logical navigation. In our opinion, the missing
inclusion dependencies (those which cannot be deduced from the logical naviga-
tion) seem to be of little interest in database applications. However, some missing

434 S. Lopes, J−M. Petit, and F. Toumani

functional dependencies can be interesting: For example, the dependency Teach-
esIn : ssn,dnum −→ year, which holds in the relation TeachesIn given in Table 1, is
not revealed by the logical navigation. We are currently working on the design
of efficient algorithms to discover a small cover of the functional dependencies
holding in a relation .

Currently, we are working on an implementation of a tool to manage the
logical navigation for aiding the database administrator both for re-organizing
its database schema thanks to inclusion and functional dependencies and for
inquiring data consistency from such dependencies.

References

1. S. Bell and P. Brockhausen. Discovery of Data Dependencies in Relational
Databases. Technical report, LS-8 Report 14, University of Dortmund, 18p, April
1995.

2. S. Chaudhuri and V. Narasayya. Autoadmin ”what-if” Index Analysis Utility. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 367–378, Seattle, June 1998.

3. Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Efficient Discovery of
Functional and Approximate Dependencies Using Partitions. In Proceedings of the
14th IEEE International Conference on Data Engineering, Orlando, USA, 1998.

4. M. Kantola, H. Mannila, K-J. Räihä, and H. Siirtola. Discovering Functional
and Inclusion Dependencies in Relational Databases. International Journal of
Intelligent Systems, 7(1):591–607, 1992.

5. J. Kivinen and H. Mannila. Approximate Inference of Functional Dependencies
from Relations. Theoretical Computer Science, 149(1):129–149, 1995.

6. M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Find-
ing Interesting Rules from Large Sets of Discovered Association Rules. In Proceed-
ings of the 3td International Conference on Information and Knowledge Manage-
ment, pages 401–407, December 1994.

7. D. Maier, J.D. Ullman, and M. Y. Vardi. On the Foundations of the Universal
Relation Model. ACM Transaction on Database Systems, 9(2):283–308, June 1984.

8. H. Mannila and H. Toivonen. Levelwise Search and Borders of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

9. Heikki Mannila and Kari-Jouko Räihä. The Design of Relational Databases.
Addison-Wesley, second edition, 1994.

10. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information System, 24(1):25–46, 1999.

11. J-M. Petit and F. Toumani. Discovery of inclusion and approximate dependencies
in databases. In To appear in BDA99 (french conference on DB), 20 pages, October
1999.

12. J-M. Petit, F. Toumani, J-F. Boulicaut, and J. Kouloumdjian. Towards the Reverse
Engineering of Denormalized Relational Databases. In S. Su, editor, Proceedings
of the 12th IEEE International Conference on Data Engineering, pages 218–227.
IEEE Computer Society, New Orleans, February 1996.

435Discovery of "Interesting" Data Dependencies from a Workload of SQL Statements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

