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Abstract. Recently, some methods for the induction of Decision Trees
have received much theoretical attention. While some of these works fo-
cused on efficient top-down induction algorithms, others investigated the
pruning of large trees to obtain small and accurate formulae. This paper
discusses the practical possibility of combining and generalizing both ap-
proaches, to use them on various classes of concept representations, not
strictly restricted to decision trees or formulae built from decision trees.
The algorithm, Wirei, is able to produce decision trees, decision lists,
simple rules, disjunctive normal form formulae, a variant of multilinear
polynomials, and more. This shifting ability allows to reduce the risk of
deviating from valuable concepts during the induction. As an example,
in a previously used simulated noisy dataset, the algorithm managed to
find systematically the target concept itself, when using an adequate con-
cept representation. Further experiments on twenty-two readily available
datasets show the ability of Wirei to build small and accurate concept
representations, which lets the user choose his formalism to best suit his
interpretation needs, in particular for mining purposes.

1 Introduction

Many of the classical problems in designing machine learning (ML) algorithms
can be understood by means of accuracy, time/space complexity, size and in-
telligibility issues. Generally, satisfying most of them is essentially a matter of
compromises. In such cases, the problem is to transform rapidly enough the
dataset to a useful compact representation that, while capturing most of the
generalizable knowledge of the original data, will stay sufficiently small to be in-
telligible and interpretable. While the rapid increase in computer’s performances
has somewhat de-emphasized the time requirements to obtain the algorithm’s
outputs [Qui96], the other requirements cannot be easily solved. As an exam-
ple, it was recently observed that the end user of ML algorithms is likely to
appreciate various output types against other ones, that is, not a single concept
representation class fits to all users, and the ability to shift in practice the output
type is of great importance. This is also important from a theoretical viewpoint.
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Some problems admit a small coding on some concept representation, but lead
to overly large representations on other classes.
There has been recently much work to establish sound theoretical bases for the
induction of decision trees, to explain and improve the behavior of algorithms
such as C4.5 [KM96, KM98, SS98]. Such algorithms proceed by a “top-down
and prune” scheme: a large formula is induced, which is pruned in a latter step,
to obtain a small and accurate final output. While [KM96, SS98] have focused
on improving the top-down induction, [KM98] have established the theoretical
bases of a new pruning scheme, with theoretically proven near-optimal behavior.
These schemes, thought initially focused on decision trees, have remarkable ge-
neral properties, which can be applied outside the class of decision trees. A
previous study [NJ98] shows that the class of decision lists, which shares close
properties with decision trees, can benefit of principles closely related to the
top-down induction. In that paper, we are concerned by the generalization of
the whole “top-down and prune” scheme to a very large scope of concept repre-
sentations. More precisely, we propose a general principle derived from the weak
learning framework of [SS98] and the pruning framework of [KM98], to which we
relate to as Wirei (for Weak Induction REpresentation-independent). Wirei is
able to induce on any problem formulae such as Decision Lists (DL), Decision
Committees (DC, a variant of multilinear polynomials), Decision Trees (DT),
Disjunctive Normal Form formulae (DNF), simple monomials, and more.
Wirei is much different from approaches such as C4.5rules, which proposes
to induce rules from DT. Indeed, in C4.5rules, a DT is always primarily indu-
ced, which in a subsequent step is transformed into a set of rules. Wirei, on the
other hand, processes directly formulae inside the chosen class. Experiments car-
ried out on twenty-two publicly available domains reveal that on each dataset,
concept representations built from various classes can be much different from
each other while still being small and accurate. Wirei was also able to exhibit
on runs over noisy domains the target formula itself, thus achieving an optimal
compromise between accuracy and size. The time complexity of Wirei compares
favorably to that of classical approaches such as C4.5.
After a general presentation of Wirei, and its applications to a large scope of
concept representation classes, we relate experiments conducted using Wirei on
twenty-two domains, almost all of which can be found on the UCI repository of
machine learning database [BKM98].

2 Wirei

Throughout the paper, the following notations are used: LS denotes the set
examples used for training, each of which is described with n attributes, and
belongs to one class among c. The following subsections present the basis of the
growing and pruning algorithms. For the sake of clarity, an applicative example
(generally on DT) is provided for all, and the specific applications to other classes
are presented on a subsequent devoted part.
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2.1 A General Top-down Induction Algorithm

The principle is to repeatedly optimize, in a top-down manner, a particular
Z criterion over the partition induced by the current formula f on LS. This
partition into subsets LS1, LS2, ..., LSk satisfies the following two axioms:

1. ∀1 ≤ j ≤ k, any two examples of LSj are classified exactly in the same
fashion,

2. ∀1 ≤ i < j ≤ k, any two examples of respectively LSi and LSj are not
classified in the same fashion.

It is important to note the term “fashion” instead of “class”. Two examples
classified in the same fashion follow exactly the same path in the formula, e.g.
the same leaf in a DT. To each example is associated a weight, which mimics its
appearance probability inside LS (if uniform, all weights equal 1/|LS|, where
|.| is the cardinality function). We adopt the convention that examples are de-
scribed using couples of the type (o, co), where o is an observation, and co its
corresponding class; its weight is written w((o, co)). Fix as [[π]] the function re-
turning the truth value of a predicate π. Define for any class 1 ≤ l ≤ c and any
subset LSj of the partition the following quantities:

W j,l
+ =

∑
(o,co)∈LSj

w((o, co))[[co = l]] ; W j,l
− =

∑
(o,co)∈LSj

w((o, co))[[co 6= l]]

In other words, W j,l
+ represents the fraction of examples of class l present in

subset LSj , and W j,l
− represents the fraction of examples of classes 6= l present

in subset LSj . The Z criterion of [SS98] is the following:

Z = 2
∑

j

∑
l

√
W j,l

+ W j,l
−

The core of procedure TDbuild simply consists in repeatedly optimizing the
decreasing of the current Z, until either no decreasing is possible, or some upper-
bound Imax of the formula’s size is reached. In order to keep a fast procedure,
in any rule-based formula (e.g. DL, DNF), the current search is focused on a
currently grown rule, until a new one is grown when no addition in the current
rule decreases Z.

2.2 A General Pruning Algorithm

The objective is to test exactly once the removal of each of the subparts of the
formula f obtained from TDbuild. The test is bottom-up for all formula based
on literal or rule-ordering, such as decision trees or decision lists. For other
formulae without ordering, such as DNF, it “simulates” a bottom-up scanning
of the formulae. The ordering of the former formulae supposes that some parts
Q of the formula may only be reached after having reached another part P . In
the case of decision trees, P is an internal node, and all possible Q are internal
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nodes belonging to the subtree rooted at P . The test evaluates the possible
removal of all Q before testing P , and whenever P is removed, all depending
Q are also removed, leading to the entire pruning of the subtree rooted at P ,
itself replaced by the best leaf other the examples reaching P . Tests for other
formulae will be detailed in their devoted subsections. Algorithm 1 presents

Algorithm 1: BUprune(LS, f , δ, seq)

Input: sample LS, formula f , real 0 < δ < 1, integer seq

Output: a formula f

foreach P ∈ f scanned bottom-up do
C :=Ways(P); H :=Sons(P); sloc := |Reach(P, f, LS)|×seq/(|LS|(c−1)2);
α :=

√
(log C + log H + 2 log seq/δ)/(sloc);

εP := lError(f ,Reach(P, f, LS)); ε∅ := lError(f\P ,Reach(P, f, LS));
if εP + α ≥ ε∅ then

Remove(P ,f);

return f

BUprune. We emphasize the fact that BUprune is an application of the theoretical
results of [KM98]. The parameters used are the following ones. Ways(.) returns
the number of distinct formulae which could replace in f the series of tests to
reach P . In a decision tree, this represents the number of distinct monomials
whose length equal the depth of P . Sons(.) returns the number of distinct sub-
formulae in f that could be placed after P , without changing the size of f . In a
decision tree, this represents the number of distinct subtrees that can be rooted
at P without changing the whole number of internal nodes of f . Reach(.,.,.)
returns the subset of examples from LS reaching P in f . In a decision tree, this
represents the subset of LS reaching the internal node P . lError(.,.) returns
the local error over Reach(.,.,.), in the formula f (for εP ), or f to which P
and all subformulae of P are removed (for ε∅). In the case of a decision tree,
the latter quantity corresponds to the local error of the best leaf rooted at P .
The term “local error” is very important: in particular, the distribution used to
calculate lError(.,.) is such that all examples from LS\Reach(P, f, LS) have
zero weight. seq is a correction factor, which is not in [KM98]. We now explain
its use. The test to remove P is optimistic, in that we face the possibility to
overprune the formula, all the more if LS is not sufficiently large. For example,
consider the case c = 2, |LS| = 2000, |Reach(P, f, LS)| = 100, δ < .20 and
seq = |LS|. Then we obtain α > .40, even when considering C = H = 1.
Experimentally, this shortcoming may lead to an empty formula, by pruning all
parts of the initial formula. In order to overcome this difficulty, we have chosen
to “mimic” the re-sampling of LS into another set of size seq > |LS|, in which
examples would have exactly the same distribution as in LS. In our experiments,
the values of C and H, since having a hard fast calculation, were approximated
with upperbounds as large as possible, still in order not to face this possibility
of overpruning. The bounds are not as tight as one could expect, yet they gave
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experimentally good results. We now go on detailing the algorithms TDbuild
and BUprune for various kinds of formalisms.

3 Applications of Wirei to Specific Classes

Fix u(k) = 2k × n!/((n − k)!k!) (fast approximations of u(.) can be obtained by
Stirling’s formula). This represents the number of Boolean monomials of length
k over n variables. The application of Wirei to DT mainly follows from our
preceding comments, and the results of [SS98, KM98, Qui96]. Due to the lack
of space, we only detail results on other formalisms. The most simple is for
monomials. When a single monomial f is needed, associated to a fixed class to
which we refer as the positive class, only algorithm TDbuild is used. There are
only two subsets LS1 and LS2 in the partition of LS, containing respectively
examples satisfying the monomial, and those which do not satisfy the monomial.
We additionally put the following constraint: each test added keeps the positive
class as the majority class for the examples satisfying f . This gives the algorithm
Wirei(Rule).

Decision Lists: Wirei(DL). TDbuild: for a DL with m monomials, the partition
of LS contains m + 1 subsets. The m first subsets are those corresponding to
a monomial, and the (m + 1)th corresponds to the default class. Optimize(.)
proceeds as follows. Each possible test is added to the last rule of the decision
list. When no further addition of a test decreases the Z value, a new rule, created
in the last position, is investigated.
BUprune: for a DL with m monomials, each P is a monomial, and the monomials
are tested from the last monomial of the DL to the first one. Reach(.,.,.)
returns the subset of examples reaching P . When pruning a monomial P , all
monomials following P (that were not pruned) are removed with P . The best
default class other the training sample replaces P . Fix as l the position of P
inside the DL. We then choose C = u(l − 1). Fix as t the average number of
literals of each monomial following P . Then, we fix H = (m − l)u(t).

DNF: Wirei(DNF) , is used when c = 2. TDbuild: for a DNF with m mono-
mials, the partition can contain up to min{|LS|, 2m} subsets (this quantity is
never greater than |LS|, which guarantees efficient processing time). Each subset
contains the examples satisfying exactly the same subset of monomials. While
there is no ordering on monomials, algorithm TDbuild is still bottom-up. Each
test is added to a current monomial. When no further addition of a test into
this monomial decreases the Z value, a new monomial is created, initialized to
∅, and treated as the current monomial. The same constraint as for monomials
is used when minimizing Z: each test added to a monomial keeps the positive
class as the majority class for all examples satisfying this monomial.
BUprune: while there is no ordering on monomials, the bottom-up fashion is still
preserved for the formula f . Each P represents a monomial of the DNF, and
when removing P , no other monomial is removed. Reach(.,.,.) returns the
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subset of examples satisfying P . Fix as l the total number of monomials 6= P ,
inside f , that could be satisfied while satisfying P , and t their average length. In
other words, each of these monomials must not have a contradictory test with P .
Fix as |P | the number of literals of P . We choose C = u(|P |) and H = l × u(t).
In addition, sloc is the cardinality of the examples satisfying P .

Decision Committees: Wirei(DC). We use DC with constrained vectors. Such
a DC [NG95, NJ99] contains two parts:

– A set of unordered couples (or rules) {(mi,vi)} where each mi is a monomial,
and each vi is a vector in {−1, 0, 1}c (the values correspond to the natural
interpretation “is in disfavor of”, “is neutral w.r.t.”, “is in favor of” one
class).

– A Default Vector D in [0, 1]c.

For any observation o we calculate V o, the sum of all vectors whose monomials
are satisfied by o. The index of the maximal component of V o gives the class
assigned to o. If it is not unique, we take the index of the maximal component
of D corresponding to the maximal component of V o. Algorithm BUprune has
the same structure as for DNF. However, in order not to artificially increase the
power of the vectors by multiplying the appearance of some monomials, we do
not authorize the addition of multiple copies of a single monomial, a case which
can only occur when the current Z is not decreased.
TDbuild: it is the same as for DNF, except that we remove the constraint on
choosing monomials discriminating the positive class. Before executing algorithm
BUprune, we calculate the components of each vi. To do so, we use the algorithm
of [NJ99] which proceeds by minimizing Ranking Loss as defined by [SS98].

4 Experimental Results

Wirei was evaluated on a representative collection of twenty-two problems, most
of which can be found on the UCI repository [BKM98]. The only exceptions were
the “LEDeven” and “XD6” domain. “LEDeven” consists in the noisy ten-classes
problem “LED10” with classes reunited into odd and even classes. “XD6” con-
sists in a two-classes problem with ten description variables for each example.
The target concept, from which all examples are uniformly sampled, is a DNF
with three variables in each of its monomials, described over the first nine varia-
bles. The tenth variable is irrelevant in the strongest sense. A 10% classification
noise is added, which also represents Bayes optimum. References for all the da-
tasets, omitted due to space constraints, can be found in [BN92, Hol93, Qui96],
or on the UCI repository [BKM98]. All algorithms are ran using δ = 15%,
|seq| = 10000 and Imax = 40, in order to make clear comparisons. Ten complete
10-fold stratified cross-validations were carried out with each database. In a ten-
fold cross-validation, the training instances are partitioned into 10 equal-sized
subsets with similar class distributions. Each subset in turn is used for testing
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while the remaining nine are used for training. Due to the lack of space, only ex-
periments with Wirei(DC), Wirei(DNF) and Wirei(DL) are shown in table
1. With respect to each algorithm, in its first column are shown error rates aver-
aged over the 10-fold cross-validations, with the average number of monomials
(second column), and the average total number of literal on the third column (if
a literal appears k times, it is counted k times). Column “Others” relates various
results among the best we know, for which the experiments were carried out un-
der a similar setting as ours. Over the 22 datasets, Wirei outperforms many
of the traditional approaches. Comparing the errors gives already an advantage
to Wirei(particularly Wirei(DL)), but improvements become more sensible as
the errors are compared in the light of the corresponding formula’s sizes. Size
reductions, while still preserving in many cases a better error, can range towards
magnitude order of twenty or more. In particular, Wirei(DL) is a clear winner
against CN2 when considering both errors and sizes. But there is more to say,
when comparing approaches head to head.
More than performing a comparison between accuracies, we performed a com-
parison between the classifiers themselves on specific problems. On “XD6”, we
observed that the classifiers built for both Wirei(DNF) and Wirei(DL) are
always exactly the target formula, beating in both accuracy and size classical DT
induction approaches [BN92]. However, coding the target formula with DT can
be done modulo the creation of comparatively large trees, which is more risky
when building formula in a top-down fashion: chances are indeed larger that the
formula built deviates from the optimal one. This clearly accounts for the repre-
sentation shift Wirei proposes. On “Vote0”, we still obtained exactly the same
classifiers for Wirei(DNF) and Wirei(DL), with one literal. This problem is
known to have one attribute which makes a very reliable test [BN92], attribute
which is precisely always selected by Wirei(DNF) and Wirei(DL). In order
to cope with this problem, [BN92] propose to remove this attribute, which gives
the “Vote1” problem. While DT induction algorithms give much larger formu-
lae, Wirei(DL) always manages to find a two-tests rule which still gives very
good results, and might contain useful informations for Data Mining purposes.
However, the problem seems indeed more difficult since Wirei(DC) finds more
complex formulae with average accuracy slightly below 10%, a seldom result if
we refer to the collection of reported studies in [Hol93], none of which break
the 10% barrier. This stability property was also remarked on the “Horse-Co”
problem, where both Wirei(DL) and Wirei(DNF) even encompassed DT ap-
proaches using a very simple concept.
On the “LED10” domain, Wirei(DC) obtained on average a result a little
above the 24% Bayes error rate, but Wirei(DL) performed very poorly (while
DT give intermediate results). Interestingly, when transforming the problem to
“LEDeven”, Wirei(DL) achieved near-optimal prediction, with a completely
stable classifier, but Wirei(DC)’s prediction degraded with respect to Bayes. A
simple explanation for this behavior is that “LED10” is a problem which can be
encoded very efficiently using simple linear frontiers around classes [NG95], and
it was proven that linear separators, while being DC with one-rule monomials
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(remark that Wirei(DC)’s monomials contain on average 1.43 literals), are very
difficult to encode using simple DLs [NG95]. On the other hand, “LEDeven” can
be related to much simpler concepts, which can be very efficiently coded using
DL. We have remarked that the DL obtained by Wirei(DL) were very accu-
rate in that among their two rules, the first contained a test which discriminates
all but one (the “4”) even digits against all odd digits, and the second coupled
with the default class, led to an efficient test to discriminate under noise the “4”
digit against all odd digits. When comparing “Glass” and “Glass2”, which is a
modified version of “Glass” [CB91], the interest of the hypothesis concept shift
between the two problems is clear, as Wirei(DC)performed well on “Glass2”,
while Wirei(DL) gave the best results on “Glass”.
Following all these observations, we can say that Wirei is an experimental evi-
dence of the power of simple induction schemes such as “Top-down and prune”,
which received recently much attention to establish sound theoretical foundati-
ons. Though many works were primarily based on decision trees [KM96, KM98],
theoretical results seem to be practically scalable to various different classes of
formalism representation, three of which were explored in depth in our experi-
ments. Additionally, experimental results reveal that applications of the generic
algorithm Wirei to specific classes can exhibit even better behavior than algo-
rithms specifically dedicated to the same classes.
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lined for each domain; a “/” mark for DNF denotes a domain with c > 2 classes).
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Pima 28.52 3.3 7.1 38.44 0.7 1.8 25.71 2.4 6.5 25.9 b
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C4.5’s error. c [Dom98, CB91], various improved CN2’s error (small numbers indicate
the whole number of literals).
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