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Abstract. We describe a new way to deal with feature selection when
boosting is used to assess the relevancy of feature subsets. In the context
of wrapper models, the accuracy is here replaced as a performance func-
tion by a particular exponential criterion, usually optimized in boosting
algorithms. A first experimental study brings to the fore the relevance
of our approach. However, this new ”boosted” strategy needs the con-
struction at each step of many learners, leading to high computational
costs.
We focus then, in a second part, on how to speed-up boosting convergence
to reduce this complexity. We propose a new update of the instance distri-
bution, which is the core of a boosting algorithm. We exploit these results
to implement a new forward selection algorithm which converges much
faster using overbiased distributions over learning instances. Speed-up is
achieved by reducing the number of weak hypothesis when many iden-
tical observations are shared by different classes. A second experimental
study on the UCI repository shows significantly speeding improvements
with our new update without altering the feature subset selection.

1 Introduction

While increasing the number of descriptors for a machine learning domain would
not intuitively make it harder for ”perfect” learners, machine learning algorithms
are quite sensitive to the addition of irrelevant features. Actually, the presence of
attributes not directly necessary for prediction could have serious consequences
for the performances of classifiers. That’s why feature selection is became a
central problem in machine learning. This trend will certainly continue because
of the huge quantities of data (not always relevant) collected thanks to new
acquisition technologies (the World Wide Web for instance).

In addition, the selection of a good feature subset may not only improve per-
formances of the deduced model, but may also allow to build simpler classifiers
with higher understanding. To achieve feature selection, we generally use one
of the two following approaches, respectively called filter and wrapper [2, 6, 7].
Filter models use a preprocessing step, before the induction process, to select
relevant features. The parameter to optimize is often a statistical criterion or
an information measure: interclass distance, probabilistic distance [11], entropy
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[8, 13], etc. The main argument for these methods is that they try to estimate
feature relevance regardless of the classifier, as an intrinsic property of the rep-
resented concept. The second main trend uses wrapper models. These methods
assess alternative feature subsets using a given induction algorithm; the criterion
to optimize is often the accuracy. In spite of high computational costs, wrapper
models have the advantage to provide better accuracy estimates (by holdout,
cross-validation or bootstrap) than a statistical criterion or an information mea-
sure as used in the filter approach.

In this paper, we propose to challenge the criterion to optimize in wrapper
models, replacing the accuracy by the Schapire-Singer’s criterion [12] which was
not previously tested in the field of feature selection. This approach is moti-
vated by recent theoretical results on the general performances of the algorithm
AdaBoost [12]. Boosting consists in training and combining the output of T
various base learners. Each of them can return various formulas (decision trees,
rules, k-Nearest-Neighbors (kNN), etc.). We show through experimental results
that the optimization of this criterion in a forward feature selection algorithm,
called FS2BOOST, allows to select more relevant features, and achieves higher
classification performances, compared to the classical accuracy criterion.

Despite its interesting properties, using boosting in a feature selection al-
gorithm (notably in a wrapper model) needs to cope with high computational
costs. Actually, wrapper models are already known to have high complexity.
The worst case of a forward selection algorithm requires O(p2) estimates, each
of them requiring O(|LS|2) comparisons (using for instance a kNN classifier),
where LS is the learning sample and p is the number of features. The use of the
boosting procedure increases this complexity, requiring T steps at each stage.
However, arguing for the use of Boosting, Quinlan [10] points out that even if
Boosting is costly, the additional complexity factor (T ) is known in advance and
can be controlled. Moreover, it can be useful to choose a fast classifier (such as
the kNN) to decrease again this complexity. Nevertheless, this parameter T in
FS2Boost deserves investigation.

In the second part of this paper, we focus on how to speed-up boosting
convergence in FS2Boost, to reduce this complexity. We propose a particular
update of the instance distribution during boosting. It consists in balancing
the distribution not only toward hard examples (as in the original AdaBoost
algorithm [12]), but also on examples for which the conditional class distribution
is highly in favor of some class against the others. The main point of this new
update, which particularly suits to feature selection, is that as the description
becomes poorer (e.g. by removing features), many examples of different classes
may match the same description. Ultimately, descriptions with evenly balanced
examples among classes are somewhat useless and can be ”forgotten” by the
learning algorithm. Applying this new principle, we can avoid to build many
base learners, while selecting almost the same feature subsets. We propose an
improved extension of our first algorithm, called iFS2Boost, and we compare
performances of the two presented algorithms on several benchmarks of the
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UCI repository1. Our experimental results highlight significant speed-up factors
during the selection, without altering the selected feature subsets.

2 A Wrapper Model using Boosting

Wrapper models evaluate alternative feature subsets using a performance crite-
rion which is usually the accuracy over the learning sample; the goal is to find
which feature subset allows to increase the prediction accuracy. The accuracy is
estimated using an induction algorithm as a core procedure, which builds formu-
lae such as decision trees, induction graphs, neural networks, kNN, etc. This core
procedure chosen, there remains to choose an heuristic of search among all the
possible subspaces. Here we consider a forward selection algorithm, which often
allows to reduce computational costs, avoiding calculations in high dimensional
spaces. It is an a priori choice, but selecting a backward instead of a forward
algorithm would not challenge the framework of our approach. Its principle can
be summarized as follows:

At each time, add the feature to a current feature set (initialized to ∅)
which increases the most the accuracy of a formula built using the core
algorithm. If no addition of a new feature increases the accuracy, then
stop and return the current feature subset.

While the wrapper approach is accurate when the core algorithm is the same
as the subsequent induction algorithm, it may suffer a drawback that the core
step introduces a representational bias. Indeed, not only do we measure the po-
tential of improvement a feature represents, but also the bias according to which
the feature could improve the accuracy of a formula built from the concept class
of the core algorithm. Such a problem appears because functional dependencies
of various nature exist between features, themselves understandable by means
of representational biases [2].

For these reasons, recent works have chosen to investigate the properties
of a novel kind of algorithms: boosting [12]. Boosting as presented into Ad-
aBoost [12] is related to the stepwise construction of a linear separator into a
high dimensional space, using a base learner to provide each functional dimen-
sion. Decision tree learning algorithms are well-suited for such a base-learner
task, but other kind of algorithms can be chosen. The main idea of boosting is
to repetitively query the base learner on a learning sample biased to increase
the weights of the misclassified examples; by this mean, each new hypothesis is
built on a learning sample which was hard to classify for its predecessor. Figure
1 presents the AdaBoost learning algorithm [12] in the two-classes case.

When there are k > 2 classes, k binary classifiers are built, each of them used
for the discrimination of one class against all others. The classifier returning
1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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AdaBoost(LS = {(xi, y(xi))}|LS|
i=1 )

Initialize distribution D1(xi) = 1/|LS|;
For t = 1, 2, ..., T

Build weak hypothesis ht using Dt;
Compute the confidence αt:

αt =
1
2

log
(1 + rt

1 − rt

)
(1)

rt =
m∑

i=1

Dt(xi)y(xi)ht(xi) (2)

Update: Dt+1(xi) = Dt(xi)e
−αty(xi)ht(xi)

Zt
;

/∗Zt is a normalization coefficient∗/
endFor
Return the classifier

H(x) = sign(
T∑

t=1

αtht(x))

Fig. 1. Pseudocode for AdaBoost.

the greatest value gives the class of the observation. Boosting has been shown
theoretically or empirically to satisfy particularly interesting properties. Among
them, it was remarked [5] that boosting is sometimes immune to overfitting, a
classical problem in machine learning. Moreover it allows to reduce a lot the
representational bias in relevance estimation we pointed out before. Define the
function F (x) =

∑T
t=1 αtht(x) to avoid problems with the “sign” expression

in H(x). [12] have proven that using AdaBoost is equivalent to optimize a
criterion which is not the accuracy, but precisely the normalization factor Zt

as presented in figure 1. Using a more synthetic notation, [5] have proven that
AdaBoost repetitively optimizes the following criterion:

Z = E(x,y(x))(e−y(x)F (x))

In a first step, we decided then to use this criterion in a forward selection
algorithm that we called FS2Boost (figure 2). We show in the next section the
interest of this new optimized criterion thanks to experimental results.

3 Experimental Results: Z versus Accuracy

In this section, the goal is to test the effect of the criterion optimized in the
wrapper model. We propose to compare the selected feature relevance using ei-
ther Z or the accuracy, on synthetic or natural databases. Nineteen problems
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FS2Boost(LS = {(xi, y(xi))}|LS|
i=1 )

1 Z0 ← +∞; E ← ∅; S ← {s1, s2, ..., sp};
2 ForEach sj ∈ S

H ←AdaBoost(LS,E ∪ si);
Zi ← ZE∪si(H);
select smin for which Zmin = mini Zi;

endFor
3 If Zmin � Z0 then

S = S\{smin}; E = E ∪ {smin}; Z0 ← Zmin;
Goto step 2;

Else return E;

Fig. 2. Pseudocode for FS2Boost. S is the set of features

were chosen, among them the majority was taken from the UCI repository. A
database was generated synthetically with some irrelevant features (called Ar-
tificial). Hard is a hard problem consisting of two classes and 10 features per
instance. There are five irrelevant features. The class is given by the XOR of the
five relevant features. Finally, each feature has 10% noise. The Xd6 problem was
previously used by [3]: it is composed of 10 attributes, one of which is irrelevant.
The target concept is a disjunctive normal form over the nine other attributes.
There is also classification noise.

Since we know for artificial problems the relevance degree of each feature,
we can easily evaluate the effectiveness of our selection method. The problem is
more difficult for natural domains. An adequate solution consists in running on
each feature subset an induction algorithm (kNN in our study), and compare
the “qualities” of the feature subsets with respect to the a posteriori accuracies.
Accuracies are estimated by a leave-one-out cross-validation. On each dataset,
we used the following experimental set-up:

1. the Simple Forward Selection (SFS) algorithm is applied, optimizing
the accuracy during the selection. We compute then the accuracy by cross-
validation in the selected subspace.

2. FS2Boost is run (T = 50). We compute also the a posteriori accuracy.
3. We compute the accuracy in the original space with all the attributes.

Results are presented in table 1. First, FS2Boost works well on datasets
for which we knew the nature of features: relevant attributes are almost always
selected, even if irrelevant attributes are sometimes also selected. On these prob-
lems, the expected effects of FS2Boost are then confirmed. Second, FS2Boost al-
lows to obtain almost always a better accuracy rate on the selected subset, than
on the subset chosen by the simple forward selection algorithm. Third, in the
majority of cases, accuracy estimates on feature subsets after FS2Boost are
better than on the whole set of attributes.

Despite these interesting results, FS2Boost has a shortcoming: its computa-
tional cost. In the next section, after some definitions, we will show that instead
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Database SFS FS2Boost All Attributes
Monks 1 97.9 97.9 81

Monks 2 67.2 67.2 68.3

Monks 2 99.0 99.0 94.4

Artificial 84.7 86.4 84

LED 81.4 90.2 90.2

LED24 81.4 87.2 77.9

Credit 86.1 87.1 76.8

EchoCardio 73 74.8 66.9

Glass2 62.5 73.2 72.0

Heart 82.2 81.7 82.8

Hepatitis 78.7 81.9 82.4

Horse 77.6 86.3 72.2

Breast Cancer 96.4 96.4 96.5

Xd6 79.9 79.9 78.1

Australian 83.8 81.6 78.7

White House 95.7 95.7 91.5

Pima 73.2 73.3 73.0

Hard 58.7 58.7 59.0

Vehicle 72.9 73.7 71.6

Table 1. Accuracy comparisons between three feature sets: (i) the subset obtained by
optimizing the accuracy, (ii) the subset deduced by FS2Boost, and (iii) the whole set
of features. Best results are underlined.

of minimizing Z, we can speed-up the boosting convergence optimizing another
Z

′
criterion.

4 Speeding-up Boosting Convergence

Let S = {(x1, y(x1)), (x2, y(x2)), ..., (xm, y(xm))} be a sequence of training ex-
amples, where each observation belongs to X , and each label yi belongs to a
finite label space Y. In order to handle observations which can belong to dif-
ferent classes, for any description xp over X , define |xp

+| (resp. |xp
−|) to be

the cardinality of positive (resp. negative) examples having the description xp;
note that |xp| = |xp

−| + |xp
+|. We make large use of three quantities, |xp

max| =
max(|xp

+|, |xp
−|), |xp

min| = min(|xp
+|, |xp

−|) and ∆(xp) = |xp
max| − |xp

min|.
The optimal prediction for some description x is the class hidden in the “max”
of |xp

max|, which we write y(xp) for short. Finally, for some predicate P, define
as [[P]] to be 1 if P holds, and 0 otherwise; define as π(x, x′) to be the predicate
“x′ and x share identical descriptions”, for arbitrary descriptions x and x′.

We give here indications on speeding-up Boosting convergence for the biclass
setting. In the multiclass case, the strategy remains the same. The idea is to
replace Schapire-Singer’s Z criterion by another one, which integrates the notion
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of similar descriptions belonging to different classes. This kind of situation often
appears in feature selection, notably at the beginning of the SFS algorithm or
also when the number of features is small according to a high cardinality of the
learning set. More precisely, we use

Ex′̃D′
t

[
e−y(x′)(αtht(x′))

]

with

D′
t(x

′) =

∑
xp

Dt(x′)[[π(x, x′)]]∆(xp)
|xp|∑

x′′

(∑
xp

Dt(x′′)[[π(x, x′)]]∆(xp)
|xp|

)

In other words, we minimize a weighted expectation with distribution favoring
the examples for which the conditional distribution of the observations projecting
onto it is greatly in favor of one class against the others. Note that when each
possible observation belongs to one class (i.e. no information is lost among the
examples), the expectation is exactly Schapire-Singer’s Z.

As [12] suggest, for the sake of simplicity, we can fold temporarily αt in ht

so that the weak learner scales-up its votes to IR. Removing the t subscript, we
obtain the following criterion which the weak learner should strive to optimize:

Z ′ = Ex′̃D′
[
e−y(x′)h(x′)

]

Optimizing Z ′ instead of Z at each round of Boosting is equivalent to (i) keep-
ing strictly AdaBoost’s algorithm while optimizing Z ′, or (ii) modifying Ad-
aBoost’s initial distribution, or its update rule. With the new Z

′
criterion, we

have to choose in our extended algorithm iFS2Boost,

α′
t =

1
2

log
(

1 + r′
t

1 − r′
t

)

where
r′
t =

∑
x′

D′
t(x

′)y(x′)ht(x′) = Ex′̃D′
t
[y(x′)ht(x′)]

5 Experimental Results: Z′ versus Z

We tested here 12 datasets with the following experimental set-up:

1. The FS2Boost algorithm is run with T base learners. We test the algorithm
with different values of T (T = 1, .., 100), and we search for the minimal
number TZ which provides a stabilized feature subset FSstabilized, i.e. for
which the feature subset is the same for T = TZ , .., 100.

220 M. Sebban and R. Nock



Fig. 3. Relative Gain Grel of weak learners. The dotted line presents the average gain

2. iFS2Boost is also run with different values of T and we search for the
number TZ′ which provides a FS′

stabilized feature subset.

For ten datasets, we note that the use of Z ′ in iFS2Boost allows to save on
some weak hypothesis, without modifying the selected features (i.e. FSstabilized =
FS′

stabilized). In average, our new algorithm requires 3.5 learners less than

FS2Boost. These results confirm the speeder convergence of iFS2Boost, with-
out alteration of the selected subspace. What is more surprising is that for
two databases (Glass2 and LED24 ), iFS2Boost needs more learners than
FS2Boost and we obtain FSstabilized �= FS′

stabilized. We could intuitively think
that, Z ′ converging faster than Z, we should not meet such a situation. In fact,
we can explain this phenomenon analyzing the speed-up factor of iFS2Boost.
Actually, the number |xp| of instances sharing a same description and belong-
ing to different classes is independent from a subset to another, and the gain
G = TZ − TZ′ is directly dependant of |xp|. Thus, at a given step of the se-
lection, iFS2Boost can exceptionally select a weak relevant feature for which
the speed-up factor is higher than for a strongly relevant one. In that case,
iFS2Boost will require supplementary weak hypothesis to correctly update the
instance distribution. Nevertheless, this phenomenon seems to be quite marginal.

Improvements of iFS2Boost can be more dramatically presented by com-
puting the relative gain of weak learners Grel =

TZ−T
Z

′
T

Z
′ . Results are presented in

figure 3. In that case, we notice that iFS2Boost requires in average 22.5% learn-
ers less than FS2Boost, that confirms the positive effects of our new approach,
without challenging the selected subset by FS2Boost.

6 Conclusion

In this article, we linked two central problems in machine learning and data
mining: feature selection and boosting. Even if these two fields have the common
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aim to deduce from feature sets powerful classifiers, as far as we know few works
tried to share their interesting properties. Replacing the accuracy by another
Z performance criterion optimized by a boosting algorithm, we obtained better
results for feature selection, despite high computational costs. To reduce this
complexity we tried to improve the proposed FS2Boost algorithm, introduc-
ing a speed-up factor in the selection. In the majority of cases, improvements
are significant, allowing to save on some weak learners. The experimental gain
represents on average more than 20% of the running time. Following a remark
of [10] on Boosting, improvements of this magnitude without degradation of the
solution, would be well worth the choice of iFS2Boost, particularly on large
domains where feature selection becomes essential. We still think however that
time improvements are possible, but with possibly slight modifications of the
solutions. In particular, investigations on computationally efficient estimators of
boosting coefficients are sought. This shall be the subject of future work in the
framework of feature selection.
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