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Abstract. Features and protypes selection are two major problems in
data mining, especially for machine learning algorithms. The goal of both
selections is to reduce storage complexity, and thus computational costs,
without sacrificing accuracy. In this article, we present two incremental
algorithms using geometrical neighborhood graphs and a new statistical
test to select, step by step, relevant features and prototypes for super-
vised learning problems. The feature selection procedure we present could
be applied before any machine learning algorithm is used.

1 Introduction

We deal in this paper with learning from examples w described by pairs
[X (w),Y(w)], where X (w) is a vector of p feature values and Y (w) is the corre-
sponding class label. The goal of a learning algorithm is to build a classification
function ¢ from a sample (2, of n examples wj,(j=1 n) -

From a theoretical standpoint, the selection of a good subset of features
X is of little interest : a Bayesian classifier (based on the true distributions)
is monotonic, i.e., adding features can not decrease the model’s performance
[10]. This task has however received plenty of attention from statisticians and
reseachers in Machine Learning since the monotonicity assumption rarely holds
in practical situations where the true distributions are unkown. Irrelevant or
weakly relevant features may thus reduce the accuracy of the model. Thrun et
al. [18] showed that the C4.5 algorithm generates deeper decision trees with
lower performances when weakly relevant features are not deleted. Aha [1] also
showed that the storage of the IB3 algorithm increases exponentially with the
number of irrelevant features.

Selection of relevant prototype subsets has also been much studied in
Machine Learning. This technique is of particular interest when using non para-
metric classification methods such as k-nearest-neighbors [8], Parzen’s windows
[12] or more generally methods based on geometrical models that have a reputa-
tion for having high computational and storage costs. In fact, the classification
of a new example often requires distance calculations with all points stored in
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memory. This led researchers to build strategies to reduce the size of the learn-
ing sample (selecting only the "best” examples which will be called prototypes),
keeping and perhaps increasing classification performances [8], [7] and [17].

We present in this article two hill climbing algorithms to select relevant
features and prototypes, using models from computational geometry. The first
algorithm step by step selects relevant features independently of a given learning
algorithm (the classification accuracy is not used to identify the ”best” features
but only to stop the selection algorithm). This feature selection technique is
based on the idea that performances of a learning algorithm, whatever the al-
gorithm may be, necessarily depend on the geometrical structures of classes to
learn. We propose characterizing these structures in IRP using models inspired
from computational geometry. At each stage, we statistically measure the sepa-
rability of these structures in the current representation space, and verify if the
kept features allow to build a model more efficient than the previous one.

Unlike the first, the second algorithm uses the classification function to select
prototypes in the learning sample. It tests the ”quality” of selected examples,
verifying on the one hand that they allow to obtain on a validation sample a
success rate significantly close to the one obtained with the full sample, and on
the other hand that they constitute one of the best learning subsets with this
size.

2 Definitions in Computational Geometry

The approach we propose in this article uses neighborhood graphs. Interested
readers will find many models of neighborhood graphs in [13], such as Delaunay’s
Triangulation, Relative Neighborhood Graph, and the Minimum Spanning Tree

(Fig. 1).

‘ Minimum Spanning Tree ‘ Relative Neighborhood Graph ‘
Gabriel’s Graph Delaunay’s Triangulation
s T N

Fig. 1. Neighborhood Structures
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Definition 1. : A graph G (X,A) is composed of a set of vertices noted X linked
by a set of edges noted A.

NB : In the case of an oriented graph, A will be the set of arcs. In our paper,
we only consider non-oriented graphs, i.e. a link between two points defines an
edge. This choice makes every neighborhood relation symmetrical.

3 Selection of Relevant Features

3.1 Introduction

Given a representation space X constituted by p features X, Xa,..., X,, and a
sample of n examples noted wy,wo, ..,wy,. ,a learning method allows to build a
classification function ¢; to predict the state of Y.

Consider now a subset X’ = { Xy, Xy, wy Xy b of all features, with p <,
and note o the classification function built in this new representation space.
If classification performances of ¢1 and @9 are equivalent, we will always prefer
the model using fewer features for the construction of ¢ . Two reasons justify
this choice:

1. The choice of X’ reduces overfitting risks.
2. The choice of X’ reduces computational and storage costs.

Generalization performances of o may sometimes be better than those ob-
tained with 1, because some features can be "noised” in the original space.
Nevertheless, we can not test all combinations of features, i.e. build and test
2P — 1 classification functions.

Constructive methods (decision trees, fuzzy trees, induction graphs, etc.) se-
lect features step by step when they improve performances of a given criterion
(classification success rate, homogeneity criterion). In these methods, the con-
struction of the ¢ function is done simultaneously with features choice. Among
works using the estimation of the classification success rate, we can cite the
cross-validation procedure [10], and Bootstrap procedure [5]. Nevertheless, even
if these methods allow to obtain an unbiased estimation of this rate, calculation
costs seem prohibitive to justify these procedures at each stage of the feature
selection process.

Methods using homogeneity criterion often propose simple indicators fast to
compute, such as entropy measures, uncertainty measures, separability measures
like the A of Wilks [14] or Mahalanobis’s distance. But results also depend on
the current ¢ function.

We propose in the next section a new features selection approach, applied
before the construction of the ¢ classification function, independently of the
learning method used. To estimate quality of a feature, we propose to estimate
quality of the representation space with this feature.
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3.2 How to Evaluate the Quality of a Representation Space?

We consider that m different classes are well represented by p features, if the
representation space (characterized by p dimensions) shows wide geometrical
structures of points belonging to these classes. In fact, when we build a model, we
always search for the representation space farthest from the situation where each
point of each class constitutes one structure. Thus, the quality of a representation
space can be estimated by the distance to the worst situation characterised by
the equality of density functions of classes. To solve this problem, we can use
one of the numerous statistical tests of population homogeneity. Unfortunately,
none of these tests is both nonparametric and applicable in IRP. In Sebban [15],
we built a new statistical test (called test of edges), which does not suffer from
these constraints. Under the null hypothesis Hy :

Hy: Fi(z) = Fa(z) = ... = Fp(2) = F(x)
where F;(z) corresponds to the repartition function of the class ¢

The construction of this test uses some contributions of computational geom-
etry. Our approach is based on the search for geometrical structures, called ho-
mogeneous subsets, joining points that belong to the same class. To obtain these
homogeneous subsets and evaluate the quality of the representation space, we
propose the following procedure :

1. Construct a related geometrical graph, such as the Delaunay
Triangulation, the Gabriel’s Graph, etc. [13].

2. Construct homogeneous subsets, deleting edges connecting points
which belong to different classes.

3. Compare the proportion of deleted edges with the probability
obtained under the null hypothesis.

The critical threshold of this test is used to search for the representation
space which is the farthest from the Hy hypothesis. Actually, the smaller this
risk is, the further from the Hy hypothesis we are. Two stategies are possible to
find a ”"good” representation space :

1. Search for the representation space which minimizes the critical threshold of
the test, i.e. which is the farthest from the Hy hypothesis. Later on, we will
use this approach to tackle this problem.

2. Search for a way to minimize the size of the representation space (with the
advantage of reducing storage and computing costs), without reducing the
quality of the initial space.

3.3 Algorithm

Let X = {X7, Xs, ..., X,,} be the representation of a given (2, learning sample.
Among these p features, we search for the p* most discriminant ones (p* < p)
using the following algorithm:
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1. Compute the oy critical threshold of the test of edges in the
initial representation space X

2. Compute for each combination of p—1 features taken among the p
current, the a, critical threshold

3. Select the feature which minimizes the o critical threshold

4. If o} < agp then delete the selected feature, p < p — 1, return
to step 1' else p* =p and stop.

This algorithm is a hill climbing method. It does not search for an optimal
classification function, in accordance with a criterion based on an uncertainty
measure, but rather aims at finding a representation space that allows to build
a better model.

3.4 Simulated Example

To illustrate our approach, we apply in this section our algorithm to a simulated
example.

Let {2, be a learning sample composed of 100 examples belonging to two
classes. Each example is represented in IR3 by 3 features (noted X; Xz X3).
The two classes are statistically different, .e. characterised by two different prob-
ability densities. For instance,

* Normal law N(pq,07) for examples of y; class
* Normal law N (pa,02), where po > pq for examples of yo class

To estimate the capacity of our algorithm to find the best representation
space, we generate 3 new noised features (noted X4 X5 Xg). Each feature is
generated identically for the whole sample. The first ag risk in IR® is about
1.10 8. Applying our algorithm, we obtain the following results (table 1).

Table 1. Application of the feature selection algorithm

step i X1 Xz X3 X4 X5 X6 O(: (o7 Decision

5 5 3 T3 T2 T2 T3 ) -
1 510 5 10 210 210 310 8 10 210 110 Continue
(3 (5 T2 T3 T2 T2 T3
2 710 310 110 * 110 110 110 210 Continue

B T T2 ) 15 ) 15 1z )
3 410 410 6 10 * 110 * 110 410 Continue
5 T T T2 5

4 310 110 910 * * * 910 110 Stop

During step 1, deletion of X4 feature allows to reduce critical threshold (from
1.10 ® to 2.10 '3). Steps 2 and 3 lead to the supression of Xg and X5. At the
fourth step, the value 9.10 !4 (without the X3 feature) does not allow to reduce
the ag risk and thus the process stops. Unlike numerous other methods that
would also select (X7, X5,X3), our approach does not use the ¢ classification
function.

! If we search for minimizing the size of the space, we will return to 2.
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4 Prototype Selection

4.1 Presentation

Intuitively, we think that a small number of prototypes can lead to comparable
and perhaps higher performances than those obtained with a whole sample. We
justify this idea as follows :

1. Some noise or repetitions in data could be deleted,
2. Each prototype can be viewed as a supplementary degree of freedom. Reduc-
ing the number of prototypes can thus sometimes avoid overfitting situations.

To reduce storage costs, some approaches use an algorithm selecting misclas-
sified examples such as condensed nearest neighbors [8] which allows to find a
consistent subset, i.e. which correctly classifies all the remaining points in the
sample set. In [7], the author proposes the reduced nearest neighbor rule which
improves the previous algorithm by finding the minimal consistent subset if it
belongs to the Hart’s consistent subset.

Skalak [17] proposes two different prototype selection algorithms : the first
is a Monte Carlo sampling algorithm ; the second applies random mutation hill
climbing, where the fitness function is the classification success rate on the
learning sample. Yet, this approach is limited to simple problems where classes
of patterns are easily separable, since the author a priori defines the number
of prototypes as the number of classes. We can easily imagine some problems
when classes are mixed. In our mind, we could improve this algorithm using as
the number of prototypes the number of homogeneous subsets described in the
previous section.

Other works about prototype selection can be found in [9] or [11].

In this section, we present a new decision rule, the Probabilistic Vote, that
uses the information contained in a connected neighborhood graph. We then
present the principle of its use in a variant of the prototype selection method
proposed in [8] and [7].

4.2 The Probabilistic Vote

Our approach uses a weighted vote of neighbors (in a connected neighborhood
graph) to label a new example. The weight of the a neighbor relationship is
measured by the probability of the two examples being neighbors even if the size
of the set increases.

We present in this section the theoretical frame of the Probabilistic Vote,
with Gabriel’s Graph but this approach can be extended to other neighborhood
structures.

Definition 2. : Weight o(w;,w)

Let a(wj,w), the weight of the w; voter, neighbor of w, be defined as :
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a:2,% 02— [0,1]
(wj,w) — a(wj,w) =Pr(W ¢ S, ), V' € 2
where S, ., is the hypersphere with the diameter (w;,w).
Definition 3. : Covering space

We define the covering space D containing all possible membership of the
(2 set as the hypercube covering the union of hyperspheres of neighbors in the
learning sample.

d,=10

d,=8

Fig. 2. Example of covering space.

From D, we calculate the probability

Vb Vs, o
Prw' ¢ 8., o) = —

where Vp is the volume of D and VSW . 1s the volume of the hypersphere
with diameter (wj;,w). '

Definition 4. : We define Vg
diameter (w;,w) as :

the volume of a given hypersphere in IRP with

cwo
wj w

Vs, | =2pp TP

Wi w 5 wj,w]“(%)

where 7, ., is the radius of the hypersphere with diameter (w;,w) and I'(x)
is the Gamma function.

Vp is obtained by multiplication of the lengths of the hypercube’s sides.

Example :

Given a  Gabriel’s Graph built from a learning sample
2y = {w,wo,ws, ws,ws,we} (Fig. 2), and w a new example to label, we can
calculate the weight a(wy,w) of wy,

- Vb V,qwl o dq*xdo 777"5)
a(wy,w) = =

. T — 0911
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4.3 Prototype Selection Algorithm

Two types of algorithms exist for the building of geometrical graphs [3]:

1. Total algorithms : in this case, neighborhood structures (Gabriel, Relative
neighbors or Delaunay’s Triangles) are applied on the whole sample. To build
a new edge, some conditions must be imposed on the whole set. Thus, when
a neighborhood is built, it is never suppressed.

2. Constructive algorithms : in this case, the graph is built point by point, step
by step. Each point is inserted, generating some neighborhoods, deleting oth-
ers. Thus, only a local update of the graph is necessary [4].

For these two types of algorithms, the label of points to insert is not used. The
prototypes selection algorithm presented in this section belongs to the second
category but takes into account the label of points already inserted in the graph.
It may thus only be used with supervised learning. Its principle is summuarized
by the following pseudo-code.

Let (2, be the original training sample and (2* be the set of

selected proptotypes

— Initially, {2* contains one randomly selected example

— Repeat

e Classify (2, with the Probabilistic Vote using the examples
in §2*.

e Move misclassified examples into f(2*.

— until all examples remaining in (2, are well classified.

Thus, the pertinence of an example is defined as following : "a point is per-
tinent if it brings information about its class”.

Interested readers may find the results of an application of our prototype
selection technique on the well-known Breiman wave forms problem [2] in [16].
This results show that the selection technique allows ,on this problem, to cut by
more than half the size of learning sample without lowering the generalisation
accuracy of the built classification function.

5 Conclusion

The growing size of modern databases makes feature selection and prototype
selection crucial issues. We have proposed in this article two algorithms to reduce
the dimensionality of the representation space and to reduce the number of
examples of a learning sample. Our approach is currently limited in that it
supposes that examples are only described by numerical features. We are now
working on new neighborhood structures to take into account symbolic data,
without using euclidean distances.
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