Equivalent Keys of HPC

Carl D’Halluin, Gert Bijnens, Bart Preneel*, and Vincent Rijmen**

Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT /COSIC
K. Mercierlaan 94, B-3001 Heverlee, Belgium
{carl.dhalluin,gert.bijnens}@esat.kuleuven.ac.be
{bart.preneel,vincent.rijmen}@esat.kuleuven.ac.be

Abstract. This paper presents a weakness in the key schedule of the
AES candidate HPC (Hasty Pudding Cipher). It is shown that for the
HPC version with a 128-bit key, 1 in 256 keys is weak in the sense that it
has 239 equivalent keys. An efficient algorithm is proposed to construct
these weak keys and the corresponding equivalent keys. If a weak key is
used, it can be recovered by exhaustive search trying only 2% keys on
average. This is an improvement by a factor of 238 over a normal exhaus-
tive key search, which requires on average 2'%7 attempts. The weakness
also implies that HPC cannot be used in standard constructions for hash
functions based on block ciphers. The analysis is extended to HPC with
a 192-bit key and a 256-bit key, with similar results. For some other key
lengths, all keys are shown to be weak. An example of this is the HPC
variant with a 56-bit user key and block length of 128 bits, which can be
broken in 23! attempts on average.

1 Introduction

The AES candidate HPC [3] is a block cipher with a variable block length
and a variable algorithm: depending on the required block length range, five
different versions are defined. In this paper we only look at the version called
HPC Medium (sub-cipher number 3), which is the version that supports a block
length of 128 bits, as required for the AES candidates. We focus on the HPC
expanded key generation. A user key of 128, 192, or 256 bits is expanded to a
KX-table containing 256 64-bit words, or 16 384 bits. The ciphertext only depends
on the plaintext, the spice', and the KX-table. In this paper we assume the spice
to be known. Thus if two different user keys K7 and K5 generate the same KX-
table, then HPCk, (P) = HPCk, (P) for every plaintext P. Keys K; and K> are
called equivalent keys. In the specifications of HPC [4] it is stated:

“Two keys are equivalent if they expand to the same key-expansion table.
The likelihood is negligible for keys of size < 1/2 the key-expansion table

* F.W.O. Research Associate, sponsored by the Fund for Scientific Research - Flanders
(Belgium).
** F.W.0. Postdoctoral Researcher, sponsored by the Fund for Scientific Research -
Flanders (Belgium).
! The spice can be regarded as a second key that need not be concealed.

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASTACRYPT’99, LNCS 1716, pp. 29-42, 1999.
© Springer-Verlag Berlin Heidelberg 1999

30 Carl D’Halluin et al.

size, 8192 bits. For keys longer than this, some will be equivalent, but
there is no feasible way to discover an equivalent key pair.”

David Wagner announced at the 2nd AES Conference [6] that HPC has
equivalent keys based on the generic structure of the key expansion (see Sect. 2.3);
he did not analyze their structure. For 128-bit user keys, we have discovered that
exactly 278 of the keys each have 23° equivalent keys. In this paper these keys
are called weak keys. For 192-bit user keys, approximately 277 of the keys each
have 242 or 232 equivalent keys, and approximately 2716 of the keys each have
27 equivalent keys. For 256-bit user keys, approximately 1.5 - 277 of the keys
each have 232 or 234 equivalent keys; approximately 2716 of the keys each have
264 or 266 equivalent keys and approximately 2724 of the keys each have 298
equivalent keys. These results are summarized in Table 1, and are proven in
Sections 4 and 6.

Table 1. Approximate number of weak keys and number of equivalent keys

|Key length|# weak keys[# equivalent keys|

128 2120 230
192 2184 242
192 2184 232
192 2176 272
256 2249 232
256 2248 234
256 2241 266
256 2240 264
256 2232 298

In Sect. 2 we explain how the expanded key table is calculated. Section 3
clarifies how the key expansion results in equivalent keys. In Sect. 4 we compute
the number of weak keys and we present a method to construct weak keys. The
impact of weak keys on exhaustive key search is treated in Sect. 5. In Sect. 6 we
briefly search for weak keys if a user key with length other than 128 bits is used.
In Sect. 7 we show that HPC-based hash functions are insecure, and in Sect. 8
we discuss how the weak keys can be avoided. Finally we conclude in Sect. 9.

In this paper all numbers in hexadecimal notation (indicated with a subscript
x) are written with the least significant byte on the right side. Numbers in
decimal notation have no subscript or a subscript d. The least significant bit
(that is, the rightmost bit) is numbered bit 0.

2 HPC Expanded Key Generation

The expanded key table (denoted by KX-table) contains 286 64-bit words. The
KX-table depends on the user key and on the sub-cipher number sc. The last 30

Equivalent Keys of HPC 31

entries of the KX-table are equal to the first 30:
KX[i+256]1 = KX[i]l fori=0,1,...,29.

This means that the KX-table effectively contains 256 - 64 = 16 384 bits.

The KX-table is calculated in four steps. Firstly the table is filled with 256
pseudo-random values. Secondly the user key is XORed into the table. The goal
of the stirring function is to make all the 256 entries of the table depend on the
user key. Finally the last 30 entries of the table are set equal to the first 30. We
discuss these steps in more detail below.

2.1 Filling the KX-table with Pseudo-random Values

The first entries of the KX-table are initialized using three mathematical constants
(with sc denoting the sub-cipher number):

KX[0] = PI19 + sc (1)
KX[1] =E19 * the key length (2)
KX[2] = R220 rotated left over sc bits (3)

where PI19 = 3141592653589793238,, E19 = 2718281828459045235,4, R220 =
141421356237309504884, sc = 3, and the key length is 128, 192, or 256.

Now the remaining 253 words of the table are pseudo-randomly filled with
the following equation for ¢ = 3,...,255, where ‘~’ denotes the XOR operation
and ‘>>’) ‘<<’ denote right and left shift operations respectively.

KX[i] = KX[i-1] + (KX[i-2] ~ KX[i-3]>>23 = KX[i-3]<<41) . (4)

2.2 XORing the User Key into the KX-table

The user key is XORed into the first entries of the KX-table. If the user key K
has 128 bits, we have K = Ky || K. with Ky the most significant 64 bits of K, and
Ky the least significant 64 bits of X, and || the concatenation symbol. We have
(using C notation)

KX[0] "=K
KX[l] = KH .

If the length of the user key is 192 bits or 256 bits, then we have to XOR the
appropriate part of the key to KX[2] and KX[3] as well.

2.3 Stirring Function

The whole KX-table is made key dependent by means of the iterative stirring func-
tion. This function has eight internal state variables s0 to s7, that are initialized
with sO = KX[248], ..., s7 = KX[255]. The stirring function is run three times

32 Carl D’Halluin et al.

Fig. 1. Pseudo-code (C notation) for the stirring function (the numbers are
written in decimal notation)

for (j=0; j<3; j++) /* Number of passes is 3 */
for (i=0; i<256; i++) { /* Run over the entire KX-table */
(¢D) sO "= (KX[i] =~ KX[(i+83)&255]) + KX[s0&255]
(2) s1 += s0
(3) s3 "= s2
4) sb -= s4
(5) s7 "= s6
(6) s3 += s0>>13
¢0) s4 "= si<<11
(8) sb "= s3<<(s1&31)
9 s6 += s2>>17
(10) s7 |= s3+s4
(11) s2 -= sb
(12) s0 -= s67i
(13) s1 "= s5 + PI19
(14) §2 += s7>>j
(15) s2 "= sl
(16) s4 -= s3
an s6 "= sb
(18) sO += s7
(19) KX[i] = s2 + s6
}

(j-loop) over the entire KX-table (i-loop), allowing each bit to influence every
other bit. The code for the stirring function is given in Fig. 1.

We denote the set of eight state variables before pass 4,j of the stirring
function by s; j(K) where K is the user key. We denote the stirring function of
pass i, by Fj j k. Hence the initial internal state is sg,o(/). Note that sg o(K)
does not depend on the user key K. The internal state after the stirring function
is denoted by sanai(K). Thus we have

Seinal(K) = Fas5,2, ik (S255,2(K))
= Fos5.2, k (Fasa,2, i (S254,2(K)))
= Fos5.2,x (Fasa,2,x (- (Fo,2,x (S0,2(K)))))
s0,2(K) = Fas51,x(5255,1(K)) .

This leads to the following iterated definition:
si1j(K) = Fi—1 j,x(si—13(K)) for i =1,2,...,255 and j = 0,1, 2,
50,;(K) = Fass,—1, K (8255,j—1(K)) for j =1,2.

If we consider the stirring function for the HPC variant with 128-bit user key,
we note that only Fj j x, where 0 <7 <1 and 0 < j < 2, depend on the user

Equivalent Keys of HPC 33

key. Thus if i 5o (K1) = Sig.jo (K2) for two different user keys K; and K, and
ip > 1, we know that s; j, (K1) = sij,(K2) for ig < i < 255, and we also know
that Sg7j0+1(K1) = SO,j0+1(K2) if jo = 0,1 or that Sﬁnal(Kl) = Sﬁnal(KQ) if
Jo = 2. We can even control Iy ; g and F j x independently, since Iy ; x only
depends on the least significant half of the user key, and I ; x only depends on
the most significant half.

These considerations show that if we can find a set of user keys {K,} such
that F1 j k, (s1,j(Ka)) and Fy j k, (S0,j(K.)) are constant over the entire set { K, }
and only depend on j, then the KX-table will also be constant for all user keys
in the set {K,}. This means that we can define an equivalence relationship in
the set of all user keys; the condition for equivalence is : “expands into the same
KX-table as.” The disjunct set {K,} is called an equivalence class.

In this paper we will show that such equivalence classes do exist. For the
128-bit variant of HPC, we can find 2?° equivalence classes, each containing 23°
elements.

3 Equivalent Keys (Key Length Equal to 128 Bits)

Before the stirring function is applied to the KX-table, the user key is XORed
into the KX-table (see Sect. 2.2). For the AES candidate HPC with user key
length equal to 128 bits, only KX[0] and KX[1] are influenced by the user key.
The other values KX[2] up to KX[255] are independent of the 128-bit user key.
Of course this is only true before the stirring function is applied to the KX-table.

A closer investigation of the key expansion leads us to an equation, from now
on called the dangerous equation:

sO "= (KX[i]l ~ KX[(i+83)&255]) + KX[s0&255] . (5)

This equation is dangerous because when s0 & 255, = i, different values of
KX[i] can produce the same result. We investigate this problem closer for i = 0
and 7 = 1.

3.1 Dangerous Equation for ¢ = 0

First we check the dangerous equation (5) for ¢ = 0. The initial values of s0 to s7
are constants for key length 128 bits and sub-cipher number 3, and are equal to
the initial values of respectively KX [248] to KX[255]. Their values are shown in
Table 2. The initial value of KX [0] is equal to (PI19+sub-cipher number) ~ Ki.
Thus we have

KX[0] = 2b992ddf a23249d9, ~ K .

Since s0 & 2554 = 4b, = 754, the dangerous equation for i = 0 becomes:

sO "= (KX[0] ~ KX[83]) + KX[75]

34 Carl D’Halluin et al.

The values KX[83] and KX[75] are constants (for key length equal to 128 and
sub-cipher number equal to 3) and are equal to

KX [83] = 093817dc b93586e6,. |,

KX[75] = 989a3714 d85dee74, .

If we evaluate the dangerous equation numerically, we find
sO0 "= (22a13a03 1b07cf3f, ~ Kp) + 989a3714 d85dee74, .

This mapping from K to sO is clearly a bijection, hence a modification of K
induces a modification of s0. The state variables sO to s7 all change with high
probability due to the stirring function (see Sect. 2.3) and the whole KX-table
changes significantly. Hence we cannot find equivalent keys that differ in the
least significant 64 bits of the user key.

Table 2. Initial state for the stirring function of HPC with user key length equal
to 128 bits (all values in hexadecimal notation)

s0|4cfd66f0 5ab4064b,
s1|6£7d4e0e 4107bd8c,
s2|eadadb90 0f4b3d2a,
s3|£24cb427 cb159a63,
s4|d7ee7776 cOecbcOb,
s5(3c255969 3f8f7688,
s6(390009fb 99146a25,
s7|1e5db8c2 7c76052e,

3.2 Dangerous Equation for 2 =1

If Ky is constant, then the state variables after the first pass of the i-loop of the
stirring function (i = 0) are constant as well. For ¢ = 1, the initial state of s0
is part of the internal state of the stirring function, after one pass of the i-loop
(i = 0). For now we will assume that we can choose KX[0] such that the least
significant byte of s0O after the first pass of the i-loop (i = 0) of the stirring
function is equal to 01, (see Sect. 4). The dangerous equation (5) for the case
i = 1 becomes:
sO "= (KX[1] ~ KX[84]) + KX[1] .

Let T denote (KX[1] ~ KX[84]) + KX[1]. The value KX[84] is completely de-
termined by the key length (128) and the sub-cipher number (3). We have

KX[84] = a8f07353 9£208716, .

If bit w’ of KX[84] is set to 1, then it does not matter whether bit w’ of KX[1] is
set to 0 or 1. This can easily be shown by looking at the individual bits of T. The

Equivalent Keys of HPC 35

bit on position ¢ is denoted by a subscript ¢, with ¢ = 0 for the least significant
bit. We obtain for 0 <t < 63:

T, = KX[1], ~ KX[84], ~ KX[1l; "~ ¢
—KX[841; ~ ¢ ,
cip1 = (KX[11, ~ KX[841,)KX[1], ~ (KX[1], ~ KX[84], ~ KX[1l)e,
= (KX[1]; ~ KX[841,)KX[1], ~ KX[84l,c, ,

with ¢;q1 the carry bit generated at bit position ¢ and ¢y = 0. Investigation of
these equations leads us to three observations:

1. T; does not depend on KX[1]; ;
2. ¢¢y1 does not depend on KX[1]; if and only if KX[84]; =1 ;
3. ¢44+1 1s not used for t = 63, since we work with 64-bit quantities.

The support of KX[84] (set of bit positions on which we have a 1), is de-
noted by (2. Examining the numerical value of KX[84], we find that ' =
supp(KX[841) = { 1, 2, 4, 8, 9, 10, 15, 21, 24, 25, 26, 27, 28, 31, 32, 33,
36, 38, 40, 41, 44, 45, 46, 52, 53, 54, 55, 59, 61, 63 }. We can thus comple-
ment the value of any combination of bits on positions w’ € 2’ U {63} of
KX[1] without changing the value of T = (KX[1]"KX[84])+KX[1]. Since the
set 2 U {63} contains 30 elements, we can choose 30 bits of KX[1] at ran-
dom, without changing the value of the right half of the dangerous equation. As
KX[1] = dca375e0 59b0b980, ~ Ky, we can easily find a set of 230 equivalent
keys, by complementing the bit positions w’ of Ky.

Now we have shown that if we can set the least significant byte of sO equal
to 01, (after one pass of the i-loop (i = 0) of the stirring function), then we can
construct 239 equivalent keys by simply complementing the bits on a subset of
30 specific bit positions w’ of Ky. In the next section it is shown that the least
significant byte of sO can be set equal to 01, by choosing specifically bits 0 to 7
and bits 13 to 20 of K;.

If we look at a 128-bit weak key, then the set of bit positions w that can be
complemented, is equal to 2 = {w | w = w’ + 64, with o’ € '} U {127}.

4 Counting Weak Keys and a Construction Method

We start by analyzing the first pass of the i-loop of the stirring function (i = 0).
We use a specific notation to calculate the value of the least significant byte of
s0 after the 19 steps: s0,, indicates the value of sO before step n. s0; is the
initial value of sO (before the stirring function is applied). s0gyq is the value of
sO after the first pass of the stirring function for ¢ = 0. In this calculation we
only have to keep track of the least significant byte of s0. If a certain operation
does not affect this byte, the operation is not taken into account (e.g., addition
with s17 < 11). We substitute the values of Table 2 in the equations. We have:

Soend = 8018 + 8718)

36 Carl D’Halluin et al.

which can be reworked (see Fig. 1) to:
S0end = S0z + 36, + (Ob, |(54, 4 505 > 13)) . (6)

As shown in Sect. 3, we have a weak key if the least significant byte of s04,q is
equal to 01,. If we take a look at (6) we see the OR operation (denoted by |’)
with the fixed value Ob,, which forces the least significant 4 bits of the result
to be either b, or f,. If we want s0y,q to be 01,, we must put restrictions on
the least significant 4 bits of s05 4+ 36,. This can be translated to the following
condition on K :

K, mod 10, =8 or K7, mod 10, = ¢, .

Appendix A provides further details on the construction of the weak keys. Some
examples are given in Table 3.

Table 3. Examples of weak keys of the 128-bit variant of HPC (all values in
hexadecimal notation)

00000000 00000000 00000000 00004008,
008ecc3c 9299f88d bc08b82f edbcb3ec,
fOeabdac 5446cfad 165f3da0 b829d24c,
9afc9c44 f5a2bl0eb 47943add a82388bc,
a20c6bb9 079f1a27 8d54f3db f5e30828,
21c7d6c0 2111eec9 c4defd68 cbe626d8,
a655b17c 7fc18ed8 a8bc9e70 ff7debec,
e6d6685d d6f£12b9d 7cc7lae6 d23584ac,
ccaeadeb bl2fae2e 22b4393b e33cfbec,
5195c9f0 5da0798c 86b3a27c 2clae97c,
d90ad927 d087£f410 41bdea99 3c725338,

5 Exhaustive Key Search for User Key Length 128 Bits

If we know that someone uses a weak key, we can find that key by exhaustive
key search, trying on average 289 different key values. We only have to construct
every weak key using the procedure given in Appendix A and check whether it
is the correct key. In this procedure we can choose freely 120 bits of the user
key. Since the values of 30 bits of Ky do not influence the KX-array, we can assign
arbitrary values to these bits. Hence only 120 — 30 = 90 key bits remain to be
recovered. This is a major improvement compared to a brute force attack in
which we have to recover 128 bits (or 120 bits if we know that we have a weak
key).

Even if we do not know whether a key is weak, an exhaustive key search can
be improved by starting the search with weak keys. In 1 case out of 256 the user
key will be weak, which implies that the search will be successful after at most
290 encryptions.

Equivalent Keys of HPC 37

6 HPC with Other Key Lengths

The key length influences the KX-table due through the initial value of KX[1],
see (2), and the recursion formula (4). We briefly study the AES candidate HPC
with key length equal to 192 and 256 bits. The results are summarized in Table 1.
Finally we take a short look at some other key lengths.

6.1 Key Length 192 Bits

Since the number of key words increases from two to three, we evaluate the
dangerous equation (5) three times:

t=0:s0 "= (KX[0] ~ KX[83]) + KX[s0&255]
1=1: 80 ~= (KX[1] ~ KX[84]) + KX[s0&255]
i=2:s0 "= (KX[2] ~ KX[85]) + KX[s0&255] .

~ o~
© oo
— — ~—

As before, it turns out that initially, s0&255 # 0, hence there are no weak keys
for ¢ = 0. In the cases ¢ = 1 and ¢ = 2 however, sO depends on some key bits
(see Sect. 4). This allows us to generate two sets of 2% weak keys (together a
fraction of approximately 277 — 2716 of the key space) with a different number
of equivalent keys. These two sets have an intersection containing approximately
2172 weak keys (= 271 of the key space) with 27* equivalent keys each.

— The case ¢ = 1 is the same as for 128-bit keys. Hence, we know that 1
key in 256 is weak. We also know that the number of equivalent keys is
determined by the Hamming weight of KX[84], and the most significant
bit of KX[84]. Calculations lead us to KX[84] = efc64dbb cb9f7b71, with
Hamming weight 42. The most significant bit is set to 1. This means that
each weak key has 242 equivalent keys. Two equivalent keys in this class differ
only in the middle 64 bits. If one knows in advance that someone uses a weak
key, the key is found by exhaustive search after on average 2'4! attempts.

— For the case i = 2 we also know that 1 key in 256 is weak. Since KX[85] =
8842£3d7 13b09bab, with Hamming weight 32 and most significant bit
equal to 1, each weak key has 232 equivalent keys. Two equivalent keys
differ only in the most significant 64 bits.

— Simulations show that we can combine the two previous cases?. We find
that approximately 2716 of the user keys are weak, corresponding to 274
equivalent keys each. Two equivalent keys can differ in the most significant
128 bits.

6.2 Key Length 256 Bits

For key length equal to 256 bits, we have to evaluate the dangerous equation (5)
fori =1,i =2, and i = 3. Now we can generate three sets of 224® weak keys with

2 There is no reason why these two events should be independent. Computer simula-
tions show however that this assumption results in a reasonable approximation.

38 Carl D’Halluin et al.

a different number of equivalent keys. The intersections between these three sets
are non-empty and contain weak keys with a significant number of equivalent
keys.

— For the case i = 1 we have KX[84] = e8e10c4d dleb6cld, with Hamming
weight 32 and the most significant bit is set to 1. Hence 1 in 256 user keys
is weak, with 232 equivalent keys.

— For the case i = 2 we have KX[85] = 6cd2af08 790165f3, with Hamming
weight 31 but the most significant bit is set to 0. Hence 1 in 256 user keys
is weak, with 232 equivalent keys.

— For the case i = 3 we have KX[86] = ec7833a4 9d9bce38, with Hamming
weight 34 and the most significant bit is set to 1. Hence 1 in 256 user keys
is weak, with 23 equivalent keys.

— We can combine the previous three cases, and generate four other sets of
weak keys with a different number of equivalent keys. An overview is given
in Table 1. There are approximately An example of a weak key with approx-
imately 2232 weak keys with 2% equivalent keys; an example of such a key
is K= [Ks || K2 || K1 || Ko], where K; denote 64-bit quantities, and

[K3 || Ko] = aabe6c6d e3a06a02 b7650b34 6c73cf94, | (10)
Ky || Ko] = 2900e495 27f8eaba a44524e0 bca9cd27, . (11)

6.3 Other Key Lengths

If we keep the sub-cipher number constant, the entries of the KX-array before
the application of the stirring function depend on the key length only (see equa-
tions (2) and (4)). If we can find key lengths such that KX[248] & 255, = 00,,
then evaluating the dangerous equation (5) for i = 0 gives

s0 "= (KX[0] ~ KX[83]) + KX[0],

which means that all keys are weak keys. Table 4 shows the first 10 key lengths
for which all the keys are weak. Their number of equivalent keys is also shown.
It is an interesting coincidence that for a key length of 56 bits (as for the DES
[1]), all keys are weak keys with 224 equivalent keys. This means that the user
key can be recovered by exhaustive key search, after on average 23! attempts.
For the sake of clarity we repeat that we are studying the HPC version with
128-bit block length. The version with 64-bit block lengths, as the DES, has a
different sub-cipher number and has no weak keys.

7 HPC-Based Hash Functions

The existence of such a large number of equivalent keys has a serious impact on
the use of HPC in the standard constructions for hash functions based on block
ciphers. The problems of weak keys in this context have already been discussed
earlier, see for example [2].

Equivalent Keys of HPC 39

Table 4. Key lengths for which all the keys are weak, and their number of
equivalent keys

|Key length| KX [83] |# Equivalent keys|
56 87d0e495 0b884dch, 221
403 387d8891 8dbf8aa7, 234
608 3f£84d03 84713835, 233
1190 |d5d15fd2 86e68311, 232
1993 |3d16d709 7971336a, 234
2491 |1029£33c e3daad70, 231
2512 |64b16068 T745df8ea, 232
2656 |5693f5cab e7b6abad, 239
2083 |£a06ddd3 £052af40, 233
3245 |£28fb98c 7b26832f, 235

The building block of most hash functions based on block ciphers is known
as the Davies-Meyer hash function (although the authorship of this function is
uncertain). This is an iterated hash function; in step ¢, the chaining variable
H,;,_1 and the ith message block X; are compressed to the next value of the
chaining variable H; as follows:

H, =FEx,(Hi—1) " Hi—1 ,

where Fk () denotes encryption with a block cipher E using the key K. This
mapping is denoted the compression function.

A first observation is that equivalent keys for the block cipher F lead to triv-
ial collisions for the hash function. Indeed, if the X;’s are chosen from a single
equivalence class (that contains 23° keys), the value of H; will not change. A
second observation is that equivalent keys lead to trivial 2nd preimage attacks
in a similar way. The fact that in 1 case out of 256 key search can be sped up
with a factor of 238 implies that finding a 2nd preimage can take advantage of
the same speed-up.

By applying an affine transformation of variables (for example, swapping X;
and H;_1), the above attacks may become attacks on the compression function
rather than on the hash function. Nevertheless, a strong compression function is
a desirable criterion (see [2] for more details on the relation between weak keys
and the strength of the compression function).

8 How to Eliminate the Weak Keys

R. Schroeppel has announced a ‘tweak’ of HPC that should eliminate the weak
keys [5]. The following line of code is added to the stirring function after line (1)
(see Fig. 1).

(1a) s2 += KX[i]

40 Carl D’Halluin et al.

This ensures indeed that changes in the user key are propagated to the entire
state, which implies that with very high probability no two ‘short’ user keys will
result in the same KX table. An alternative solution would be to create part of
the KX table as a bijection of the user key. This would guarantee that for user
keys with up to 16 384 bits, no two keys are equivalent.

9 Conclusion

In this paper we have discussed a serious weakness of the key expansion of AES
candidate HPC. For the 128-bit user key version, it is shown that exactly 278
of the user keys are weak keys, each with 230 equivalent keys. These weak keys
and their corresponding equivalent keys can be constructed using a very simple
and efficient algorithm. Such a weak key can be found by exhaustive key search,
trying only 2% different keys.

We investigated the presence of weak keys for user key length 192 and 256
bits, and showed that respectively 2~7 and 1.5-277 of the user keys are weak keys.
We even found key lengths, for which all user keys are weak. Finally we note that
HPC in its present form is not suitable for use in hash function constructions.

Acknowledgment

The authors would like to thank R. Schroeppel for motivating their research by
announcing an attractive prize for the best cryptanalysis of HPC.

References

1. FIPS 46, “Data encryption standard,” NBS, U.S. Department of Commerce, Wash-
ington D.C., Jan. 1977. 38

2. B. Preneel, R. Govaerts, J. Vandewalle, “Hash functions based on block ciphers:
a synthetic approach,” Advances in Cryptology, Proceedings Crypto’93, LNCS 773,
D. Stinson, Ed., Springer-Verlag, 1994, pp. 368-378. 38, 39

3. R. Schroeppel, “An overview of the Hasty Pudding Cipher,” AES-submission,
http://www.cs.arizona.edu/¥cs/hpc, 1998. 29

4. R. Schroeppel, “The Hasty Pudding Cipher: Specific NIST requirements,” AES-
submission, 1998. 29

5. R. Schroeppel, “Tweaking the Hasty Pudding Cipher,”
http://www.cs.arizona.edu/ rcs/hpc/tweak, 1999. 39

6. D. Wagner, “Equivalent keys for HPC, ”rump session talk at the 2nd AES Confer-
ence, Rome (I), March 22-23, 1999, http://www.cs.berkeley.edu/daw 30

A Construction of 128-bit Weak Keys

In this appendix we show how to construct the weak 128-bit user keys. The
construction of 192-bit and 256-bit weak keys is omitted due to space restrictions.

Equivalent Keys of HPC 41

To construct a 128-bit weak key we have to satisfy (6) for the least significant
byte of s0s:

01, = s05 + 36, + Ob,| (54, + s03>>13) (12)

)

L = Ob,|R , (13)

where L = cb,, — s02 and R = (54, + s02>>13). In order to satisfy this equation,
bits 0, 1, and 3 of L must be 1. In Sect. 4 it is proven that in order to set these
bits to 1, we have to choose K. & f, equal to 8, or c,. A weak key can be
constructed as follows:

— Assign a random value to bits 2, 4, 5, 6 and 7 of K. Set bits 0 and 1 of Kg,
equal to 0, and set bit 3 of K equal to 1.

— Calculate the least significant byte of s0y = sOl‘((KX [0] ~ KXx[83]) +

KX [75]) = 4b," ((dgx*KL*eem) + 74x).
— Calculate the byte value L = cb, — s03 = 0b,|R. Then calculate R

R =54, + (sOl“ ((KX [0]"KX[83]) + KX [75])) >13

=54, + ((301 > 13) - ((KX [0] "KX[83]1)>>13 + KX[75] > 13 +p)>
= 54, + (aOI“ ((92x”(KL>>13)”ac$) + ef, +p>> ,

where p is a carry bit, which we have to calculate first.

— To calculate p, choose at random bits 8 to 12 of K; and calculate the carry
bit p of ((KX[0] ~ KX[83]) + KX[75]1). The bit p = 1 if and only if the
value of this expression, calculated only with the 13 least significant bits of
KX[0], KX[83] and KX[75], is larger than 2! — 1. In the other case p = 0.
Hence the choice of bits 0 to 12 of K determines the value of p.

— Now we have to solve the equation L = Ob;|R. First assign a random value
to bits 0, 1 and 3 of R. The unknown values in this equation are bits 13 to
20 of Kp. Now we can solve for Kp > 13, and we find exactly one solution.

— Now we have a value for bits 0 to 20 of K. These 21 bits are completely
determined by choosing 13 random bits (bits 2, 4, 5, 6, 7 and 8 to 12 of Ky,
and bits 0, 1 and 3 of R).

— We can choose the other 64 — 21 = 43 bits of K, and the 64 bits of Ky at
random. We now have obtained a weak key. This means that the number
of weak keys is exactly 2120 (since we chose freely 120 bits to construct the
weak key). This means that exactly 278 of the keys are weak keys. In Sect. 3
it is proven that each weak key has 23° equivalent keys.

42 Carl D’Halluin et al.

Example

We now construct a weak key, using the techniques described in the previous
section.

— We assign the bit value 0 to bits 2, 4, 5, 6 and 7 of K. We set bit 0 and 1 of
Ky equal to 0, and set bit 3 of K equal to 1. Then the least significant byte
of the key has the value 08,.

— We calculate the least significant byte of s02. This gives e0,.

— We set bits 8 to 12 of K to 0. It turns out that p = 1.

— We calculate L = cb, — s05 = eb,.. We set bits 0, 1 and 3 of R to 0. We solve
the equation R = e0,. It turns out that (K.>>13) = 02,.

— The other bits 21-63 of K;, and 0-63 of Ky are set 0. Now we have constructed
the weak key

K = [Kq || KL] = 00000000 00000000 00000000 00004008, .

It is easy to check that this key is indeed a weak key with 230 equivalent keys.

	Introduction
	HPC Expanded Key Generation
	Filling the KX-table with Pseudo-random Values
	XORing the User Key into the KX-table
	Stirring Function

	Equivalent Keys (Key Length Equal to 128 Bits)
	Dangerous Equation for i=0
	Dangerous Equation for i=1

	Counting Weak Keys and a Construction Method
	Exhaustive Key Search for User Key Length 128 Bits
	HPC with Other Key Lengths
	Key Length 192 Bits
	Key Length 256 Bits
	Other Key Lengths

	HPC-Based Hash Functions
	How to Eliminate the Weak Keys
	Conclusion
	Acknowledgment
	References
	Construction of 128-bit Weak Keys

