Secure Communication in an Unknown Network
Using Certificates™

Mike Burmester!** and Yvo Desmedt?:1* * *

! Information Security Group, Department of Mathematics, Royal Holloway —
University of London, Egham, Surrey TW20 OEX, UK, m.burmester@rhbnc.ac.uk,
http://hp.ma.rhbnc.ac.uk/ "uhah205/

2 Department of Computer Science, Florida State University, Tallahassee
Florida FL 32306-4530, USA, desmedt@cs.fsu.edu,
http://wwuw.cs.fsu.edu/ desmedt

Abstract. We consider the problem of secure communication in a net-
work with malicious (Byzantine) faults for which the trust graph, with
vertices the processors and edges corresponding to certified public keys,
is not known except possibly to the adversary. This scenario occurs in
several models, as for example in survivability models in which the cer-
tifying authorities may be corrupted, or in networks which are being
constructed in a decentralized way. We present a protocol that allows se-
cure communication in this case, provided the trust graph is sufficiently
connected.

1 Introduction

Secure communication in an open and dynamic network in the presence of a ma-
licious adversary can only be achieved when the messages are authenticated. For
this purpose we use authentication channels. There are several ways to establish
such channels. For example, we can use dedicated communication lines in the
network. Alternatively, shared secret keys or public keys can be used. The graph
with vertices the processors in the network and edges the authentication channels
is called a trust graph [5]. If the sender is connected to the receiver by an edge
in this graph then the messages can be authenticated through the correspond-
ing channel. Otherwise we may use authentication paths through intermediary
processors in the trust graph [20,5].

* Research supported by DARPA F30602-97-1-0205. However the views and conclu-
sions contained in this paper are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of the Defense Advance Research Projects Agency (DARPA), the Air
Force, of the US Government.

** Part of this research was done while visiting the University of Wisconsin — Mil-
waukee.
*** This research was done while the author was at the University of Wisconsin —
Milwaukee.

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASTACRYPT’99, LNCS 1716, pp. 274-287, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Secure Communication in an Unknown Network 275

The interplay of network connectivity and communication security has been
studied extensively in recent years (see e.g. [7,14,13,6,1,10,22]). Dolev [7] and
Dolev-Dwork-Waarts-Yung [8] have shown that if the number of malicious
(Byzantine) faulty processors (nodes) is bounded by u then secure communi-
cation can only be achieved if the network is at least (2u + 1) connected. Even
if the faults are not malicious, for reliable communication the network must be
at least (u 4+ 1) connected.

In this paper we deal with the case when the trust graph is not known except
possibly to the adversary. This scenario was first discussed in [5]. It is obvious
that when there are no malicious faults, we can achieve secure communication
if there are at least (2u + 1) vertex disjoint paths which connect the sender
and the receiver, where u is the number of faulty processors (first use standard
algorithms [2] to find the trust graph). Recently this result has been extended to
include the case when the faults are malicious (Byzantine), provided the trust
graph is known to at least one non-faulty processor and the graph is (2u + 1)
connected [4]. However the case when the trust graph is not known to any (non-
faulty) processor and there are malicious faults has not been investigated. In
particular, no efficient algorithm for constructing the trust graph in this case
has been presented so far.

In this paper we focus on the case when the authentication in the trust
graph G* = (V* E*) is based on public keys (using signatures), with edges
(v,w) € E* corresponding to certificates in which w certifies the public key
of v (by signing it). We consider the problem of secure communication when
the public key of the sender is not certified by the receiver [19], and when the
structure of the trust graph is not known to the sender or the receiver. We
describe an algorithm for this setting which makes it possible for the sender
to compute a good approximation of the trust graph in polynomial time if the
vertex-connectivity of the trust graph is at least |5u/2+ 1], where u is an upper
bound on the number of faulty processors.

Related Work and Motivation

This problem is an extension of the classic Byzantine generals prob-
lem [18,16,8] and is related to dependable computation. Authentication in
open networks was considered by Beth-Borcherding-Klein [3] and Maurer [17].
Reiter-Stubblebine [20] consider trust-paths for authentication, and similarly
Burmester-Desmedt-Kabatianski [5], but they use a slightly different model.

Goldreich-Goldwasser-Linial [12], Franklin-Yung [11] and Franklin-
Wright [10] have studied broadcast (multi-recipient) models. Franklin-Wright
have shown that if the number of Byzantine faults is bounded by u then we have
secure communication in polynomial time if the number of disjoint “broadcast
lines” is greater than [3u/2]. This bound has been recently lowered to greater
than u [22].

In our scenario the sender has only local information about the trust graph,
and in order to communicate with other processors, must find appropriate com-
munication paths through possibly corrupted processors. This situation occurs

276 Mike Burmester and Yvo Desmedt

in survivability models for which the certifying authorities may be corrupted
and only local data is reliable. In this case the certifying authorities can pro-
vide erroneous (made-up) keys in order to decrypt private messages and to sign
fraudulent messages [19]. This model is used by Zimmermann [23], Burmester-
Desmedt-Kabatianskii [5], Rivest-Lampson [21] and Reiter—Stubblebine [20]. We
use a similar model, only for us the trust graph is not known (in [23] and [21]
the trust graph is known).

2 Model and Primitives

A communication system consists, essentially, of several linked processors, such
as servers, programs, hardware units etc. A basic requirement is that the system
should be reliable and dependable (robust). Reliability usually deals with faults
which follow a random pattern, e.g., accidental faults. These faults follow pre-
dictable patterns and are usually independent of each other at their origin [5].
They can be controlled by using redundancy (replication). Dependability deals
with Byzantine (malicious) faults which are more difficult to deal with. The
usual scenario is for an adversary to control all the faulty processors, according
to some plan which may exploit the possible weaknesses of the system. The ad-
versary has at least as much power and knowledge of the state of the system
as the non-faulty processors (excluding the secret keys), and possibly more. In
our case, for example, the adversary may know the structure of the trust graph,
whereas the receiver will not. The adversary may try to use such information
and forward misleading messages to non-faulty processors in an attempt to make
the system fail, as in the case of the bogus paths attack [5].

Modeling a scenario in which the adversary is malicious should allow for a
dynamic topology in which changes in the system may take place without the
(non-faulty) processors being aware of it. It should allow for the most general
type of processor which could represent a simple gate, a software package, or a
powerful computer. Also, the model should describe the structure of the system
at the appropriate level of abstraction: it must distinguish those aspects which
are relevant to the computation and abstract out those aspects which are not
essential.

2.1 The Trust Graph

The trust graph G* = (V*, E*) is a directed graph with vertices the processors
of the network and edges the authentication channels. These channels can be
quite general. They can be physically secure (dedicated) communication lines.
Alternatively, they can correspond to conventional authentication channels with
shared secret keys, or to authentication channels with public keys. We are not
interested in how these channels are implemented, or how the underlying (real)
communication network is used, and we do not make any specific requirements
other than that these channels are reliable and that we have synchrony (delays
are bounded). This issue will be discussed in Section 6.1.

Secure Communication in an Unknown Network 277

We are concerned with the secure communication between the (non-faulty)
processors of the trust graph. Since this can be achieved when this graph is
known [5], or when it is completely connected, we focus on the case when its
structure is not known and when it has a weaker connectivity. Our goal is to
find a polynomial time algorithm to construct the trust graph, or at least a good

approximation of it. We summarize our basic requirements for this model below.

General Assumptions

The authentication channels are reliable and we have synchrony (delays are
bounded).

All processors including the adversary are polynomially bounded (for uncon-
ditional security we allow the adversary to have unlimited computer power).
The number of faulty processors is bounded by u, and the trust graph is
[5u/2 + 1| vertex-connected [9].

Every processor has a unique identifying label.

In this paper we focus on the particular case when the authentication in the
trust graph G* = (V*, E*) is based on public keys, with signatures. Each edge
(v,w) € E* is labeled by a certificate c,w = (v, w, ky, kw, signy, (v, k,)), where
ky, ky, are the public keys' of v, w, and signy, (v, ky) is the signature of w with
key ky, on (v, ky).

Observe that a processor v can be identified by its public key k,. This does not
restrict the generality of our approach, since we are assuming that the processors
have unique identifying labels. When there is no ambiguity we may identify v
with k,. It is important however to note that in our model there is a clear
distinction between the label of a vertex v and its public key k,. Indeed in our
scenario a processor b wishes to communicate with a possibly known processor r
and b has not certified the public key of r. A variant scenario is when b wishes to
communicate with a processor r and b does not know r’s public key. This issue
will be discussed in more detail in Section 6.2. We just mention here that if a
trust graph (or a good approximation of it) has been constructed with vertices
labeled by public keys then it is easy to find the “true” labels of the vertices,
provided the trust graph is sufficiently connected (by querying each “public key”
for its label).

2.2 A Good Approximation of the Trust Graph

The vertices of the trust graph correspond to faulty and non-faulty processors.
Similarly, the edges of the trust graph correspond to faulty and non-faulty chan-
nels. Faulty processors (channels) are real processors (channels) which are under
the control of the adversary. It may not be possible in the general case for a non-
faulty processor to construct the true trust graph, because its faulty neighbors
under the control of the adversary can always lie about their neighbors (and

1 'We shall assume that the length of the public keys is superpolynomial in .

278 Mike Burmester and Yvo Desmedt

the neighbors of their neighbors, ...), e.g. by claiming or disclaiming incident
edges. That is, faulty processors can make up non-existing processors and chan-
nels to prevent non-faulty processors from finding the trust graph. We call these
processors and channels, fake. Fake processors (channels) do not belong to the
trust graph. They correspond to vertices (edges) of a virtual graph which is an
extension of the trust graph.

We say that a graph G’ = (V' E’) is a good approximation of the trust
graph G* = (V*,E*) if V/ = V* and E' C E*, where the edges in E* \ E’
are directed into a faulty vertex. Good approximation graphs are adequate for
secure communication, provided our assumptions in Section 2.1 are satisfied.
Observe that the adversary can reduce the connectivity of the trust graph from
[5u/2 + 1] to (2u + 1) by removing (disclaiming) |u/2] edges which connect
u faulty processors in pairs. For example, in Figure 1 two faulty vertices f1, fo
can reduce the connectivity between the two vertices r and b from 5 to 4 in such
a way that they can still control 2 out of 4 vertex-disjoint paths linking r to b
(if f1 disclaims the edge (f1, f2)). This implies that if a message is sent through
these paths, then a majority vote on the received communication may not be
decisive. Of course there may be other sets of 4 vertex-disjoint paths linking r, b
in which f1, fo have a minority vote, but it may be hard to find these in the
general case.

b

Fig. 1. Two faulty vertices f1, fo reduce the connectivity between r and b from
5 to 4 in such a way that they control 2 out of 4 vertex-disjoint paths from r to

b

b

Any further removals by the adversary will however only reduce the number of
faulty or fake paths, and will not affect the (u+ 1) vertex-disjoint authentication
paths which are not faulty.

Secure Communication in an Unknown Network 279

2.3 Virtual Paths

A path m = (b1,ba,...,b,) is virtual if every processor by, £ > 1, in 7 has
certified (signed) with its public key kp,, its parent by—; and the key kp,—1.
The description of a virtual path = must include all the certificates ¢, .5, =
(be—1,be, kv, kb,, signy,, (be—1,kp,_,)), £ =2,...,n. To authenticate a message
m through m, each processor b, in turn signs (m, 7) and forwards this signature,
together with the signatures of its ancestors to its descendants. The authentica-
tion is initialized by by which forwards sign,, .(m) := (m, 7, sign,, (m, 7)) to ba.
Each by inm, £ =2,...,n—1, on receiving sign,, .(m) checks it for correctness,
i.e., that the keys certify what they are supposed to and that the signatures are
valid. If not, the message is not forwarded. Otherwise, it appends to the message
its signature sign,, (m, 7) and then forwards the resulting list sign, . (m) to bey1.
The message m is authenticated through the virtual path = when b,, receives
a valid sign, | (m). A path whose processors belong to the trust graph, i.e.,
are not fake, is an authentication path. A message authenticated through such
a path with no faulty processors is authentic. However if some processors are
faulty then the message (e.g., a certificate) may be a forgery.

If a path 7 has faulty or fake processors then it is not certain if the message
will ever reach b,. A faulty processor by can claim to its descendants that a
message has been authentication by its ancestors b, ,,..., but b, cannot be
certain, (i) that the message, if any, has been substituted and, (i7) that some
of the processors b, and edges (b,_,, b27i+1) on the claimed path are not fake
(not in the trust graph).

Definition. A fake path is a virtual path some of whose vertices are fake.
The following result will be needed later.

Lemma 1. Let 7 = (b1,be,...,b,) be a virtual path. If the vertex b, is not
faulty and 7 is fake, then at least one ancestor by of by, in m must be faulty.

Proof. The public key of a fake processor will only be certified by a faulty pro-
cessor.

Virtual paths can be used for secure communication if no more than u pro-
cessors are faulty and if (2u + 1) vertex-disjoint such paths connect the sender
to the receiver. By the Lemma, if the sender and receiver are not faulty, at least
(u + 1) of these paths are non-faulty authentication paths. A majority vote on
the received communication can then be used.

Another way to communicate in a network which is under the control of a
malicious adversary is by flooding.

2.4 Flooding

Flooding [2] is a broadcasting method in which a processor z sends a message
to its neighbors, which then relay it to their neighbors, and so on, until the mes-
sage reaches all the processors in the trust graph (our connectivity assumption

280 Mike Burmester and Yvo Desmedt

guarantees this). To limit the number of transmissions, a processor does not re-
lay back a message to the processor which sent it. Also, transmissions are not
repeated (by using sequence numbers). If the the adversary does not make any
fake processors or channels (e.g., if the faults are not malicious) then the total
number of transmissions for one query through the trust graph is bounded by
2|E*|, where E* is the edge set of the trust graph [2].

In our case the faulty processors are under the control of the adversary and
will make fake processors and channels, and furthermore they may try to jam
the system by claiming to have a large number of (mostly fake) neighbors. To
prevent this we introduce Round Robin Flooding (round robin was used before,
in a different context, to solve a security problem [15]). In this, each processor
x allocates “equal-time” to all its edges. For convenience we take the delay-time
of the authentication channels (the edges) in the trust graph G* to be bounded
by 1. Then = will allocate to each of its incoming edges time bounded by deg(z),
the degree of in G*. This means that the time taken for a query of a non-faulty
processor to reach any other processor in G* is bounded by n?, where n = |[V*|,
provided G* is (u + 1) vertex-connected, with u an upper bound on the number
of faulty processors. Since we only use Round Robin Flooding, from now on we
shall refer to this simply as flooding.

3 Secure Communication with Byzantine Faults

We can formulate our problem of secure communication in terms of communi-
cation networks. These networks can be represented by graphs G = (V. E) in
which communication is possible only through the edges of G (we assume that
these are reliable). In our case up to u vertices in G may be faulty and under
the control of the adversary. Communication through these may be corrupted.
In particular, a faulty vertex can lie about its neighbors. If the graph has suffi-
cient connectivity then secure communication can be achieved through (2u+ 1)
vertex-disjoint communication paths, since the adversary can only occupy less
than half of these. However in our case the structure of G is not known. The
problem is to find an efficient algorithm to construct G, or at least a good ap-
proximation of GG, in the case when the adversary can control up to u vertices.
There are two different ways in which this problem can be stated.

CN1 - Constructing a communication network with up to u faulty vertices and
Adversary,,.

Instance: A directed graph G = (V, E), b € V, the set N}, of neighbors of b in
V', the set Ej of edges in E incident to b, the Adversary, which can control up
to u vertices in G.

Question: Can a good approximation of G be constructed given as input only
b eV, Ny and Ep, in the presence of Adversary,,.

In this problem, the vertex b only knows its neighbors in N, and the corre-
sponding edges Fj of the communication graph, and does not have access to the
program of Adversary,,. It can find out information about G' by communicating

Secure Communication in an Unknown Network 281

through its neighbors (or by guessing). We assume that the adversary has a fized
program. This restriction is removed in the next problem.

CN2 — Constructing a communication network with up to u faulty vertices and
any adversary.

Instance: A directed graph G = (V, E), b € V, the set N, of neighbors of b in
V', the set Ej of edges in E incident to b.

Question: Can a good approximation of G be constructed given as input only
b eV, Ny and Ep, in the presence of any adversary which can corrupt up to u
vertices in G.

This problem addresses malicious faults in a general way. It gives more power to
the adversary who can change dynamically her program, whereas the non-faulty
processors are bound by their programs.

We will show that both problems can be solved in polynomial time. We
discuss the first one in the following section. In Section 4 we deal with the
second problem.

3.1 Problem CN1 — A Simplistic Solution

Suppose that vertex b wants to construct a good approximation of the trust graph
G* = (V*, E*) by querying all its neighbors in G*, the neighbors of the neighbors,
ete, for a signed list of the labels (the certificates) of their incoming edges. The
query is flooded, and the neighbor list of vertex x is L, := (z, E},sign,_(E})),
where E7 is the list of labels of the incoming edges of x in E*. Lists are only
forwarded or accepted if they are correct (the signature in L, must authenticate
the labels with the key k, of z, and the labels must be valid). Let n be the order
of the graph G and let n¢ be an upper bound on the complexity of Adversary,,.
Vertex b will receive at most,

(n —u) +un® < n°tt

edge lists. This is a first approzimation G = (V" E") of the trust graph G*. By
our connectivity requirements on G*, G’ must contain a good approximation of
G*.

The next stage is to remove from G” all fake processors. Let x # b be any
vertex in V" and c¢(z,b) be the connectivity from x to b in G”, that is the
maximum number of vertex-disjoint paths connecting z to b in G”. If the vertex
x is fake then ¢(x,b) < uw by Lemma 1. On the other hand if x is not fake
then ¢(z,b) > u+ 1, by our connectivity assumption. Checking this connectivity
can be done by using a Max Flow algorithm? with complexity O(|V" |1/ > |E")
(Dinic’s algorithm [9]). The complexity of finding all the non-fake vertices is
therefore O(n5/2(¢t1)). Let V' be the set of vertices in V” which belong the
trust graph (the non-fake vertices in V") and let E’ the set of edges in E”

2 Crucial to our argument is the fact that the adversary cannot make fake labels for
edges (v, w) with non-faulty vertices.

282 Mike Burmester and Yvo Desmedt

which belong the trust graph (the non-fake edges in E”). Then G' = (V' E’) a
good approximation of the trust graph. It follows that vertex b will get a good
approximation of the trust graph in polynomial time by using this procedure.
Of course we must assume that the signature scheme will remain secure in this
adverserial scenario.

This construction is not really satisfactory because its complexity is a func-
tion of the complexity of Adversary,. In particular, it requires that non-faulty
vertices work harder than faulty vertices.

4 Problem CN2 — the General Case

4.1 Discussion

The main problem with the construction in Section 3.1 is that there is no halting
strategy. The construction goes on until Adversary,, is exhausted, which of course
is too late. The trust graph will be completed long before the construction has
ended, and what is constructed includes mainly fake vertices and edges. What
we need is some means to recognize this.

There are also other problems with this construction. A neighbor list of a
faulty vertex can be enormous, consisting mainly (or entirely) of endless lists
of fake vertices and edges. If such a vertex were given equal time to a non-
faulty vertex, this would allow the adversary to take control over most of the
construction. The easiest way to sort out this problem is to share time equally,
and ask each vertex to send only one edge label at-a-time.

Finally, by having no bound on the order of the graph, the description of
some of the vertices may be much longer than needed. We shall assume that
the description of the vertices of the trust graph is short. The problem with
the description of fake vertices is dealt with by using a subprotocol (Round
Robin) packet_ flood in which the sender sends one packet at-a-time. The receiver
will use these only after an EOT (end of transfer) has been received.

4.2 An Informal Approach

The first part of our construction is similar to the previous one, modified to
take into account our remarks in the previous section. Vertex b floods a query
in the trust graph G* to all other vertices for signed labels of their incoming
edges, one-at-a-time. At some stage b will start receiving signed labels of edges
(v, w) from which it can begin to build a graph G”. After some time, some of
the vertices will have completed their lists. These vertices are labeled “replied”.
The others, in the process of replying, are labeled “replying”. Eventually some
of the vertices will be linked to b. These are labeled “linked”. The others are
“not_yet_linked”.

Suppose that the graph G” under construction has reached the point when
V! C V", i.e., the vertices in the good approximation graph G’ have all been
found. Then the vertices v/ in G” which are still sending new vertices v'”, i.e.,

Secure Communication in an Unknown Network 283

not yet found, must be under the control of the adversary. These v vertices are
either faulty or fake. Let G/, be the graph obtained from G” by adding one
new vertex vq,, and new edges connecting vq., to all the vertices in G” labeled
replying. It is easy to see that V' C V" if and only if ¢(vguz, b) < u, Indeed there

are at most u faulty vertices. We will use this test for our halting procedure.

Halting routine: is_graph (x)
Argument: G” = (V" E"), b e V" alist of vertices z; € V" labeled replying.
Value: satisfactory if c(vaus,b) < u, else not_satisfactory.

Observe however, that this does not guarantee that G” contains a good ap-
proximation graph. We only know that all vertices in G’ have been found. Pro-
cessor b will now ask all vertices v labeled “replying” to give, a new incoming
edge, one at-a-time, as before. If (w, v) is such an edge, but w € V", then b stops
asking v for new edges.

Find missing edges routine: missing_edges (x)
Argument: G” = (V" E"), b e V" alist of vertices z; € V" labeled replying.
Value: a graph G’”, containing a good approximation graph.

Now suppose that processor b has constructed a first approximation of the
trust graph G*, that is a graph G” = (V”, E"") which contains a good approx-
imation G’ of G*. G’ will also contain fake vertices and edges. Fake vertices x
can be traced as in Section 3.1, because ¢(x,b) < u. Similarly fake edges can be
traced. Discarding these from G” will give us a good approximation of the trust
graph.

Cleaning up routine: clean_up (x)
Argument: G’ = (V" E"), a first approximation graph.
Value: G’, a good approximation graph.

4.3 The Protocol

Vertex b in the trust graph G* = (V*, E*) wants to construct a good approxi-
mation of G* given the set N; of neighbors of b in V*and the set £} of incoming
edges of b in E*.

The Setting The vertices in Ny and all the vertices under construction
have link_status € {linked,unlinked} and reply_status € {not_replied_yet,
replying, replied}.

Initially link_status(z) := linked, and reply_status(z) := not_replied_yet,
for all x € N;. Each (non-faulty) vertex v # b in V* makes an ordered list
edge_list (v) of its incoming edges. Each time v replies to a query of b request-
ing its incoming edges, v will send the first edge first_edge (edge_list (v)) in this
list, and then remove this edge from the list. Edges are sent one-at-a-time. Ini-
tially edge_list(v) := E¥, where E is the complete list of incoming edges of v
in E*. Finally, a label of an edge (w,v) is label_(w,v) := ¢y, the certificate in
which v certifies the public key of w.

284 Mike Burmester and Yvo Desmedt

Protocol (input = (b, N}, E}))

until is_graph (G") = satisfactory do
begin
b floods a query: “all vertices v send a label (w,v) of a new edge (w,v)”;
vertex v # b
if | edge_list (v) | > 1 then reply_status(v) = replying;
if | edge_list (v) | =1 then reply_status(v) = replied;
packet_ flood to b: (data(v), signg, (data(v))),
where data(v)= (first_ edge (edge_list(v)), reply- status (v));
edge_list (v) :=edge_list (v) — first_edge (edge_ list (v)) :
vertex b
if there is a path from b to v in G” then link_status (v) := linked
else link_status (v) := unlinked ;
if link_status (v) := linked and (data(v),sign, (data(v))) is correct
and label (v, w) is correct then add-to-G" (label (v, w));
end;
G"" = missing_edges (G");
G = clean_up (G'")

5 Proofs

We shall now prove that this protocol is efficient.

Lemma 2. The construction above will halt in O(n*) communication time,
where n 1s the order of the trust graph G*.

Proof. Let x be any vertex in G* and let m = (v = x1,22,...,2,= b) be a path
i G* all of whose vertices are not faulty. The time taken to send the label of
an edge (x,y) through the channel (x;,x;41) of ™ is bounded by the number of
neighbors of x;y1 in V*, which is bounded by n. The length of 7 is bounded by
n, so b will get the label of (x,y) in time n?. Since x cannot have more than n
incoming edges, b will get the complete list of edges E} in time n. It follows that
b will get a first approximation of G* in time O(n*). By this time, of course, b
may also get up to n* —n fake vertices.

Next let us consider the cost of the halting and clean up tests. For the halting
test we use a Max Fow algorithm with time complexity O(|V"|Y/2|E"|). In our
case |[V"| = O(n*), |E"| = O(n*). The complezity for this test is then O(n? -
nt) - O(n*) = O(n? - n*-nt) = O(n'®). A similar argument applies for the
clean up test with bound O(n'®). Observe that one should distinguish between
the first complexity and the other two. The first one involves communication in
the network, whereas the others are essentially off-line.

Lemma 3. The constructed graph G’ is a good approzimation of the trust graph
G*.

Proof. Suppose that a vertex x in G* is not in the constructed graph G'. Let m;,
1=1,2,...,2u+ 1, be vertex-disjoint directed paths in G* from x to b, and let

Secure Communication in an Unknown Network 285

T €m,1=1,2,...,2u+1, be vertices in G' whose ancestors in w; are not in G’.
The reply_status of the vertices x; must be replying. Apply the halting test to
these vertices to get a contradiction. The missing_edges routine guarantees that
no edges are missing.

We therefore have,

Theorem 1. If the trust graph is |5u/2 + 1| vertex-connected and if all the
other assumptions in Section 2 hold, then the Protocol above will construct a
good approzimation of the trust graph in polynomial time.

6 Discussion

6.1 Reliability and the Communication Network

In our model we assume that the edges of the trust graph G* = (V*, E*) cor-
respond to reliable channels. These can be regarded as virtual channels in a
communication network G = (V, E) for which V* C V. An edge (v,w) € E*
could correspond to some path in G linking v, w, but not necessarily to a fixed
path. Alternatively it could correspond to several paths, possibly vertex-disjoint.
This would allow for the possibility of the channel (v, w) not being reliable, but
reliability for the system may still be achieved through other paths in G*.

This model is more general. However, at a high level we can add virtual
edges whenever we get a reliable channel. So there is no real difference. Indeed
we could argue that the general goal of secure communication is to extend the
trust graph to a completely connected graph.

6.2 Identifying Labels of Processors

The following is an interesting scenario. A faulty processor may try to use differ-
ent public keys, that is pseudonyms. The other faulty processors may be willing
to support it, but a more successful strategy would be to get some non-faulty
processors to accept the pseudonym. The effect of this would be to give the ad-
versary more power, by controlling more parties. If no more than u non-faulty
processors have certified a pseudonym p and if the trust graph is known then
there is no problem. The pseudonym can be traced by observing that the con-
nectivity ¢(p,b) < 2u for every non-faulty processor b.

However if the trust graph is not known then there is a problem. This is
because is not possible in our general adverserial model to construct a good
approximation graph given only a vertex b € V*, the neighbor set Ny, and
the edge set E;. Indeed if the adversary controls (u 4 1) processors (u faulty
processors and a pseudonym) then there is no way of preventing her from taking
over the construction (in the general setting of Section 4).

This remark also suggests a method for extending the trust graph. A new
processor will be “allowed in” if at least (2u + 1) processors are prepared to
certify it. In the final version of the paper we will discuss this issue in more
detail.

286 Mike Burmester and Yvo Desmedt

6.3 Double Certificates — Undirected Trust Graphs

In our model the edges (v, w) correspond to single certificates ¢,y = (v, W, ky, ks
signy, (v, ky)) in which w certifies v’s public key. If v also certifies w’s public key
with the certificate cuy = (W, v, kw, kv, sign;, (w, ky)) then we get an undirected
edge (v,w). So the trust graph is undirected. All our results can be extend to
this case.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twen-
tieth annual ACM Symp. Theory of Computing, STOC (May 2-4, 1988) pp. 1-10
275

2. Bertsekas, D., Gallager, R.: Data networks second ed. Prentice Hall 1992 275,
279, 280

3. Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open networks. In
Computer Security—ESORICS 94 (Lecture Notes in Computer Science 875) (1994)
Springer-Verlag pp. 3-18 275

4. Burmester, M., Desmedt, Y. G.: Secure communication in an unknown network
with Byzantine faults. Electronics Letters 34 (1998) 741-742 275

5. Burmester, M., Desmedt, Y., Kabatianskii, G.: Trust and security: A new look
at the Byzantine generals problem. In Network Threats, DIMACS, Series in Dis-
crete Mathematics and Theoretical Computer Science, December 2—4, 1996, vol. 38
(1998) R. N. Wright and P. G. Neumann, Eds., AMS 274, 275, 276, 277

6. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM Symp. Theory of Computing, STOC
(May 2-4, 1988) pp. 11-19 275

7. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3 (1982)
14-30 275

8. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the ACM 40 (1993) 17-47 275

9. Even, S.: Graph algorithms. Computer science press Rockville, Maryland 1979
277, 281

10. Franklin, M., Wright, R.: Secure communication in minimal connectivity models. In
Advances in Cryptology — Eurocrypt '98, Proceedings (Lecture Notes in Computer
Science 1403) (1998) K. Nyberg, Ed. Springer-Verlag pp. 346-360 275

11. Franklin, M. K., Yung, M.: Secure hypergraphs: Privacy from partial broadcast.
In Proceedings of the twenty seventh annual ACM Symp. Theory of Computing,
STOC (1995) pp. 36-44 275

12. Goldreich, O., Goldwasser, S., Linial, N.: Fault-tolerant computation in the full
information model. STAM J. Comput. 27 (1998) 506-544 275

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In Pro-
ceedings of the Nineteenth annual ACM Symp. Theory of Computing, STOC (May
25-27, 1987) pp. 218229 275

14. Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations. PhD thesis
Harvard University Cambridge, Massachusetts 1984 275

15. Kaufman, C., Perlman, R., Speciner, M.: Network Security. Prentice-Hall Engle-
wood Cliffs, New Jersey 1995 280

16.

17.

18.

19.

20.

21.

22.

23.

Secure Communication in an Unknown Network 287

Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on programming languages and systems 4 (1982) 382-401 275

Maurer, U.: Modeling public-key infrastructure. In Computer Security—
ESORICS 96 (Lecture Notes in Computer Science 1146) (1996) Springer-Verlag
pp. 325-350 275

Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of ACM 27 (1980) 228-234 275

Popek, G. J., Kline, C. S.: Encryption and secure computer networks. ACM Com-
puting Surveys 11 (1979) 335-356 275, 276

Reiter, M. K., Stubblebine, S. G.: Path independence for authentication in large
scale systems. In Proceedings of the 4th ACM Conference on Computer and Com-
munications Security (April 1997) pp. 57-66 274, 275, 276

Rivest, R. L., Lampson, B.: SDSI-a simple distributed security infrastructure.
http://theory.lcs.mit.edu/¥cis/sdsi.html 276

Wang, Y., Desmedt, Y.: Secure communication in broadcast channels. In Advances
in Cryptology — Eurocrypt '99, Proceedings (Lecture Notes in Computer Science
1592) (1999) J. Stern, Ed. Springer-Verlag pp. 446-458 275

Zimmermann, P. R.: The Official PGP User’s Guide. MIT Press Cambridge,
Massachussets 1995 276

	Introduction
	Model and Primitives
	The Trust Graph
	A Good Approximation of the Trust Graph
	Virtual Paths
	Flooding

	Secure Communication with Byzantine Faults
	Problem CN1 -- A Simplistic Solution

	Problem CN2 -- the General Case
	Discussion
	An Informal Approach
	The Protocol

	Proofs
	Discussion
	Reliability and the Communication Network
	Identifying Labels of Processors
	Double Certificates -- Undirected Trust Graphs

	References

