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Abstract. When attacking a distributed protocol, an adaptive adver-
sary may determine its actions (e.g., which parties to corrupt), at any
time, based on its entire view of the protocol including the entire com-
munication history. In this paper we are concerned with proactive RSA
protocols, i.e., robust distributed RSA protocols that rerandomize key
shares at certain intervals to reduce the threat of long-term attacks. Here
we design the first proactive RSA system that is secure against an adap-
tive adversaries. The system achieves “optimal-resilience” and “secure
space scalability” (namely O(1) keys per user).

1 Introduction

Distributed public-key systems involve public/secret key pairs where the secret
key is distributively held by some number of servers. As long as an adversary
cannot corrupt a quorum of servers the system remains secure (as opposed to
centralized cryptosystems in which the compromise of a single entity breaks the
system). Distributed cryptography, including the design of practical distributed
cryptosystems, has been an area of extensive research (see surveys [9,23,21]).

In this paper, we present the first proactive RSA system that is both opti-
mally resilient and provably secure against an adaptive adversary. The system is
also scalable in that it only requires a number of key shares that is linear in the
number of servers. Let us review why such a proactive RSA system is considered
one of the hardest amongst the “distributed cryptosystems” problems:

1. RSA is harder to “make distributed” than the discrete logarithm family due
to mathematical constraints. The group of RSA exponents (which contains
the RSA secret key) has unknown order (as opposed to discrete-log based
protocols), which makes distributed manipulations with the partial keys:
polynomial interpolation and key re-randomization (typical in “proactive
systems” [28]) hard.

2. From an adversarial perspective, the “proactive” system is the most difficult
since it must cope with a “mobile” adversary (whereas a regular “robust
threshold system” copes only with static adversary)..

* CertCo, yfrankel@cs.columbia.edu
** Information Sciences Research Center, Bell Laboratories, Murray Hill, NJ 07974,
philmac@research.bell-labs.com
*** CertCo, moti@cs.columbia.edu

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASTACRYPT’99, LNCS 1716, pp. 180-195, 1999.
© Springer-Verlag Berlin Heidelberg 1999



Adaptively-Secure Optimal-Resilience 181

3. For [ denoting the number of servers and ¢ the number of misbehaving
servers, an “optimally resilient” protocol is the weakest possible constraint,
of | > 2t + 1, (matching the trivial lower bound).

4. The size of keying information per server is an important parameter in deter-
mining scalability of a system. For “scalability of secure space,” we require
each server to store O(1) key shares, which is optimal.

5. The security proof for distributed protocols is usually based on simulating the
adversary’s view of the protocol. From the point of view of “proving security”
against an adaptive adversary using simulatability is the most difficult one
because the view of an adaptive adversary changes dynamically based on all
information it receives.

Formally, what we show is:

Theorem 1. There exists an adaptively-secure optimal-resilient space-scalable
proactive RSA system.

2 Background

The “adaptive adversary” challenge:

Let us elaborate more on the problem facing the designers of adaptively-secure
distributed protocols. (Very few such systems have been designed e.g., [1,2]). The
major difficulty in proving the security of protocols against adaptive adversaries
is being able to efficiently simulate (without actually knowing the secret keys)
the view of an adversary which may corrupt parties dynamically, depending on
its internal “unknown strategy.” The adversary’s corruption strategy may be
based on values of public ciphertexts, other public cryptographic values in the
protocol, and the internal states of previously corrupted parties. Let a user’s
share of the private key be committed by any public value which is based on the
share. The commitment may be an encryption of the share, or the computation
to generate the signature with the quorum. Suppose the adversary decides to
corrupt next the party whose identity matches a one-way hash function applied
to the entire communication history of the protocol so far. Now we must simulate
the corruption which allows obtaining a share of the key which is consistent with
the commitments.

In distributed public-key systems, the problem of adaptive security is exac-
erbated by the fact that there is generally “public function and related pub-
licly-committed robustness information” available to anyone, which as discussed
above, needs to be consistent with internal states of parties that get corrupted.
This is the main cause of difficulties in the proof of security. With proactive sys-
tems the update has to be done correctly and be connected to the past, which
is another source of difficulty when facing an adaptive adversary.

History of proactive RSA:

The work of [24] developed tools to allow proactive security [28] in discrete-log
based systems. They also defined the notion of a proactive public-key system.
Tools to allow proactive security in RSA-based systems were given in [16,15,30].
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(Previous work on threshold and robust threshold RSA systems is given in
[10,8,17,22].) None of these tools have been shown to be secure against an adap-
tive adversary. Recently the notion of security against adaptive adversaries in
threshold public-key systems was dealt with (in systems less constrained than
ours) [19,3].

Our Contributions and Techniques:

We base our system on the one in [15], since it is optimally resilient, and, as
opposed to [16,30], is secure-space scalable (requires only a linear number of
RSA key shares). The system in [30] needs O(I3) RSA key shares. The system in
[16] is suitable for small number of participants, but it is not optimally resilient,
and may employ an even larger number of keys as the system grows in scale.
Our system differs from the one in [15] in that we construct and employ a new
set of techniques that make the system secure against an adaptive adversary.

As in previous proactive RSA systems, we perform secret sharing operations
over the integers (since for security the order of the group containing the secret
key cannot be revealed to the servers). A difficulty with integer operations is
maintaining bounded share sizes even after many proactive update (rerandom-
ization) operations. We do this without requiring any zero-knowledge proofs in
our update protocol. In fact, we only use zero-knowledge proofs in our func-
tion application (signature) protocol, and if one wishes to optimize the system
for the corruption-free case, these proofs would only need to be performed if
the computed signature is found to be invalid (which is the typical “optimistic”
approach to fault-tolerance advocated e.g. in [10]).

Since we must maintain security against an adaptive adversary, we are not
able to use Feldman’s verifiable secret sharing VSS [14], which is inherently in-
secure against an adaptive adversary. (Previous protocols, such as [15,30] are
based on Feldman VSS, and [30] uses it in particular to avoid the use of zero-
knowledge proofs and thus increase some of the efficiency.) Instead, we use a
form of Pedersen’s VSS [29]. One can think of the commitments in this VSS
as “detached commitments”. These commitments are used to ensure correct
behavior of servers, yet have no “hard attachment” to the rest of the system,
even the secret key itself! We show how to work with these detached commit-
ments, e.g., using “function representation transformations” like “poly-to-sum”
and “sum-to-poly” (which are basic tools which maintain space-scalability and
which we build based on [15]). We also show how to maintain robustness by con-
structing simulatable “soft attachments” from these detached commitments into
the operations of the rest of the system. The soft attachments are constructed us-
ing efficient zero-knowledge proofs-of-knowledge. For proactive maintenance we
develop update techniques that carefully assure correctness of update, as well as
non-growth of the key size as we perform our computations over the integers.

The basic proof technique for security against an adaptive adversary is based
on the notion of a “faking server” which is chosen when commitments related
to the secret key must be generated. (Fortunately, this is only during a function
application phase, where additive sharings are used.) The simulator exploits
the “actions” of this server to assure that the view is simulatable while not
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knowing the secret key. This server is chosen at random and its public actions are
indistinguishable from an honest server to the adversary. We have to backtrack
the simulation only if the adversary corrupts this special server. Since there
is only one faking server, and since regardless of its corruption strategy, the
adversary has a polynomial chance (at least 1/(t+ 1)) of not corrupting this one
server, we will be able to complete the simulation in expected polynomial time.
We have to assure that this “faking server” technique works in the proactive
setting, where the adversary is not just adaptive, but also mobile. Our protocol
and simulation techniques also maintain “optimal resilience.”

3 Model and Definitions

Participants and Communication: We use the standard model for proac-
tive systems [28]. The system consists of [ servers S = {S7,...,5;}. A server
is corrupted if it is controlled by the adversary. When corrupted, we as-
sume “for security” that the adversary sees all the information currently
on that server. On the other hand, the system should not “open” secrets
of unavailable servers (effectively reducing the needed threshold). Namely,
we separate availability faults from security faults (and do not cause poten-
tial security exposures due to unavailability). Our communication model is
similar to [25]. All participants communicate via an authenticated bulletin
board in a synchronized manner. We assume that the adversary cannot jam
communication.

Time periods: To deal with a mobile adversary, we assume a common global
clock (e.g., a day, a week, etc.) that divides time into two types of time periods
repeated in sequence: an update period (odd times) and an operational
period (even times). During an operational period, the servers can perform
functions using the current secret key shares. During the update period the
servers engage in an interactive update protocol which upon completion the
servers hold new shares to be used during the following operational period'.

System Management: We assume that a server that is determined to be cor-
rupted by a majority of active servers can be refreshed (i.e., erased and
rebooted, or perhaps replaced by a new server with a blank memory) by
some underlying system management. This is a necessary assumption for
dealing with corrupted servers in any proactive system.

The adversary: The adversary is t-restricted; namely it can, during each period,
corrupt at most t servers, under the assumption that if a server is corrupt during
an update period it is corrupt in the prior and subsequent operational periods.
A mobile adversary moves around as servers become corrupted or uncorrupted.
The actions of an adversary at any time may include submitting messages to

! Technical note: we consider a server that is corrupted during an update phase as

being corrupted during both its adjacent periods. This is because the adversary could
learn the shares used in both the adjacent operational periods.
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the system to be signed, corrupting servers, and broadcasting arbitrary infor-
mation on the communication channel. The adversary is adaptive; namely it is
allowed to base its actions not only on previous function outputs, but on all the
information that it has previously obtained.

Distributed Public-Key Systems: Here we formally define our notions of security
and robustness for proactive public-key systems. For simplicity, we will assume
that the function application operation computes signatures.

Definition 1. (Robustness of a Proactive System) A (t,1)-proactive public-
key system S is robust if for any polynomial-time t-restricted adaptive mobile
adversary A, with all but negligible probability, after polynomially-many update
protocols for each input m which is submitted to the signing protocol during an
operational period, the resulting signature s is valid.

Definition 2. (Security of a Proactive System) A (t,1)-proactive public-
key system S is secure if for any polynomial-time t-restricted adaptive mobile
adversary A, after polynomially-many signing protocols performed during oper-
ational periods on given values, and polynomially-many update protocols, given
a new value m and the view of A, the probability of being able to produce in
polynomial time a signature s on m that is valid is negligible.

Remark: The choice of the inputs to the signing protocol prior to the chal-
lenge m defines the tampering power of the adversary (i.e., “known message,”
“chosen message”, “random message” attacks). The choice depends on the im-
plementation within which the distributed system is embedded. In this work,
we assume that the (centralized) cryptographic function is secure with respect
to the tampering power of the adversary. We note that the provably secure sig-
nature and encryption schemes typically activate the cryptographic function on
random values (decoupled from the message choice of the adversary).

3.1 Range Notation
We will use the following notation to define ranges:

1. A range is defined as [a, b], denoting all integers between a and b inclusive.
(Similarly, we could define (a,b), (a,b], and [a,b).)

2. We can multiply a range by a positive scalar: x - [a,b] denotes the range
[za, xb)].

3. We can multiply a range by a negative scalar: —z - [a, b] denotes the range
[—xb, —xa].

4. We can add two ranges: [a,b] + [¢, d] denotes the range [a + ¢, b+ dJ.

5. For a range that covers the point zero, we can multiply that range by a
positive or negative scalar: £z - [a, b], where a < 0 < b, denotes the range
[—xc, xc], where ¢ = max(|al, |b]).
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4 Basics for Our System

Let k be the security parameter. Let key generator GE define a family of RSA
functions to be (e,d, N) «+ GFE(1¥) such that N is a composite number N =
P x Q where P,(@Q are prime numbers of k/2 bits each. The exponent e and
modulus N are made public while d = e~ mod A(N) is kept private.” The RSA
encryption function is public, defined for each message M € Zy as: C =
C(M) = M¢mod N. The RSA decryption function (also called signature
function) is the inverse: M = C? mod N. It can be performed by the owner of
the private key d. Formally the RSA Assumption is stated as follows.

RSA Assumption Let k be the security parameter. Let key generator GE
define a family of RSA functions (i.e., (e,d, N) «+ GE(1*) is an RSA in-
stance with security parameter k). For any probabilistic polynomial-time
algorithm A, Pr[u® = wmod N : (e,d, N) «— GE(1F);w €p {0,1}*;u «
A(1% w, e, N)] is negligible.

Recall that the RSA assumption implies the intractability of factoring prod-
ucts of two large primes.

Next we describe variants of Shamir secret sharing and Pedersen VSS that
we use. They differ in that operations on the shares are performed over the in-
tegers, instead of in a modular subgroup of integers.

(t,l)-secret sharing over the integers [15]: This primitive is based on Shamir
secret sharing [32]. Let L = Il and let 3, K be positive integers. For sharing

a secret s € [0,K], a random polynomial a(x) = Z;:O ajz? is chosen such
that ap = L%s, and each other a; €g {0,L,2L,...,3L3K}.> Each shareholder
i € {1,...,1} receives a secret share s; = a(i), and verifies* that (1) 0 < s; <

BL3KIY(t+ 1), and (2) L divides s;. Any set of shareholders of cardinality ¢ + 1
can compute s using Lagrange interpolation, i.e. s = a(0) = >, , a(i)2; 1, where
zia = [Lieaqn (0 = 5) 710 = j).

(t,l)-Unconditionally-Secure VSS over the Integers (INT-(¢,/)-US-VSS):
This primitive is based on Pedersen Unconditionally-Secure (¢,1)-VSS [29], and
is slightly different than the version in [20]. Let N be an RSA modulus and let
g and h be maximal order elements whose discrete log modulo N with respect
to each other is unknown. The protocol begins with two (¢,1)-secret sharings
over the integers with § = N, the first sharing secret s € [0, K], and the second
sharing s’ € [0, N2K]. Let a(z) = Z;ZO ajz? be the random polynomial used in

2 A(N) =lem(P—1,Q—1) is the smallest integer such that z*®™) =1 mod N for any
x € Zxn. We use A(N), rather than more traditionally ¢(INV), because it explicitly
describes an element of maximal order in Zjy.

3 We note that L%s is actually the secret component of the secret key, which when
added to a public leftover component (in [0, L? — 1]), forms the RSA secret key.

4 These tests only verify the shares are of the correct form, not that they are correct
polynomial shares.
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sharing s and let o'(z) = 23:0 asz’ be the random polynomial used in sharing
s'. For all ¢, S; receives shares s; = a(i) and s, = a’(i). (We refer to the pair
(a(i),a’(i)) as dual-share i.) Also, the verification shares {a;(= g% h“é)}ogjgt,
are published.® Call check share A;= szo a?. S; can verify the correctness of

his shares by checking that A; < gsih‘“;. Say s and s’ are the shares computed
using Lagrange interpolation from a set of ¢+ 1 shares that passed the verification
step. If the dealer can reveal different secrets § and & that also correspond to the
zero coefficient verification share, then the dealer can compute an « and 3 such
that g® = hP, which implies factoring (and thus breaking the RSA assumption).

Looking ahead, we will need to simulate an INT-(¢,1)-US-VSS. We can do
this by constructing a random polynomial over an appropriate simulated secret
(e.g., a random secret, or a secret obtained as a result of a previously simulated
protocol) in the zero coefficient, and a random companion polynomial with a
totally random zero coefficient.

5 Techniques

In order to “detach” ciphertexts from their cleartext values we employ seman-

tically-secure non-committing encryption [1]. In fact, our (full) security proofs
first assume perfectly secret channels and then add the above (a step we omit
here).

A more involved issue concerns the public commitments. The collection of
techniques needed to underly distributed public-key systems include: distributed
representation methods (polynomial sharing, sum (additive) sharing), represen-
tation transformers which move between different ways to represent a function
(poly-to-sum, sum-to-poly), as well as a set of “elementary” distributed opera-
tions (add, multiply, invert). For example, the “poly-to-sum” protocol is executed
by t+1 servers at a time, and transforms a (t, [)-secure polynomial-based sharing
to an additive sharing with ¢+ 1 shares. We need to have such techniques (moti-
vated by [20,15]) which are secure and robust against adaptive adversaries. We
will rely on new zero-knowledge proof techniques (see Appendix A), as well as on
shared representation of secrets as explained in Section 4. The notation “2poly”
refers to a polynomial and its companion polynomial shared with INT-(¢,1)-US-
VSS (which is “unconditionally secure VSS”). The notation “2sum” refers to two
additive sharings, with check shares that contain both additive shares of a server
(similar to the check shares in INT-(¢,1)-US-VSS). In describing the protocols,
unless otherwise noted we will assume multiplication is performed mod N and
addition (of exponents) is performed over the integers (i.e., not “mod” anything).

We define the following ranges, using the notation described in Section 3.1.

1. Let [RANGE;] = [0, (t + 1)L3N31!] and [RANGE}] = [0, (t+ 1) L3(t + 1)N7I¢)].
2. Let [RANGEg] = £(t+1)L-[RANGE;] and [RANGE}] = £(¢t+1)L-[RANGE]].
3. Let [RANGE3] = (¢ + 1) - [RANGE2] + [0, L2N] + (¢t + 1) - [0, L?] and

[RANGE}] = £(¢ + 1) - [RANGES] + [0, L2N3] + (¢t + 1) - [0, L?].

5 We implicitly assume all verification operations are performed in Zj.

| =
| =
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4. Let [RANGEy] = (¢ + 1) - [RANGE2] + (¢t + 1) - [0, L?] + [RANGE3] and
[RANGE}] = (t + 1) - [RANGE)] + (t + 1) - [0, L?] + [RANGES].

5. Let [RANGEs] = L - [RANGEq] — (£ + 1) - [0, L2N?/(t + 1)] and
[RANGES] = L - [RANGE}] — (¢ + 1) - [0, L2N®].

5.1 2poly-to-2sum

The goal of 2poly-to-2sum (Figure 1) is to transform ¢-degree polynomials a()
and a/() used in INT-(¢,1)-US-VSS into ¢ + 1 additive shares for each secret a(0)
and a’(0), with corresponding check shares. The idea is to perform interpolation.’
We note that in Step 2 each s; and s is a multiple of L, so S; can actually
compute b; and b, over the integers.

1. Initial configuration: INT-(¢,1)-US-VSS (parameters: (N,g,h)) with ¢
degree polynomials a() and a'(), and a set A of ¢t + 1 server indices. For
all i € A, recall S; holds shares s; and s, with corresponding check share
A = g h*.

2. For all i € A, S; computes the additive shares b; = s;2;,4 and b} = s}2; 4 and
publishes B; = g¥h% = A7,

3. All servers verify B; for all i € A using (Ai)vivf‘ = (Bi)vilvll where V; 4 =
HJ.GA\{Z,} (0—j)and V{4 = HJ.GA\{Z,} (i — 7). If the verification for a given B;
fails, each server broadcasts a (Bad,i) message and quits the protocol.

Fig. 1. 2poly-to-2sum

Note the following ranges:

— For i € A, if S; is good then s; € [RANGE4] and s, € [RANGE}]. (This will
be shown later.)

5.2 2sum-to-2sum

The goal of 2sum-to-2sum is to randomize additive dual-shares (most likely ob-
tained from a 2poly-to-2sum) and update the corresponding check shares. The
scheme is in Figure 2.

Note the following ranges:

— For i € A, if S; is good then d; € [0, L?N?] and d} € [0, (t + 1)L>N*].
— We will show that d, € [RANGE3] and d/, € [RANGE}] (unless RSA is broken).

5 In [15], poly-to-sum also performed a rerandomization of the additive shares. We
split that into a separate protocol for efficiency, since sometimes 2poly-to-2sum is
used without a rerandomization of additive shares.
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1. Initial configuration: There is a set A of t+1 server indices. For all i € A, S;
holds additive dual-share (b;, b;), with corresponding check share B; = g hbi.
For all i € A, S; chooses ri,j €r Zr2n2)(41) and i ; €r Zr2y4, for j € A
For all 4 € A, S; publishes 7; . = b; — ZjeA rij and r;, = b — ZjeA i
For all i € A, S; privately transmits r;,; and r; ; to all S; for j € A\ {i}.
For all i € A, S; publishes R; j = g"ih"ii for j € A\ {i}.

All servers can compute R;; = B;/g" i h"i= HjeA\{i} R; j for all i € A.

For all j € A, S; verifies that each r;; € Zp2n2/441), €ach ri; € Zran,

NSO N

each r; » € [RANGEs), each r} , € [RANGEj), and that R;; = g™ h'is. If the
verification fails, S; broadcasts an (Accuse,i,j) message, to which S; responds
by broadcasting r; ; and 7‘;7]-. If S; does not respond, r; ; or r;j is not in the

correct range, or R; ; Z g't7 i (which all servers can now test), then each
server broadcasts a (Bad,i) message and quits the protocol.

8. For all j € A, S; computes dj = > . rij, dj = Y ., 7 , and D; =
HiEA R

9. All servers compute leftover shares d =, i and df =Y., 75,

Fig. 2. 2sum-to-2sum

5.3 2sum-to-lsum

2sum-to-1sum (Figure 3) is employed in computing partial signatures using the
first parts of the additive dual-shares (obtained from 2sum-to-2sum) as the ex-
ponents, and in proving the partial signatures correct. These proofs form the
“soft attachments” from the information-theoretically secure check shares to the
computationally secure check shares that must correspond to the actual secret.

1. Initial configuration: Parameters (N, e, g, h). There is a set A of t+1 server
indices. For all i € A, S; holds additive dual-share (d;, d;), with corresponding
check share D; = gdihdg. Also, all servers S; with i € A have performed a
ZK-proof-setup protocol ZKSETUP-RSA(N, e, g) with all other servers.

2. For all i € A, S; broadcasts E; = m%, where m is the message to be signed,
or more generally, the value to which the cryptographic function is being
applied.

3. For all 1 € A, S;  performs a ZK-proof of knowledge
ZKPROOF-DL-REP(N,e,m,g,h, E;; D;) with all other servers. Recall
that this is performed over a broadcast channel so all servers can check if
the ZK-proof was performed correctly.

4. If a server detects that for some ¢ € A, S; fails to perform the ZK-proof
correctly, that server broadcasts a message (Bad,i) and quits the protocol.

Fig. 3. 2sum-to-1sum
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5.4 2sum-to-2poly

The goal of 2sum-to-2poly is to transform ¢ 4+ 1 additive dual-shares with their
corresponding check shares (obtained from 2sum-to-2sum) into polynomial shar-
ings of the same secrets. The idea is for each shareholder to perform an INT-(¢,1)-
US-VSS with its shares as the secrets, and then to sum the resulting polynomials.
The protocol is given in Figure 4

1. Initial configuration: Parameters (N, e, g, h). There is a set A of server
indices. For all i € A, S; holds additive dual-share (d;, d}), with corresponding
check share D; = g% hdé, and all servers know leftover shares d. and d..

2. For i € A, S; broadcasts r; = d; mod L? and r; = d} mod L?.

3. Fori € A, S; sets e; = d; — i, €, = d, — ], and E; = g“ h*.

4. Note that all e; and e} are multiples of L?. These are then shared using INT-
(t,1)-US-VSS (over the appropriate ranges, and without any additional L?
factor), say with polynomials v;() and vj().

5. For all j € A, S; verifies that each r;,r; € Z, 2, and verifies its shares of each
INT-(t,1)-US-VSS. (For ranges, S; must verify that each v;(j) € [RANGE;]
and each v;(j) € [RANGE}].) If a verification fails for the INT-(¢,1)-US-VSS
from S;, S; broadcasts an (Accuse,i,j) message, to which S; responds by
broadcasting v;(j) and vj(j). If S; does not respond, v;(j) or v.(j) is not
in the correct range, or the verification shares do not match for v;(j) and
v;(§) (which all servers can now test), then each server broadcasts a (Bad,i)
message and quits the protocol.

6. For all j, S; computes the sums v(j) = d« + >, i + >, ,vi(j) and
V(J) =D eq i+ D e q i)

The verification shares for v() and v'() can be computed from the verification
shares for v;() and v(), for i € A.

Fig. 4. 2sum-to-2poly

Note the following ranges:

— For i € A, if S; is good then e; € [0, L?N?] and €} € [0, (¢ + 1)L*>N*]. Also,
there is a range of size L N* for which an additive part of e} was randomly
chosen by S; itself, and this provides the simulatability of v;().

— Assuming (t + 1) good servers check the ranges of their shares of v;() and
v}(), then it can be deduced that v;(0) € [RANGE2] and v}(0) € [RANGE}].

— Since d; = v;(0) and d; = v(0) (unless RSA is broken, as we will prove),
and since dy + >_,. 4 di = L?s and d, + >, o d; = L?s’ (again, unless RSA
is broken), we have that d, € [RANCE3] and d/, € [RANGE}].

— Using the facts above, we conclude that for j € A, if S} is good then v(j) €
[RANGE4] and v'(j) € [RANGE}], i.e., for the next operational round, s; €
[RANGEy] and s; € [RANGE]}], which is what we stated in the 2poly-to-2sum
protocol.
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6 RSA Protocols

We now present protocols for threshold function application and proactive main-
tenance. Their security and robustness proofs are available from the authors [18].

6.1 Threshold Function Application

The protocol is given in Figure 5

1. Initial configuration: INT-(¢,1)-US-VSS (parameters: (N, e, g,h)) with ¢-
degree polynomials a() and a’(). Also, each server maintains a list G of server
indices for servers that have not misbehaved (i.e., they are considered good).
A message m needs to be signed.

2. A set A C G with |[A] =¢+ 1 is chosen in some public way.

3. 2poly-to-2sum is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 2.

4. 2sum-to-2sum is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 2.

5. 2sum-to-lsum is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 2. If there is no misbehavior,
the signature on m can be computed from the partial signatures generated
in this step, along with the leftover shares.

6. All values created during the signing protocol for m are erased.

Fig. 5. Function Application Protocol

6.2 Proactive Maintenance

For proactive maintenance, we perform an update by running 2poly-to-2sum
on the secret polynomials, followed by 2sum-to-2sum and 2sum-to-2poly. After
2sum-to-2poly, each server erases all previous share information, leaving just
the new polynomial shares and verification shares. If there is misbehavior by
any server, the procedure is restarted with new participants (here restarts do
not introduce statistical biases and do not reduce the protocol’s security). The
protocol is given in Figure 6, where the full Proactive RSA protocol is in Figure 7.
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1. Initial configuration: INT-(¢,1)-US-VSS (parameters: (N, e, g,h)) with ¢-
degree polynomials a() and a’()

2. Each server maintains a list G of server indices for servers that have not
misbehaved (i.e., they are considered good).

3. Each (ordered) pair of servers (Ss,.55) performs
ZKsETUP-RSAg, s,(N,e,g,h) (using mnew commitment values). This
setup will be used for all proofs performed during the following operational
period.

4. A set A C G with |A] = ¢+ 1 is chosen in some public way.

5. 2poly-to-2sum is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 4.

6. 2sum-to-2sum is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 4.

7. 2sum-to-2poly is run. If there are misbehaving servers, their indices are re-
moved from G and the protocol loops to Step 4.

8. All previous share information is erased.

10.
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12.

13.

14.

15.

Fig. 6. Proactive Maintenance (Key Update) Protocol
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“ Recall that xp,p is computed using only the public values N, e, L.

1. The dealer generates an RSA public/private key (N, e, d), and computes pub-
lic value @p,p and secret value z € [0, N] such that d = zpup+ L%z mod ¢(N),
as in [16].” Then the dealer chooses generators g,h €r Zx, ¥’ €r Zys, and
an INT-(¢,1)-US-VSS on secrets z,z’ with parameters (N, g, h).

2. Each (ordered) pair of servers (S3,.55) performs
ZKsETUP-RSAs, s, (N, e,g,h).

3. Each server maintains a list G of server indices for servers that have not
misbehaved (i.e., they are considered good). It also maintains public parame-
ters: (N, e, g, h, Tpup,l,t) and the verification shares of the INT-(¢,1)-US-VSS
polynomials a() and a’() which have a(0) = z and a'(0) = z'.

4. When a message m needs to be signed, the servers agree on the public pa-
rameters, then the Function Application protocol is run.

5. When an update is scheduled to occur, the servers agree on the public pa-
rameters, then the Proactive Maintenance protocol is run.

16.
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25.

Fig. 7. Proactive Threshold Protocol
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A  Proofs

We use efficient ZK proofs of knowledge (POKs) derived from [20] and [5]. These
are composed of combinations of X-protocols [4] (i.e., Schnorr-type proofs [31]).
For each ZK proof that we need, we will have a separate “proof” protocol, but
there will be a single “setup” protocol used for all ZK proofs. Say A wishes to
prove knowledge of “X” to B. Then the setup protocol will consist of B making a
commitment and proving that he can open it in a witness indistinguishable way
[13], and the proof protocol will consist of A proving to B either the knowledge of
“X7” or that A can open the commitment. (See [5] for details.) This construction
allows the proof protocols to be run concurrently without any timing constraints,
as long as they are run after all the setup protocols have completed. (For more
on the problems encountered with concurrent ZK proofs see [26,11,12].)

The (RSA-based) ZK-proof-setup protocols are exactly the Y-protocols for
commitments over g-one-way-group-homomorphisms (¢-OWGH), given in [5].
Recall the ¢-OWGH for an RSA system with parameters (N, e) is f(x) = 2° mod
N (with ¢ = e in this case).

Let KFE denote the “knowledge error” of a POK.

We define ZKSETUP-RSA 4 p(N,e,g) as a protocol in which A generates a
commitment C' and engages B in a WH POK (KE = 1/e)” of (0,0’) (with
0 € Ze, 0 € Z%) where C = ¢g?(0’)° mod N.

We define ZKPROOF-DL-REP 4 (N, e,m, g, h, E, D) as a protocol in which
A, who knows integers d € (—a,a] and d’ € (—b,b] such that £ = m< mod

7 This implies e must be exponentially large in the security parameter k in order to
obtain a sound proof. However, if e is small (say e = 3) we can use different setup
and proof protocols described in [5] to obtain provably secure and robust RSA-based
protocols.
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N and D = ¢?h% mod N, engages B in a WH POK (KE = 1/e) of either
A€ Z., 6 € (—2ae(N + 1),2ae(N + 1)], and ¢’ € (—2be(N + 1),2be(N + 1)]
where D2 = ¢%h% mod N and E24 = ¢’ mod N, or (r,7') (with 7 € Z.,
7' € Z%) where Cp 4 = ¢"(7/)* mod N and Cp 4 is the commitment gener-
ated in ZKSETUP-RSAp 4(N,e,g). This protocol is honest-verifier statistical
zero-knowledge with a statistical difference between the distribution of views
produced by the simulator and in the real protocol bounded by 2/N.

A.1 Proof of Representations

Here we give the main X-protocol used in ZKPROOF-DL-REP 4 g(N,e,m, g,
h,E,D).

1. Initially, the parameters (N, e, m, g, h, E, D) are public, and A knows integers
d € (—a,a) and d’ € (=b,b] such that E = m? mod N and D = g?h% mod N.

2. A generates r € (—aeN,aeN] and r’ € (—beN,beN], computes V =
m” mod N and W = grhrl mod N, and sends V, W to B.

3. B generates ¢ €p Z, and sends ¢ to A.

4. A computes z = cd +r and 2/ = c¢d’ + 7', and sends 2,2’ to B.

5. B checks that m?* = E°V mod N and ¢g*h* = D°W mod N.

In all steps, A and B also check that the values received are in the appropriate
ranges.

The above is a POK of A € Z,, § € (—2ae(N + 1),2ae(N + 1)], and ¢’ €
(—2be(N +1),2be(N + 1)] in which m® = E4 mod N and ¢°h%" = D2 mod N.
The knowledge error is 1/e, and the protocol is honest-verifier statistical zero-
knowledge, with a statistical difference between views produced by the simulator
and those in the real protocol bounded by 2/N.

A.2 Security Proof Summary

We reduce the security of RSA to the security of our Proactive RSA protocol.
Say there exists an adversary, after watching polynomially many messages signed
and polynomially many update protocols run, can sign a new challenge message
with non-negligible probability p. Then we will give a polynomial-time algorithm
to break RSA with probability close to p. We run the adversary against a sim-
ulation of the protocol, and then present m* to be signed. We will show that
the probability that an adversary can distinguish the simulation from the real
protocol is negligible, and thus the probability that it signs m™* is negligibly less
than p.

A major tool that enables us to claim simulatability of secret-key function
applications is the notion of a “faking server.” The simulator exploits the “ac-
tions” of this server to assure that the view is simulatable while not knowing
the secret key. This server can be chosen at random and its public actions are

8 Recall that this main protocol is combined with a X-protocol proving knowledge of
a commitment generated in a setup protocol, using an “OR” construction.
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indistinguishable from an honest server to the adversary. We have to backtrack
the simulation only if the adversary corrupts this special server (which is a
polynomial probability implying expected poly-time simulation).
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