Phosphatidylinositol-4,5-bisphosphate 3-kinase

2.7.1.153

1 Nomenclature

EC number

2.7.1.153

Systematic name

ATP:1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate 3-phosphotransferase

Recommended name

phosphatidylinositol-4,5-bisphosphate 3-kinase

Synonyms

P120-PI3K

PI3K

 $PI3K\beta$

ΡΙ3Κγ

PtdIns(4,5)P2 3-OH kinase

PtdIns-3-kinase p101

PtdIns-3-kinase p110

PtdInsP 3-OH-kinase

class I PI3K

class I phosphoinositide 3-kinase

kinase (phosphorylating), phosphatidylinositol 4,5-diphosphate 3-

p101-PI3K

p 110δ

phosphatidylinositol (4,5)-bisphosphate 3-hydroxykinase

phosphatidylinositol 3-hydroxyl kinase

type I phosphoinositide 3-kinase

CAS registry number

103843-30-7

2 Source Organism

- <1> Drosophila melanogaster [1]
- <2> Caenorhabditis elegans [1]
- <3> Dictyostelium discoideum [1]
- <4> mammalia [1, 3]
- <5> Homo sapiens [1, 2, 5]
- <6> Gallus gallus [4]
- <7> Mus musculus [6]

3 Reaction and Specificity

Catalyzed reaction

ATP + 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate = ADP + 1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate

Reaction type

phospho-group transfer

Natural substrates and products

S Additional information <1, 2, 3, 4, 5, 6> (<1,2,3,4>, enzyme is involved in the synthesis of 3-phosphoinositides. Class I phosphoinositide 3-kinases are further subdivided into class IA and IB enzymes, which signal downstream of tyrosine kinase and heterotrimeric G protein-coupled receptors, respectively. All class I phosphoinositide 3-kinase members also bind to Ras, but the role of this interaction in physiological phosphoinositide 3-kinase signalling is not entirely clear [1]; <1,4>, enzyme can promote proliferation [1]; <1,2,3,4>, phosphoinositide 3-kinase and DNA synthesis [1]; <1,2,3,4>, phosphoinositide 3-kinase and apoptosis [1]; <4>, the adaptor subunits of the class IA enzymes bind phosphorylated Tyr residues, thereby linking the phosphoinositide 3-kinases catalytic subunit to tyr kinase signalling pathways [3]; <6>, enzyme is activated by binding of osteopontin to integrin $\alpha v \beta_3$ [4]; <5>, involvement of the enzyme in CD18-mediated adhesion of human neutrophils to fibrinogen [5]) [1, 3, 4, 5]

P ?

Substrates and products

- **S** ATP + 1-phosphatidyl-1p-myo-inositol 4,5-bisphosphate <1, 2, 3, 4, 5, 6> (Reversibility: ? <1, 2, 3, 4, 5, 6> [1, 2, 3, 4]) [1, 2, 3, 4]
- P ADP + 1-phosphatidyl-1p-myo-inositol 3,4,5-trisphosphate <1, 2, 3, 4, 5, 6> [1, 2, 3, 4]
- **S** ATP + phosphatidylinositol <1, 2, 3, 4, 5> (Reversibility: ? <1, 2, 3, 4, 5> [1, 2, 3]) [1, 2, 3]
- **P** ADP + phosphatidylinositol 3-phosphate <1, 2, 3, 4, 5> [1, 2, 3]
- **S** ATP + phosphatidylinositol 4-phosphate <1, 2, 3, 4, 5> (Reversibility: ? <1, 2, 3, 4, 5> [1, 2, 3]) [1, 2, 3]
- **P** ADP + phosphatidylinositol 4,5-diphosphate <1, 2, 3, 4, 5> [1, 2, 3]
- Additional information <4, 5> (<5>, p110δ does not phosphorylate the p85 adaptor but instead harbors an intrinsic autophosphorylation capacity [2]; <4>, enzyme interacts with active, GTP-bound Ras [3]) [2, 3]
 P ?

.

```
Inhibitors
LY294002 <4, 5> [1, 2, 5]
wortmannin <4, 5> [1, 2, 5]
```

Activating compounds

platelet-derived growth factor <7> (<7>, stimulates synthesis of 1-phosphatidyl-1p-myo-inositol 3,4,5-trisphosphate [6]) [6]

Additional information <1> (<1>, stimulation of almost every receptor that induces tyrosine kinase activity also leads to class IA phosphatidylinositol-4,5-bisphosphate 3-kinase activation [1]) [1]

4 Enzyme Structure

Subunits

? <5> (<5>, x * 119471, p110 δ subunit, can bind the p85 adaptor subunit, calculation from nucleotide sequence [2]) [2]

Additional information <1, 2, 3, 4> (<1,2,3,4>, class I phosphoinositide 3-kinases are heterodimers made up of an catalytic subunit, called p110, of about 110000 Da and an adaptor/regulatory subunit. Class I phosphoinositide 3-kinases are further subdivided into class Ia and IB enzymes, which signal downstream of tyrosine kinase and heterotrimeric G protein-coupled receptors, respectively [1,4]; <4>, three class IA p110 isoforms, p110 α , β and δ , which are encoded by three separate genes, at least seven adaptor proteins, which are generated by expression and alternative splicing of three different genes, namely p85 α , p85 β and p55 γ . All these splice variants make functional complexes with p110 subunits [1,4]; <1>, a single type of catalytic/adaptor heterodimer: Dp110/p60 [1,4]; <2>, a single type of catalytic/adaptor heterodimer: AGE-1/AAP-1 [1,4]; <3>, three catalytic subunits: PIK1, PIK2 or PIK3 [1]) [1, 3]

5 Isolation/Preparation/Mutation/Application

Source/tissue

MCF-7 cell <5, 7> [1, 2, 6] MOLT-4 cell <5, 7> [1, 2, 6]

leukocyte <4, 5> (<5>, p110 δ is exclusively localized in leukocytes [2]) [1, 2] neutrophil <5> [5]

Additional information <4> (<4>, all mammalian cell types investigated express at least one class IA isoform, class IB isoform is present only in mammals, where it shows a restricted tissue distribution, being abundant only in white blood cells [1]) [1]

Localization

cytosol <4>[1]

Crystallization

<4>[1]

Cloning

<5> (expression of P110 δ in Sf9 insect cells [1]) [1]

References

- [1] Vanhaesebroeck, B.; Leevers, S.J.; Ahmadi, K.; Timms, J.; Katso, R.; Driscoll, P.C.; Woscholski, R.; Parker, P.J.; Waterfield, M.D.: Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem., 79, 535-602 (2001)
- [2] Vanhaesebroeck, B.; Welham, M.J.; Kotani, K.; Stein, R.; Warne, P.H.; Zvelebil, M.J.; Higashi, K.; Volinia, S.; Downward, J.; Waterfield, M.D.: P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA, 94, 4330-4335 (1997)
- [3] Vanhaesebroeck, B.; Leevers, S.J.; Panayotou, G.; Waterfield, M.D.: Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci., 22, 267-272 (1997)
- [4] Hruska, K.A.; Rolnick, F.; Huskey, M.; Alvarez, U.; Cheresh, D.: Engagement of the osteoclast integrin $\alpha_v \beta_3$ by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology, **136**, 2984-2992 (1995)
- [5] Metzner, B.; Heger, M.; Hofmann, C.; Czech, W.; Norgauer, J.: Evidence for the involvement of phosphatidylinositol 4,5-bisphosphate 3-kinase in CD18-mediated adhesion of human neutrophils to fibrinogen. Biochem. Biophys. Res. Commun., 232, 719-723 (1997)
- [6] Hawkins, P.T.; Jackson, T.R.; Stephens, L.R.: Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature, 358, 157-159 (1992)