
C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 113–124, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Parity-Based Concurrent Error Detection of
Substitution-Permutation Network Block Ciphers

Ramesh Karri1, Grigori Kuznetsov2, and Michael Goessel2

1Department of Electrical and Computer Engineering
Polytechnic University, 6 Metrotech Center

Brooklyn, NY 11201
2Institute of Computer Science,

Fault Tolerant Computing Group
University of Potsdam

D-14439 Potsdam, Germany
ramesh@india.poly.edu,{grigoriy,mgoessel}@cs.uni-potsdam.de

Abstract. Deliberate injection of faults into cryptographic devices is an effec-
tive cryptanalysis technique against symmetric and asymmetric encryption algo-
rithms. In this paper we will describe parity code based concurrent error detec-
tion (CED) approach against such attacks in substitution-permutation network
(SPN) symmetric block ciphers [22]. The basic idea compares a carefully modi-
fied parity of the input plain text with that of the output cipher text resulting in a
simple CED circuitry. An analysis of the SPN symmetric block ciphers reveals
that on one hand, permutation of the round outputs does not alter the parity from
its input to its output. On the other hand, exclusive-or with the round key and
the non-linear substitution function (s-box) modify the parity from their inputs
to their outputs. In order to change the parity of the inputs into the parity of out-
puts of an SPN encryption, we exclusive-or the parity of the SPN round function
output with the parity of the round key. We also add to all s-boxes an additional
1-bit binary function that implements the combined parity of the inputs and out-
puts to the s-box for all its (input, output) pairs. These two modifications are
used only by the CED circuitry and do not impact the SPN encryption or de-
cryption. The proposed CED approach is demonstrated on a 16-input, 16-output
SPN symmetric block cipher from [1].

1 Introduction

Until recently cryptanalysts analyzed cipher systems by using rigorous mathematics
based techniques such as differential cryptanalysis [2] and linear cryptanalysis [3].
Although these techniques are useful in exploring weaknesses in algorithms, they do
not exploit weaknesses in their implementations. Hardware and Software implementa-
tions of (crypto) algorithms leak information via side-channels such as time consumed
by the operations, power dissipated by the operators, electromagnetic radiation emitted

114 R. Karri, G. Kuznetsov, and M. Goessel

by the device and faulty computations resulting from deliberate injection of faults into
the system. Traditional cryptanalysis techniques can be combined with such side-
channel attacks to uncover break the secret key and/or break the implementation de-
tails of the cipher. Even a small amount of side-channel information is sufficient to
break common ciphers [4]. For example, Differential Fault Analysis (DFA) that uses
deliberate injection of faults requires between 50 to 200 cipher text blocks to recover a
key of symmetric block cipher Data Encryption Standard (DES); the best traditional
attack requires approximately 64 terabytes of plain text and cipher text encrypted
under a single key.

1.1 Fault Based Attacks: Motivation

Fault based cryptanalysis (for example, DFA) is based on the observation that faults
deliberately injected into a crypto-device leak information about the implemented
algorithms. These attacks are practical since elevated levels of radiation or heat, incor-
rect voltage, or atypical clock rate can cause a tamperproof device to malfunction.
Boneh, DeMillo and Lipton [5] presented the first fault based side-channel attack
against asymmetric public-key cryptography devices. More recently, Biham and
Shamir [6] presented a fault-based cryptanalysis of symmetric block cipher Data En-
cryption Standard (DES). They presented a transient fault based Differential Fault
Analysis (DFA) attack and a permanent fault based non-DFA attack to recover the
round keys using a very small number of cipher texts. They then extended their fault
model to show that DFA can uncover the structure of an unknown cryptosystem im-
plemented in an EEPROM based smart card based on the observation that it is much
easier to inject a 1→0 bit flip than to inject a 0→1 bit flip in an EEPROM. Using DES
as the unknown cipher, they showed that (i) about 500 faulty cipher texts are sufficient
to identify the bits of the right half, (ii) about 5000 faulty cipher texts are sufficient to
identify the non-linear substitution operations (s-boxes) and their input and output bits,
and (iii) about 10000 faulty cipher texts are sufficient to reconstruct the DES s-boxes.

Anderson and Kuhn described additional fault based side-channel attacks on soft-
ware implementations of encryption algorithms [7]. In one of the attacks they assumed
that the instruction memory of smart cards can be corrupted. If in a process loop, the
variable controlling the number of rounds is set to 1, encryption executes just one
round, thereby compromising the round key. Another attack focused on the chip writ-
ing ability of the attacker. Assuming that the attacker is familiar with the implementa-
tion, he can extract keys from the card by overwriting specific memory locations.

1.2 Fault-Based Side Channels: The Fault Models

Boneh, Demillo and Lipton [5] use a practical fault model wherein a fault is induced at
a random bit location in one of the registers at some random intermediate round of a
cryptographic computation. Biham and Shamir [6] use a similar realistic fault model
wherein either a transient or a permanent fault is induced randomly into the device.
They then adapt this basic fault model to the asymmetric property of EEPROMs: it is

Parity-Based Concurrent Error Detection 115

much easier to induce a 1→0 bit flip than to induce a 0→1 bit flip. Anderson and
Kuhn used two different fault models for microcontroller based smartcards: in the first
they assume that the instruction memory of smart cards can be randomly corrupted
and in the second they assume that the attacker has the ability to write into specified
locations in the memory. These and other fault attacks and associated fault models are
summarized in [8,9]. The proposed CED approach is applicable to the practical fault
models described.

1.3 CED Architectures for Symmetric Block Ciphers: Background

Concurrent error detection (CED) followed by suppression of the corresponding faulty
output can thwart fault injection attacks; on detecting a faulty computation, the stored
key is protected by suppressing the corresponding faulty cipher text.

Straightforward duplication and comparison of encryption and decryption hardware
yields more than 100% hardware overhead. Alternatively, a spare module for each
type can be used to detect faults in hardware modules of that type. Such a spares based
approach has been adopted in a hardware implementation of the 128-bit symmetric
block cipher IDEA [10]. Spares based approaches are suitable for block ciphers that
use arithmetic operators, such as IDEA and RC6 [11]. Although hardware is not dupli-
cated, an extra module for each operation type entails considerable hardware over-
head, especially for encryption algorithms like Advanced Encryption Standard (AES)
[12] and DES that use random, non-arithmetic operations such as S-Boxes.

Time redundancy based CED approach involves encrypting (decrypting) the data a
second time followed by the comparison of two results. Wolter et. al. [13] developed a
CED technique for symmetric block cipher IDEA wherein the test data was encrypted
and then decrypted. This approach entails more than 100% time overhead. Further, it
can only tolerate transient faults if the data traverses identical paths through the en-
cryption and decryption data paths both during the normal computation and during the
re-computation.

Karri et. al [14] developed a systematic CED approach for symmetric block ciphers
at the register transfer level that exploits the inverse relationship between the encryp-
tion and decryption at the algorithm level, round level and individual operation level.
They demonstrated this inverse-relationship principle on 128-bit symmetric block
ciphers including Advanced Encryption Standard, RC6 and Serpent. The main draw-
back of this approach is that it assumes that the cipher device operates in a half-duplex
mode (i.e. either the encryption or the decryption but not both are simultaneously
active). Bertoni et. al. [15] applied this inverse-relationship principle to round key
generation of the AES encryption algorithm using additional hardware for inverse
round key generation and comparison.

Another CED approach involves encoding the message before encryption and
checking it for errors after decryption. Wolter et. al. [13] used residue codes for fault
detection in adders, multipliers, and EXCLUSIVE-ORs. Area overhead of this ap-
proach is due to the encoders at the input and decoders at the output to translate the
plain and cipher texts into the internal code words. In [16] the plaintext is encoded by

116 R. Karri, G. Kuznetsov, and M. Goessel

setting several bits of the message to a particular fixed value, 0 or 1, and then en-
crypted. A mismatch between these fixed bits of deciphered text and the original plain
text detects an error. The simple code (all zeroes or all ones) results in significantly
less area overhead when compared to other encoding schemes. This scheme has a
large fault detection latency detects since faults in the encryption hardware at the
transmitter end by the decryption hardware at the receiver. Further, there is an associ-
ated performance penalty since it uses some of the bits in messages for error detection.

In [17] a CED technique that predicted the inverse of the parity of the outputs was
proposed for the non-linear s-box and other functions used in DES. A similar tech-
nique that predicted the parity of the outputs for the non-linear s-box and linear mixing
functions used in the AES was proposed in [18,19]. In these papers one additional
parity bit per byte at the outputs of the s-boxes is added. To detect errors at the inputs
to the s-boxes, the inputs of the s-boxes are also parity encoded. The size of the s-
boxes is doubled by proposing a 512×9-bit implementation resulting in an area over-
head of over 100% for s-box CED.

plaintext

ciphertext

s11 s12 s13 s14

s21 s22 s23 s24

s31

s41

s32 s33 s34

s42 s43 s44

p1 p16

c16c1

k0

k1

k2

k3

k4

Fig. 1. Substitution Permutation Network (SPN) cryptosystem

Parity-Based Concurrent Error Detection 117

2 Substitution-Permutation Network (SPN) Block Ciphers

The architecture of a symmetric block cipher contains a key expansion module, an
encryption module and a decryption module. Key expansion module expands the user
key to generate round keys and loads them into the key RAM prior to encryption or
decryption. Using the round keys, the device encrypts (decrypts) the plain (cipher) text
to generate the cipher (plain) text. Symmetric block ciphers have an iterative looping
structure. All the rounds of encryption and decryption are identical in general, with
each round using several operations and round key(s) to process the input data. Con-
sider the well-known substitution-permutation network (SPN) cryptosystem shown in
Figure 1. Such an SPN architecture consisting of a non-linear substitution layer (s-
boxes) connected by output bit position permutations is an easy to understand yet
realistic architecture [1]. The example SPN cryptosystem shown in Figure 1 operates
on a 16-bit plaintext generating a 16-bit cipher text and four rounds. Each SPN en-
cryption round is composed of a non-linear substitution operation (using four 4x4 s-
boxes), a permutation and exclusive-or with a 16-bit round key. The sixteen 4x4 s-
boxes in this example cryptosystem are different. To preserve symmetry between
encryption and decryption, the first round operation is preceded by exclusive-or with
the 16-bit key, key 0. Then the four 16-bit round keys (key 1, key 2, key 3, and key 4)
are exclusive-ored following the permutation operation (In Figure 1 the dots on the s-
box input lines represent exclusive or) in each round.

2.1 Parity-Based Concurrent Error Detection

Protection of crypto-devices entails protecting the encryption/decryption data paths as
well as the key ram used to hold the round keys. Significant work has been done to
protect the RAM using Parity code, Hamming code etc. In this paper we are interested
in CED of the encryption data path and we do not address CED for key RAM.

The proposed CED design approach uses parity code. The specific CED imple-
mentation depends on the SPN implementation architecture. Consider the unfolded
implementation architecture shown in Figure 1 (this is necessary because all 16 s-
boxes are different). The parity of the inputs to the first round, P(x) is determined by a
parity tree of the 16 inputs. The CED structure modifies this input parity according to
the successive processing steps of the SPN round function such that the modified par-
ity is equal to the parity of the outputs of the SPN circuitry of the first round. The
CED architecture shown in Figure 2 repeatedly modifies the parity in the manner
discussed in each of the four rounds and compares it with the parity of the cipher text.

The operations in an SPN round are: non-linear transformations by the sixteen 4x4
substitution boxes (s-box), bit-permutation and exclusive-or with the round key. Non-
linear substitution boxes used in SPN-based and other encryption algorithms have
been designed to satisfy properties such as maximum non-linear order, high nonline-
arity, low differential uniformity and low bias [20,21]. Satisfaction of these properties
has been shown to reflect the strength of the s-box against linear and differential
cryptanalysis. These s-boxes do not maintain the parity from their inputs to their out-
puts.

118 R. Karri, G. Kuznetsov, and M. Goessel

plaintext

ciphertext

s12 s13 s14

s41 s42 s43 s44

p1
p16

c16
c1

k0

k4
s11

Fig. 2. CED architecture of the SPN block cipher

Table 1. 4x4 substitution box supplemented with m (i) =parity (i)⊕parity(s(i))

I s(i) parity(i)⊕parity(s(i))
0 E 1
1 4 0
2 D 0
3 1 1
4 2 0
5 F 0
6 B 1
7 8 0
8 3 1
9 A 0
A 6 0
B C 1
C 5 0
D 9 1
E 0 1
F 7 1

We add to every four input, four output s-box an additional binary output for the
purpose of modifying the input parity of the SPN circuitry into the output parity in the

Parity-Based Concurrent Error Detection 119

considered SPN round. Let s be an s-box with four inputs i1, i2, i3, i4 and four outputs
s1(i1,i2,i3,i4), s2(i1,i2,i3,i4), s3(i1,i2,i3,i4), and s4(i1,i2,i3,i4). Then for every input i=
i1,i2,i3,i4 of the s-box, the additional modifying output m(i) implements i1⊕ i2⊕ i3⊕
i4⊕ s1⊕ s2⊕ s3⊕ s4⊕ =parity(i)⊕parity(s(i)). Parity (i) and parity (s(i)) are the input
parity and the output parity respectively of the considered s-box. The design of this
modifying output m (i) for an example 4x4 s-box from [1] is shown now. The first two
columns of Table 1 show the truth table of an s-box. In the first column the four-bit
inputs i and in the second column the four-bit outputs s(i) of the s-boxes are given in
hexadecimal representation. In the third column the binary value m(i) which imple-
ments m(i) = parity(i)⊕parity(s(i)) is given. Thus, for example in row 6 of Table 1 for
the input i = i1,i2, i3,i4 = 0101 = 5 the functional output of the s-box is s(5) =
s1(5),s2(5),s3(5), s4(5) = 1111 = F, and for the additional binary output m(5) of the s-
box we have m(5) =0⊕1⊕0⊕1⊕1⊕1⊕1⊕1=0.

In the complete CED architecture shown in Figure 2, a thick box appended to the
right hand side of an s-box shows this modifying output. This modifying output in
each s-box is used only for CED and does not impact either the encryption or the de-
cryption. Since we do not change the functionality of the s-boxes, the strength of the
used cryptographic algorithm, based to a large extent on the concrete form of the s-
boxes, is preserved.

Next, since permutations do not change the parity no modification circuitry is nec-
essary. Finally, bit-wise modulo 2 addition of the 16-bit key 0 modifies the parity of
the input plain text by parity of key 0 prior to the first SPN round. Bit-wise modulo 2
addition of the 16-bit key 1 modifies the parity of the input plain text by parity of key
1 in the first SPN round. Similarly, bit-wise modulo-2 addition of the 16-bit key 2
modifies the parity of the input plain text by parity of key 2 in the second SPN round
and so on. The overall modification due to all the round keys can be pre-computed
during round key generation as parity of key 0 ⊕ parity of key 1 ⊕ parity of key 2 ⊕
parity of key 3 ⊕ parity of key 4. This absorbs the associated time overhead into that
of round key generation.

While this architecture might apply to most of the common examples, it doesn’t
necessarily apply to all cases. For example, not all architectures require an explicit
decryption module; some block ciphers, DES being the most noteworthy example,
looks practically identical regardless of the direction as long as the round keys are
reversed. Also, while many block ciphers have some internal iterative round compo-
nent, often in practice, they consist of other structures (such as pre and post-whitening
steps). However, this general principle can be easily adapted to these situations. The
proposed CED method is also applicable to other symmetric-key primitives such as
message authentication codes and stream ciphers that have an SPN structure.

120 R. Karri, G. Kuznetsov, and M. Goessel

3 Fault Detection Capability

In section 2 we explained how the input parity of an SPN round is modified step-by-
step according to the processing steps of that round in such a way that the modified
parity of the inputs is equal to the parity of the outputs of that round if no error occurs.

In this section we show how an error due to a single stuck-at-fault in a processing
step of the SPN Symmetric Block Cipher is detected by the proposed CED method.
This is illustrated in Figure 3 for four successive processing steps. The inputs x are
processed into the outputs y in step 1 and the parity P(x) of the inputs is modified into
P(x)⊕P(x)⊕P(y)=P(y). We assume now that a fault f occurs in the hardware imple-
menting the processing step 2 with the result that the outputs of the second step are
now zf instead of the correct outputs z, with zf≠z. The parity P(y) is corrected in this
second step into the correct value P(y)⊕P(y)⊕P(z) = P(z). If the error due to the fault
f is detectable by parity we have P(zf)≠P(z). In step 3 the erroneous inputs zf (instead
of the correct inputs z) are correctly processed by the fault-free hardware of this third
step into the outputs uf and now the parity P(z) is modified into P(z)⊕P(zf)⊕P(uf).

P ro c e s s in g s te p 1 P (x)⊕ P (y)

P ro c e s s in g s te p 2 fa u l t f P (y)⊕ P (z)

P ro c e s s in g s te p 3 P (z f)⊕ P (u f)

P ro c e s s in g s te p 3 P (u f)⊕ P (v f)

P (x)

P (y)

x

y

z f

u f

v f

P (z)

P (z f)⊕ P (z)⊕ P (v f)P (v f)

P (z f)⊕ P (z)⊕ P (u f)

Fig. 3. Analysis of fault detection capability

Similarly in step 4 the inputs uf are correctly processed into vf and the parity
P(z)⊕P(zf)⊕P(uf) is now modified into P(z)⊕P(zf)⊕P(uf)⊕P(uf)⊕P(vf)= P(z)⊕
P(zf)⊕P(vf). Finally the modified parity P(z)⊕P(zf)⊕P(vf) is compared with P(vf), the
parity of the outputs vf of step 4, and for P(z) ≠ P(zf) the error due to the fault f will be
detected. Thus, if, due to a fault f in step 2, a single bit (or an odd number of bits) is
erroneous this error will be always detected by comparing the parity of the outputs of
step 4 with the corresponding modified input parity.

Parity-Based Concurrent Error Detection 121

Cryptographic algorithms are designed to satisfy the strict avalanche criterion
[20,21]; even a single bit error at the inputs of an encryption step results in many dif-
ferent erroneous bits at the outputs of the following encryption steps. But, as ex-
plained, this property of encryption algorithms has no influence on the error detection
capability of the proposed CED method.

The processing steps of the considered SPN Symmetric Block Cipher are comp-
nent-wise exclusive-or with the round key, permutation and non-linear S-box trans-
formation. For the operation exclusive-or with a round key every single (internal or
external) stuck-at fault of an exclusive-or gate will result in a single bit error which is
detected by parity. For the permutation operations a single stuck-at fault will result in
a single bit error which is also detected by parity. For the 16 parity-appended S-boxes
with four inputs and five outputs (four functional outputs and one parity modifying
output) CED capability is described now. We designed these S-boxes using SISII logic
synthesis tool from UC Berkeley. Then for all possible single stuck-at 0/1 faults the
synthesized S-boxes were simulated for all possible input combinations. If all the
outputs of the S-boxes are independently implemented (i.e. without sharing gates)
every single stuck-at-fault results in a single bit error of the outputs of the corre-
sponding S-box and will be obviously detected by parity. If all the five outputs of the
S-boxes are jointly optimized then (in rare cases) even number of S-box output bits
may be in error due to a single stuck-at fault. Then, as the experiments show, 96.3 %
of the errors due to a single stuck-at fault are detected by parity. If the four functional
outputs of the S-boxes are jointly optimized and if the parity-modifying bit is sepa-
rately implemented 98.5% of the errors due to a single stuck-at fault are detected by
parity. The area of an S-box with four inputs and four outputs without error detection
in a two-level implementation is 56 units. With an additional fifth parity modifying
output for CED the area, also in a two-level implementation, is 66 units. Thus, for a
two-level implementation the area of the S-boxes increases by 18%. For a multi-level
optimization the area of an S-box without CED is 41 units and with the additional
parity modifying output it is 51 units. Thereby when the parity modifying output is
separately implemented, and for a multi-level implementation the area of an S-box
increases by 24.4%. Thus the overall hardware overhead is determined by an addi-
tional parity tree for computing the input parity; an 18% to 24.4% overhead for the
implementation of the parity modification of the S-Boxes and some exclusive-or gates.
As we have shown for a separate two-level implementation of the S-boxes with parity
modification 100% error detection for all the errors due to single stuck-at faults is
guaranteed by the proposed method.

3.1 Performance Penalty and Detection Latency

The parity of the input plaintext and output cipher text are computed for each plaintext
and hence the associated delay should be carefully accounted for. Computing and
checking of the parity can be combined with the round operations in several ways as
shown in Table 2.

122 R. Karri, G. Kuznetsov, and M. Goessel

Table 2. Optimizing the latency of CED

Clock
cycle

Approach A Approach B Approach C Approach D

Round Round Round Round
1 P(PT) 1 P(PT) 1 P(PT) 1 P(PT)
2 1 2 2 P(1) 2 P(1)
3 2 3 3 P(2) 3 P(2)
4 3 4 4 P(3) 4 P(3)
5 4 P(CT) P(CT)
6 P(CT)

In this table, we assume that encryption is implemented in four clock cycles with
one round of encryption per clock cycle. In the straightforward approach A, the parity
computation of the plaintext is followed by encryption (decryption) that in turn is
followed by computing and checking the parity of the cipher text. This approach has a
performance penalty of two clock cycles (one clock cycle for computing the parity of
the input and one clock cycle for computing the parity of the cipher text + comparison
with the input parity) and a fault detection latency of one complete encryption (de-
cryption) i.e. four clock cycles.

In approach B, the parity of the plaintext is computed concurrently with the first
round of encryption in clock cycle 1. This is then followed by the rest of the encryp-
tion (decryption) which in turn is followed by computation and checking of the parity
of the cipher text. This approach reduces the performance penalty to one clock cycle
without reducing the detection latency. In Approach C computation of the parity of the
plaintext is performed concurrently with the first round of encryption in clock cycle 1.
This is then followed by computation and checking of output of round one in parallel
with the second round of encryption in clock cycle 2 and so on. This approach reduces
the fault detection latency while maintaining the performance penalty of Approach B.
Other approaches to absorbing performance penalty associated with CED are possible.
Each approach has associated performance penalty, fault detection latency (the worst
case duration between occurrence and detection of a fault) and fault coverage.

4 Conclusions

In this paper a new method for CED for SPN encryption Block Ciphers was proposed.
More details on this general method can be found in [22]. Many of the well known
symmetric block ciphers including AES [12] are SPN ciphers. According to the proc-
essing steps of the SPN network the parity of the inputs of an encryption round is
modified into the parity of the outputs and compared with the actual parity of the out-
puts of this round. To reduce the necessary hardware overhead the parity tree for com-
puting the parity of the inputs can be also be used to compute the parity of the outputs.
If all functional outputs and the output for parity modification of the S-boxes are sepa-
rately optimized a 100% error detection for all the errors due to single stuck-at faults
was achieved. The additional area overhead is low. It consists of an additional parity

Parity-Based Concurrent Error Detection 123

tree for computing the parity of the inputs, a 18% to 24% increase of the area for the
S-Boxes and a few exclusive-or gates only. The proposed concurrent error detection
method allows detection of deliberately injected faults in addition to technical faults.

References

1. H. Heys, “A tutorial on linear and differential cryptanalysis,”
http://citeseer.nj.nec.com/443539.html.

2. E. Biham and A. Shamir, "Differential Cryptanalysis of DES-like Crytptosystems", Jour-
nal of Cryptography, Vol. 4, No. 1, pp. 3�72, 1991.

3. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Proceedings of Advances in
Cryptology-Eurocrypt, Springer-Verlag, pp. 386�397, 1994.

4. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side-Channel Cryptanalysis of Product
Ciphers,” Proceedings of ESORICS, Springer, pp. 97�110, Sep 1998.

5. D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking cryptographic pro-
tocols for faults”, Proceedings of Eurocrypt, Lecture Notes in Computer Science, Springer-
Verlag, LNCS 1233, pp. 37�51, 1997.

6. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”,
Proceedings of Crypto, Aug 1997.

7. R. J. Anderson and M. Kuhn, “Low cost attack on tamper resistant devices”, Proceedings
5th International Workshop on Security Protocols, Lecture Notes in Computer Sciences,
Springer-Verlag, LNCS 1361, 1997.

8. C. Aumuller, P. Bier, P. Hofreiter, W. Fischer and J.-P. Seifert, “Fault attacks on RSA with
CRT: concrete results and practical countermeasures,” www.iacr.org/eprint/2002/072.pdf.

9. J. Bloemer and J.-P. Seifert, “Fault based cryptanalysis of the Advanced Encryption Stan-
dard,” www.iacr.org/eprint/2002/075.pdf.

10. R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 block cipher”,
ftp://ftp.rsasecurity.com/pub/rsalabs/aes/rc6v11.pdf

11. H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, R. Zimmermann and W. Fichtner,
“VINCI: Secure test of a VLSI high-speed encryption system”, Proceedings of IEEE Inter-
national Test Conference, pp. 782–790, Oct 1993.

12. J. Daemen and V. Rijmen, “AES proposal: Rijndael”,
http://www.esat.kuleuven.ac.be/~rijmen/ rijndael/ rijndaeldocV2.zip

13. S. Wolter, H. Matz, A. Schubert and R. Laur, “On the VLSI implementation of the Inter-
national Data Encryption Algorithm IDEA”, IEEE International symposium on Circuits
and Systems, Vol.1, pp. 397�400, 1995.

14. R Karri, K. Wu, P. Mishra and Y. Kim, “Concurrent Error Detection of Fault Based Side-
Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers,” IEEE Transactions on CAD,
Dec 2002.

15. G. Bertoni, L. Breveglieri, I. Koren and V. Piuri, “On the propagation of faults and their
detection in a hardware implementation of the advanced encryption standard,” Proceedings
of ASAP’02, pp. 303�312, 2002.

16. S. Fernandez-Gomez, J. J. Rodriguez-Andina and E. Mandado, “Concurrent Error Detec-
tion in Block Ciphers”, IEEE International Test Conference, Oct 2000.

17. A. S. Butter, C. Y. Kao and J. P. Kuruts, “DES encryption and decryption unit with error
checking,” US patent US5432848, Jul 1995.

124 R. Karri, G. Kuznetsov, and M. Goessel

18. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “A parity code based fault
detection for an implementation of the advanced encryption standard,” Proceedings IEEE
International Symposium on Defect and Fault Tolerance in VLSI, pp. 51�59, Nov. 2002.

19. G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri, “Error Analysis and Detection Proce-
dures for a Hardware Implementation of the Advanced Encryption Standard,” IEEE Trans-
actions on Computers, vol. 52, No. 4, pp. 492�505, April 2003.

20. A. F. Webster and S. E. Tavares. “On the design of S-boxes,” Proceedings of CRYPTO ’85,
Springer Verlag Lecture Notes in Computer Science, LNCS 218, pp. 523�534, 1986.

21. H. Heys and S. E. Tavares, “Avalanche characteristics of substitution permutation encryp-
tion networks,” IEEE Transactions on Computers, vol. 44, no. 9, pp. 1131�1139, Sep
1995.

22. R. Karri, M. Goessel, and G. Kousnezow, “Method for error detection in kryptographic
substitution permutation networks,” patent application pending.

	1 Introduction
	1.1 Fault Based Attacks: Motivation
	1.2 Fault-Based Side Channels: The Fault Models
	1.3 CED Architectures for Symmetric Block Ciphers: Background

	2 Substitution-Permutation Network (SPN) Block Ciphers
	2.1 Parity-Based Concurrent Error Detection

	3 Fault Detection Capability
	3.1 Performance Penalty and Detection Latency

	4 Conclusions
	References

