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Abstract. In this work, we present new proposals based on the owner-
compute rule for the parallelization of irregular loops with dependences.
The parallel code increases the available parallelism through the distribu-
tion of the statements inside each iteration instead of the whole iterations
of the loop. Additionally, our proposal presents as main features the re-
ordering of the layout of the indirection entries, optimizing data locality,
and the efficient load balancing. Inspector and executor phases are fully
parallel, without synchronizations and uncoupled, allowing the reuse of
the information of the inspector. Experimental results on a SGI O2000
system prove that our approach exhibits a high performance, even when
compared to well-known parallelization strategies.

1 Introduction

In general, we broadly classify irregular loops into two different families: loops
without data dependences among iterations, and loops that present dependences,
doacross loops. In this work, we focus on the parallelization of irregular doacross
loops in CC-NUMA shared memory machines. In particular, we restrict ourselves
to a generic structure of loops like the one shown in Figure 1(a) where S indirec-
tion arrays xi of size Nx (1 ≤ i ≤ S) perform arbitrary read or write operations
in the accessed array a. In this figure, � represents a generic operator that can
be different for each indirection. According to the value of the indirection arrays,
any kind of dependence can arise. For instance, assuming that Nx = 3, S = 2,
x1 = {4, 1, 4} for read accesses to a and x2 = {1, 2, 2} for write accesses to a,
there is a true dependence between the second and the first iterations, and an
output dependence between the second and third iterations.

In order to parallelize these kind of loops, different strategies can be applied.
One of the most popular approaches is the inspector-executor strategy. The goal
of the inspector-executor algorithms is to maximize parallelism and minimize
the overhead of the analysis stage. One of the first inspector-executor approaches
was proposed by Zhu and Yew [1]. In this proposal loop iterations are divided
into subsets called wavefronts, which contain iterations that can be executed in
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DO j = 1, Nx

. . . = a[x1[j]] � . . .
a[x2[j]] = . . .

. . .
. . . = a[xs[j]] � . . .

END DO

DO j = 1, Nx

tmp1 = f(j)
a[x1[j]] = tmp1
tmp2 = a[x2[j]]

END DO

DO j = 1, Nx

a[x1[j]] = b[j]
a[x2[j]] = a[x2[j]]⊕b[j]

END DO

(a) (b) (c)

Fig. 1. Irregular loops: (a) template, (b) statement grouping, (c) multiple reordering.

parallel. This approach has two limitations: first, the inspector and the executor
are tightly coupled and the inspector is not reused across invocations of the
same loop. Second, the execution of consecutive reads to the same array entry
is serialized. Midkiff and Padua [2] improve this strategy by allowing concurrent
reads of the same entry. Saltz, et al [3] propose an alternative solution but
restricted to loops with no output dependences. Their inspector and executor
are uncoupled. Leung and Zahorjan [4] extend this work to consider output
dependences and propose parallel versions for the inspector.

All these proposals exploit iteration-level parallelism, that is, loop iterations
are distributed among the available processors and iteration-level synchroniza-
tions are performed to guarantee a correct execution order. A different approach
can be found in the CYT method [5]. This method is also based on the distri-
bution of the iterations among the processors but it checks for dependences in
the operation-level instead of in the iterations level. Operation-level synchroniza-
tions are included to fulfill dependences. The main advantage of this algorithm
is the extraction of a higher degree of parallelism. A comparison between strate-
gies based on iteration-level and operation-level parallelism is presented in [6].
This work shows in an empiric way that operation-level methods outperform
iteration-level methods. In [7], we presented two operation-level strategies for
parallelizing doacross loops and improving data locality.

In this work, we propose new parallelization techniques that reduces synchro-
nizations and improves even more data locality. Our techniques are based on the
distribution of the statements instead of the iterations which increases the avail-
able parallelism. They are applicable to doacross loops where data dependences
between statements are exclusively due to accesses to one array, named a in our
example (Figure 1(a)). We define statement stmtji of a loop, as the ith line of the
body executed in the jth iteration. In the previous example, dependences arise
from statement stmt12 to stmt21 and from statement stmt22 to stmt32. Often real
codes have statements that do not present indirect accesses. For instance, let’s
consider the loop of Figure 1(b). For each iteration j, statement stmtj1 does not
have accesses to a but it presents a true dependence with stmtj2. In these cases, a
fusion of statements can be performed, assuming that there are statements with
more than one line of code. In the example, statement stmtj1 can include, for
each iteration j, the first two lines, whereas stmtj2 refer to the third line of the
body of the loop. In this way, we have a loop with two statements per iteration.
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DOALL p = 1, Np

DO j = 1, Nx

IF(x1[j] ∈ my block[p]) exec: stmtj1
IF(x2[j] ∈ my block[p]) exec: stmtj2

. . .
IF(xs[j] ∈ my block[p]) exec: stmtjs

END DO
END DOALL

DOALL p = 1, Np

DO l = 1, Nslc − 1
DO i = 1, S
DO j = ρslc

i [l][p], ρslc
i [l + 1][p] − 1

exec: stmtji
END DO

END DO
END DO

END DOALL

(a) (b)
Fig. 2. Parallel executors: (a) parallel loop applying the owner compute rule, (b) par-
allel loop applying the slice sort strategy.

Our final proposal is based on the inspector-executor paradigm. Initially, on
run-time, the access patterns are analyzed and the dependence information is
collected. Then, in the executor stage, the S × Nx statements are distributed
among the processors. Additionally, the information provided by the inspector
is also applied to improve data locality and load balance.

2 Parallelization Strategy

We will use the loop of Figure 1(a) as case of study, where some of the state-
ments inside of the loop could be irregular reduction operations. For this kind
of irregular loops we can formulate the following property.

Property 1. Given two statements stmtji and stmtj
′

i′ that perform generic
accesses to the same entry of a. If there is not an intermediate statement that
accesses to this entry, and j′ > j, then stmtj

′
i′ can be executed anytime after

stmtji . �

Then, according to the previous property, the order of the statements can
be changed as long as the dependences are maintained. The following sections
describe different approaches that exploit this property.

2.1 Owner-Compute Rule Strategy

As starting point, we propose a parallel executor based on the owner-compute
rule. The parallel code corresponding to Figure 1(a) is shown in Figure 2(a),
where Np is the number of available processors. Each one has assigned an interval
of entries of array a which is denoted as my block[p]. In the loop execution, each
processor traverses all the iterations of the loop checking for local accesses to
a in each statement. Given that the statements are accessed in the same order
than the original loop, the dependences are preserved. The main advantage of
this proposal is the locality in the accesses to a, and its main drawback is the
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overhead introduced by the additional checks. In the next section, we propose a
new strategy called slice sort based on the owner-compute rule, but focused on
several additional objectives. First, our technique obtains a better exploitation
of the memory hierarchy. Our proposal performs a reordering of the indirection
arrays to obtain good locality in the indirection accesses, and to reduce false
sharing. Several previous papers [8,9] proof the importance of this factor in the
performance of the parallel execution, specially on CC-NUMA shared memory
machines. Second, in order to obtain a good performance of the parallel code, a
correct load balance must be guaranteed. Our proposal optimizes dynamically
the load balance. And third, the checks introduced by the owner-compute rule
strategy are eliminated.

2.2 Slice Sort Strategy

The slice sort strategy consists of an inspector that performs the analysis and
scheduling of the loop, and an executor that properly runs the parallel code.
The purpose of the inspector is the determination, in run-time, of the optimal
arrangement of the statements of an irregular loop. Our proposal is based on
the owner-compute rule, each processor p is assigned to an interval of a. Only
statements accessing to entries of a inside the considered block will be executed.
Additionally, the indirection arrays are reordered so that, for each one, each
processor accesses consecutive entries, improving further more data locality.

Inspector stage. The inspector stores the statements to be executed for each
processor, as well as the execution order needed to fulfill the dependences. This
information is stored into a structure of Nslc sets called slices. Each slice contains
only the statements that can be executed in the considered block without data
dependences. The concept of slice is similar to the definition of wavefronts [1]
but now the slices are defined for individual statements instead of iterations.
The basic parallel inspector is shown in Figure 3.

Initially, in the analyzing stage, each processor p traverses all the entries of
each indirection, and analyze which of them perform accesses in its assigned
interval of a. The private arrays ρrow

i store the number of accesses that are
performed in each entry of a by the statements stmtji (1 ≤ j ≤ Nx). For a given
statement that performs an access to a, the minimum index of slice in which it
can be assigned is obtained by function slice(). Let’s assume that ρrow is the
set of all ρrow

i ∀i, and since the accesses are analyzed in the proper order of
execution, we have:

slice(ρrow, xi[j]) =
S∑

k=1

ρrow
k [xi[j]] (1)

With this values, the shared array ρslc
i is properly updated. For each proces-

sor, the array counts the number of statements stmtji assigned to each slice. Note
that any kind of dependence is maintained, even Read after Read dependences.

Subsequently, in the shifting stage, the ρslc arrays are realigned. This op-
eration allows to write, in the next stage, the reordered array in different and
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DOALL p = 1, Np

DO j = 1, Nx % Analyzing stage
DO i = 1, S

IF (xi[j] ∈ my block[p])
ρrow

i [xi[j]] + +
ρslc

i [slice(ρrow, xi[j]), p] + +
END IF

END DO
END DO
DO k = Nslc, 1 % Shifting stage
DO i = 1, S

ρslc
i [k, p] = accum(xi, p) +

∑k−1
j=1 ρslc

i [j, p]
END DO

END DO
DO j = Nx, 1 % Sorting stage
DO i = S, 1

IF (xi[j] ∈ my block[p])
ρslc

i [slice(ρrow, xi[j]), p]] – –
xout

i [ρslc
i [slice(ρrow, xi[j]), p]]] = xi[j]

ρrow
i [xi[j]] – –

END IF
END DO

END DO
END DOALL

Fig. 3. Parallel inspector algorithm.

contiguous memory regions. Using function accum(), the number of entries of
each indirection computed by each processor is obtained. More formally, defining
‖ · ‖ as the cardinality operator, for a given indirection xi and processor p:

acum(xi, p) =‖ {xi[j] / xi[j] ∈ my block[p′]} ∀p′ < p ∀j ∈ [1, Nx] ‖ (2)

Once this value is computed, the entries of ρslc arrays are updated adding the
offset of previous processors and previous entries in the same slice. Finally, in the
sorting stage, the reordered indirection arrays xout

i are generated. Once more,
all the accesses are analyzed, but this time in reverse order. Therefore arrays
ρslc

i point to the last element of each slice, and they are decremented as they
are being processed. For each entry of xi, the position in the new array xout

i is
given by the current value of ρslc

i . Note that this procedure allows us to reuse
the information of the analyzing stage.

Executor stage. Figure 2(b) shows the parallel executor. As each processor
only computes the accesses to the region of a assigned to it, therefore no syn-
chronizations are required. Since all the statements within a slice do not present
dependences, they can be executed in parallel. Note that using slices the depen-
dences for each processor are preserved.
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The workload can be dynamically balanced changing the size of the block of
a assigned to each processor. The workload associated to the pth processor is:

load[p] =
S∑

i=1

(Ci ‖ xi[j] / xi[j] ∈ my block[p], ∀ j ∈ [1, Nx] ‖) (3)

Where Ci represents the computational cost of each statement. Our algorithm
obtains, with this equation, the whole cost of the loop. The ideal fraction of
workload associated to each processor is obtained dividing the total workload by
the number of processors. Therefore, contiguous blocks of entries of a that have
the same workload are computed using equation 3. The whole process is done in
parallel.

3 Performance Evaluation

We used various tests in order to evaluate the efficiency of our proposal. First,
we evaluated the complexity and memory requirements of the inspector. Then,
we compared the performance of our proposal with other state-of-the-art ap-
proaches, using synthetic and real benchmarks.

The complexity of our inspector is proportional to the number of entries of
the indirection arrays. Specifically, it is proportional to the sum of the complexity
of its three stages: O(NxS + NslcS + NxS). Typically, Nx � Nslc, so we have
O(2NxS). If the irregular code presents poor load balance, then a variable block
distribution is advisable, so we have to take into account the cost of the load
balancer that is O(NxS).

In terms of the memory overhead of the executor, we have distinguished two
situations. The first one, shown in Figure 1(a), deals only with the indirection
arrays that depend on the loop index. In this case, the overhead of the executor
is due to ρslc arrays and it is NslcNpS. The second situation differs in that if
more than one array depend of the loop index, it will have to be replicated.
Figure 1(c) shows an example where array b is acceded by two statements. As

DO j = 1, Nx

DO k = 1, W
dummy work for stmt1

END DO
tmp1 = tmp1 + a[x1[j]]
DO k = 1, W

dummy work for stmt2
END DO
a[x2[j]] = tmp2

END DO

(a) Synthetic code

Matrix Nx Na CP Nslc

gemat1 23684 4929 4938 4928
gemat12 16555 4929 49 44
mbeacxc 24960 496 487 485
beaflw 26701 507 500 495

psmigr 2 270011 3140 2626 2294
25600 U 12800 25600 9 7

25600 90 10 12800 25600 45 35
51200 U 25600 51200 11 9

51200 90 10 25600 51200 46 30

(b) Benchmark matrices

Fig. 4. Synthetic benchmark.
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(a) W = 10 (b) W = 20
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(a) W = 30 (b) W = 40

Fig. 5. Speedups for different workloads on 8 processors for W = 10.

a rule, we have that when one array is acceded by several statements, private
copies for each one must be created and each copy must be sorted in the same
way that the corresponding indirection array. This can be done in the inspector
without any further computational cost. In this way, and for the example, we
ensure that when entry a[xout

i [j]] is computed, the correct value of bout
i [j] will

be used.
Next, our proposals are compared with the CYT, LCYT and LO-LCYT

strategies [5,7]. The target machine is a SGI O2000 with up to eight R10K pro-
cessors. The benchmarks are written in Fortran, and parallelized using OpenMP
directives. As starting point, and following similar approaches taken by other
authors [5,10], we have used the synthetic loop of Figure 4(a) in order to eval-
uate the efficiency of each strategy. We assume that each iteration of the loop
has associated two statements; each one includes one irregular access and its
associated dummy work. W determines the amount of workload associated to
each one. To simplify the study, we assume the same W for both statements.

We have used sparse matrices extracted from real programs [11] as indirection
arrays, as well as artificial access patterns that can be classified as uniform and
non-uniform. For the uniform ones, denoted with the termination “ U”, all the
array elements have the same probability of being accessed, whereas in the non-
uniform, 90% of references access to 10% of array elements. The table shown in
Figure 4(b) contains the main features of the access patterns. Nx is the number
of entries of each indirection, Na is the size of a, and CP is the Critical Path.
For the CYT, LCYT and LO-LCYT algorithms the Nx iterations are distributed
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(a) L1 normalized cache misses (b) L2 normalized cache misses

Fig. 6. Cache behaviour on 8 processors for W = 10.

among the p processors. The CP (1 ≤ CP ≤ Nx) is the length of the largest
dependence chain in the loop and gives an estimate of how parallel the loop is.
If CP = 1 the loop is fully parallel whereas if CP = Nx the loop sequential. For
the slice sort strategy, synchronizations are only needed when all the iterations
of each slice are processed, so NS gives an estimate of how parallel the loop is.

Note that the Critical Path is slightly bigger than the number of slices Nslc.
This is due to the fact that previous proposals take into account dependences
between iterations instead of single statements. For instance, considering the
loop of Figure 1(a) with Nx = 3, S = 2, x1 = {1, 2, 3} and x2 = {2, 3, 4}, the
associated critical path is 3 because each iteration depends on the previous one.
However, considering single statements, only two slices are required to preserve
the dependences, that is, a better exploitation of the available parallelism is
achieved using the slice sort strategy.

Figure 5 shows the speedups for the executor on 8 processors and different
workloads. A block distribution of the entries of a was used for the owner-
compute rule approach. This technique presents good data locality in the write
accesses to a. It has good performance with synthetic matrices because they
are well balanced. However, this performance exhibits an important drop down
for less balanced real patterns. In all the cases, the slice sort strategy obtains
the best results due to an equilibrated load balance and a good data locality.
Figure 6 shows the number of L1 and L2 cache misses, normalized with respect
to the CYT strategy, for 8 processors. Note the important reduction obtained
with our proposals. Additionally, synchronizations between processors and run-
time checks are eliminated. The performance of our proposal decreases as W
increases due to a smaller influence of the locality improvements.

Table 1 shows the overall performance of the slice sort strategy taking into
account the overhead of the inspector. Specifically, it contains the number of
times the inspector needs to be reused to be faster than the others. For example,
for matrix gemat1, two iterations of our executor are faster than two iterations
of the owner-compute rule approach, including the overhead of the inspector
of our proposal. A zero entry means that our proposal is faster than the other
proposal even from the first iteration and taking into account the overhead of
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Table 1. Threshold in iterations for outperforming the rest of the proposals.

W=10 W=30
Matrix OWNCR CYT LCYT LO-LCYT OWNCR CYT LCYT LO-LCYT
gemat1 2 0 0 0 0 0 0 0
gemat12 5 0 5 2 2 0 4 2
mbeacxc 1 0 1 0 0 0 0 0
beaflw 1 0 0 0 0 0 0 0

psmigr 2 5 0 1 1 2 0 0 0
25600 U 7 0 0 0 6 0 0 0

25600 90 10 7 0 0 0 5 0 0 0
51200 U 9 0 0 0 8 0 0 0

51200 90 10 7 0 0 0 4 0 0 0

the inspector. Note that, in general, the threshold is not high, and decreases
as W increases. This threshold is more important for the owner-compute rule
approach because it does not use an inspector.

Table 2. Input data and speedups for the PLTMG benchmark.

Characteristics Speedup on 4 processors Speedup on 8 processors
Matrix Nx Na Nslc OWNCR ARRAYEXP SLCSRT OWNCR ARRAYEXP SLCSRT

test1 7500 1300 9 0.65 0.65 1.88 0.75 0.72 2.32
test2 21090 3595 9 0.55 0.80 2.25 0.76 0.91 3.21
test3 90480 15240 9 0.79 1.10 2.91 1.93 1.46 2.52

Table 3. Input data and speedups for the BDNA benchmark.

Characteristics Speedup on 4 processors Speedup on 8 processors
Matrix Nx Na Nslc OWNCR SLCSRT OWNCR SLCSRT

test1 1520 5830 1 1.1 2.1 1.5 1.7

We also have evaluated the efficiency of our proposal with two real appli-
cations. The first one was extracted from the mtxmlt subroutine of PLTMG
Edition 7.1 [12]. This software solves elliptic partial differential equations in
general regions of the plane. Although data dependences related to this loop can
be overridden by the array expansion parallelization technique, we have found
two reasons to include it in our benchmarks. First, it allows us to compare our
proposal with other high-competitive approaches. Second, as in other applica-
tions, it is mandatory to execute the loop following the sequential order. In an
out-of-order execution, like array expansion, the final result can be slightly dif-
ferent from the original. Our proposals assures the correct results. We made
tests for three different problem sizes. Their main features are shown in Table 2.
This table also shows the obtained speedups for the executor on 4 and 8 proces-
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sors. Note that the slice sort approach is the only one that obtains significant
speedups.

The second benchmark was extracted from the Perfect Club Benchmarks [13].
Specifically, it corresponds to the loop 711 of the correc routine of the BDNA
application. Given that access pattern is unknown at compiler-time, dependence
analysis have to be performed at run-time. In this stage, our inspector determines
that for the input data considered the loop is fully parallel. In [5,10] this loop
was tested for the CYT algorithm, and poor speedups were obtained. LCYT
and LO-LCYT can not be applied as more than one write access is considered.
Results obtained with our proposals for the executor stage are shown in Table 3.
Due to the small size of the problem, the available parallelism is low, even though
our proposal obtains significant speedups.
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